
International Journal of Engineering Trends and Technology
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-VXXXX

Volume 68 Issue 10, 1-4, April 2021
© 2020 Seventh Sense Research Group®

Formal Specification & Verification of
Checkpoint Algorithm for Distributed Systems

using Event - B
Bal Krishna Saraswat∗1, Raghuraj Suryavanshi2, and Divakar Yadav3

1Assistant Professor, Department of Computer Science & Engineering, SRM Institute of Science &
Technology, NCR Campus, Modinagar, India

2Assistant Professor, Department of Computer Science & Engineering, Pranveer Singh Institue of
Technology, Kanpur, India

3Professor, Department of Computer Science & Engineering, Institute of Engineering & Technology,
Lucknow, India

1*saraswat.banti@gmail.com, 2raghuraj.suryavanshi@gmail.com, 3divakar yadav@rediffmail.com

Abstract—Using formal methods to design a system
model, and then specifying and verifying critical properties
of that model is a way to design safety critical systems.
Modeling can be done by a proper methodology so that one
can analyze proposed behavior of the models quantitatively.
Formal method used to develop the distributed system
models is Event - B. This approach consists of meticulously
defining the problem in a conceptual model, incorporating
problem solutions or design information in the refinement
steps for the sake of obtaining concrete requirements, and
checking the accuracy of explanations offered. The existing
B tools offer substantial automatic proof assistance to
generate and discharge the proof obligations. The various
processes at different locations are linked by the network in
a distributed system. They communicate with each other
by sending messages. A checkpoint is a process’s saved
local state. If the global state created by the saved states
is consistent, a collection of checkpoints, one per system
process, is consistent. In this paper a refined methodology
is introduced for the development of distributed system
models using Event-B, in which processes coordinate their
checkpoint through broadcasting messages to always create
a consistent set of checkpoints. A formal logic method is
needed to understand the behavior of these techniques and
achieve the goals.

Index Terms—Event-B, Formal Verification, Distributed
systems, Recovery, Checkpoint, Formal Specifications, ten-
tative checkpoint number, permanent checkpoint number,
Formal Methods.

I. INTRODUCTION

Over the last two decades, the computing industry has
shifted toward distributed, low-cost, high-volume unit
goods. With the incorporation of multi-computing and
multiprocessing, the computer system’s efficiency has
significantly improved. The distributed framework has
become popular and relevant with the advent of web and

network technologies [18]. In every application area, one
can find Distributed system including client/server sys-
tems, World Wide Web, transaction processing, banking,
financial services, and many others.

This paper is about testing system design using mod-
eling of the system. Distributed system’s reliability is
an important design requirement for improving current
distributed systems or designing the new ones. Reliabil-
ity refers both to a system’s vulnerability to different
kinds of failures and its ability to survive from them
[24]. A system can be configured to be fault tolerant
by demonstrating rigorous behavior that encourages the
recovery-friendly action [17]. Checkpoint and rollback
recovery are well-acknowledged strategies for addressing
distributed systems reliability [21], [22], [8]. A check-
point is an execution’s saved intermediate state and can
be used to restart the execution from that stage. Existing
algorithms for checkpoints can be divided into three
classes.

• Uncoordinated (asynchronous),
• Coordinated (synchronous) and
• Communication Induced (quasi-synchronous).
Under asynchronous checkpoint, processes periodi-

cally take checkpoints (i.e., the system state is stored
periodically in stable storage) [18] without any syn-
chronization with other processes. A consistent global
checkpoint [20] is accomplished when a process fails
and the processes starts again from such latest consistent
global checkpoint. This approach allows checkpoints
to be taken whenever process wants, and therefore
processes can design the checkpoint operation when-
ever the I/O nodes are not busy, resulting in fewer
checkpoint overhead[15]. Under certain circumstances,

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://www.internationaljournalssrg.org/
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
ssrg 5
Text Box
International Journal of Engineering Trends and Technology Volume 69 Issue 4, 1-9, April 2021ISSN: 2231 - 5381 /doi:10.14445/22315381/IJETT-V69I4P201 © 2021 Seventh Sense Research Group®

Bal Krishna Saraswat et al. / IJETT, 68(10), 1-4, 2021

rollback propagation takes place until the start of the
computation and entire computation was lost what had
takes place before the failure, this is known as domino
effect [25].

Synchronized checkpoint is a solution to the issue of
uncoordinated checkpoint, in which processes organize
their checkpoint operation in synchronous or coordinated
checkpoint schemes so that the system always retains a
globally consistent set of checkpoints [13].

There is yet one more technique to checkpoint, known
as communication induced checkpoint [26], [21]. Under
communication-induced checkpoint, the processes are
permitted to take the checkpoint on the basis of the
information sent with the application messages by the
communicating processes. Checkpoints are conducted in
a certain manner that there is system-wide consistent
state at all the time.

For distributed systems, the correctness of a check-
point process must be formally verified to ensure fault
tolerance of the safety critical systems. In this paper,
authors presented the formal development of a check-
point process that ensures a system wide consistent
global state [20] in distributed system. The approach to
the step by step evolution of the checkpoint process is
established on the abstraction and refinement method-
ology. This technique is noteworthy for its ability to
formally explain abstract global models of a system,
and then refine it in a series of intermediate steps to
a comprehensive distributed architecture. Event-B [2],
[23] supports this methodology, that is an alternative
to B Method [4]. Event-B encourages a step-by-step
implementation in the refinement phases from the ini-
tial abstract specifications. The compliance between the
system’s development and the abstract requirements are
checked at each refinement step. B tools make available
for use provide the substantial automatic proof assistance
to generate and discharge the proof obligations for
consistency and refinement checking. Various B tools
support this technique, for instance Rodin [6], B4Free
[14], which provides substantial automatic assistance
for the definition of proof obligations, factorizing and
discharging complicated proof obligations into simplified
proofs. The critical characteristics of design, and proof
guidelines for achieving a high level of automatic proofs
for an Event-B implementation are defined in [12].

In this paper the system development is started with
the incremental development of the Distributed system
which uses Coordinated Checkpoint [19] using Event -
B [3], [9], [10]. Event-B is an event driven methodol-
ogy utilized to formulate formal models of distributed
systems. In the system’s abstract model, an abstract
distributed system is defined that uses passing message
to interact with each other. In the refinement steps it
is outlined that how a system can properly implements

a Coordinated Checkpoint methodology to achieve fault
tolerance.

II. MATERIALS & METHODS

This section outlines the informal requirements of the
coordinated checkpoint properties and incorporates the
Event-B method.

A. Event-B

Event-B [2], [7] is a process modeling technique
which follows B method for the design of distributed
systems. Operations in Event-B are known as events
that takes place impromptu instead of being invoked
randomly. Guarding of the events are done by predicates,
and at every step of refinement these guards may be
strengthened. The variables of the state are changed
by events. Invariants states the properties that variable
must satisfy and retain through event activation. The
application of set theory notation to modelling, the use
of refinement to define structures at different levels
of abstraction, and the use of mathematical proof to
check consistency between levels of refinement are all
main features of Event-B. Two fundamental concepts
characterize the Event-B models: context and machine
[16]. Context comprises a model’s static, while machine
comprises the dynamic part.

Variables, invariants, events, and variants can be found
in machines, while carrier sets, constants, and axioms
can be found in contexts. Machines and contexts have
distinct names. There are different relationships between
machines and contexts: A machine can be refined by
some other machine, and a context can be extended by
some other context. Moreover, a machine can see one or
several contexts.In one context, the set lists different sets
of carriers, which define disjoint types in pairs. The key
properties of constants are described by axioms. Since
the theorem shows properties (to be proven) derived from
already declared axioms, axioms can be established.

B. B - Notation

Few B notations which are mostly used in our system
are presented here. A more elaborated justification of
these can be found in [1], [11]. Lets assume that there
are two sets named P & Q, then notation ↔ expresses
the set of relations between P and Q as

P↔ Q = P(P× Q)

where × is known as the Cartesian product of set P and
set Q. A mapping of element p ∈ P and q ∈ Q in a
relation R ∈ P ↔ Q is recorded as p 7→ q. The domain
of a relation R ∈ P ↔ Q is the set of elements of P that
R relates to some elements in Q expressed as

2

ssrg 5
Text Box
 Bal Krishna Saraswat et al. / IJETT, 69(4), 1-9, 2021

Bal Krishna Saraswat et al. / IJETT, 68(10), 1-4, 2021

dom(R) = {p | p ∈ P ∧ ∃ q . (q ∈ Q ∧ p 7→ q ∈ R)}

Furthermore, the range of relation R ∈ P 7→ Q is defined
as set of elements in Q related to some element in P :

ran(R) = { q | q ∈ Q ∧ ∃ p . (p ∈ P ∧ p 7→ q ∈ R) }

A function is a relation with some constraints. A
function can be of two types: partial function (7→) or
a total function (→). A partial function from set P to Q
(P 7→ Q) is a relation which relates an element in P to
at most one element in Q.

A total function from set P to Q (P → Q) is a partial
function where dom(f)=P, i.e., each element of set P is
related to exactly one element of set Q. Given f ∈ P 7→
Q and p ∈ dom(f), f(p) represents the unique value that
p is mapped to by f.

C. Rodin

In this paper the Rodin [3], [5] tool is used to formally
verify the Event - B model of coordinated checkpoint
process in distributed system. Rodin (Rigorous Open
Development Environment for Complex Systems) is an
extension of Eclipse IDE (Java based). It’s an open-
source, extensible tool for event - B specification and
validation. The simplicity of use and configurability of
the Rodin tool are its two important characteristics. The
focus of the tool is on modeling. Models can be easily
modified and model variations can be evaluated. The tool
can also be extended easily.

III. SYSTEM MODEL

In this section, an informal model of a distributed
system is provided. The distributed system regarded in
this paper is characterized by the following:

1) There is no shared memory between the processes
and they send message to one another for commu-
nication through channels.

2) There is no loss of messages by channels and
this is ensured by any end-to-end transmission
protocol that makes the channels lossless(virtually)
and first-in-first-out in delivery of messages.

3) Processes can malfunction, and when they do, all
other processes must be informed of the failure
within a certain amount of time.

The system model proposed here comprises the collec-
tion of sites on which the set of processes are running,
they coordinate their checkpoints so that the subsequent
global state is consistent. To allocate the timestamp to
the communicating sites and the messages concerned,
Lamport’s logical clock is used. Proposed model saves
two types of checkpoints on stable storage which are
provided below:

• Permanent

• Tentative

It is not possible to undo a permanent checkpoint. It
ensures that the computation necessary to enter the
checkpoint state is not performed again. Nevertheless,
it is possible to undone or alter a provisional checkpoint
to be a permanent checkpoint.

Next, it is assumed that the algorithm is invoked
by a single process to take a permanent checkpoint.
Furthermore, it is also assumed that no site will fail
while the algorithm is being executed. The model sends
messages across lossless(virtually) and FIFO channels .
The checkpoint algorithm is based on two phase commit
protocol. The initiator q takes a tentative checkpoint in
the first phase and asks to all processes to take tentative
checkpoints. To assume the initiator’s position of initia-
tion and decision making, a hypothetical process called
daemon is created. When q learns that all processes have
taken provisional checkpoints, q chooses to make all
provisional checkpoints permanent; otherwise, q decides
to discard the provisional checkpoints. In the second
phase, q’s choice is spreaded and completed by all
processes. The most recent set of checkpoints is always
consistent as all or none of the systems take permanent
checkpoints. This checkpoint decision is made in the
same way that a request to take a provisional checkpoint
is made. After taking a new permanent checkpoint, a
process discards its old checkpoint [19].

IV. EVENT-B MODEL OF CHECKPOINT PROCESS IN
DISTRIBUTED SYSTEM

In the proposed model, a process known as the
daemon process initiates the checkpoint process. This
daemon broadcasts to all other participating processes
(checkpoint Cohorts) a timestamped request message.
checkpoint cohorts processes updates its local checkpoint
number after receiving the request message and sends
the daemon a time-stamped reply message. To allocate
timestamp to the message, it increases its own local
checkpoint number by one each time a message is sent
by any process and the incremented value is assigned to
the message as a timestamp. With the maximum times-
tamp value of the message sent and the latest checkpoint
number at the time of message delivery, the received site
updates its own local checkpoint number. The daemon
site calculates the permanent checkpoint number after
receiving the reply message from all checkpoint cohort
processes. This global checkpoint number is shared with
all stakeholders such that all processes can switch a
temporary checkpoint into a permanent one.

3

ssrg 5
Text Box
 Bal Krishna Saraswat et al. / IJETT, 69(4), 1-9, 2021

Bal Krishna Saraswat et al. / IJETT, 68(10), 1-4, 2021

V. ABSTRACT MODEL OF CHECKPOINT PROCESS IN
EVENT - B

A. Context:

Context represents the static state of the system.
Contexts may contain carrier sets, constants, and axioms.
In the Context of the model we have declared two
carrier sets. PROCESS and PROCESS MSG. Carrier set
PROCESS represents the set of processes running in
the distributed system, and set PROCESS MSG are the
set of messages exchanged between processes. Three
enumerated sets are also defined: state, category and
checkpointstate.

The set state represents the state of the daemon.
Daemon can be in any one of the four states:

1) awaiting: Daemon process waiting to receive the
checkpoint response message from all checkpoint
cohorts.

2) received all responses: Daemon process received
checkpointing responses from all cohorts.

3) permanent ckpt broadcast: Daemon processes
had broadcasted the permanent checkpoint number
to all cohorts.

4) idle: Daemon process is idle.
The set category represents the category of the mes-

sage communicated between daemon and the cohort
processes. Message can be of any one category:

1) tentative ckpt req: This represents that the mes-
sage type is tentative checkpoint request which is
sent from daemon to checkpointing cohorts.

2) tentative ckpt response: This represents that the
message type is tentative checkpoint response and
is sent from checkpointing cohorts to daemon.

3) permanent ckpt msg: This represents that message
is from daemon checkpoint cohorts and is perma-
nent checkpoint message.

The set checkpointstate represents the checkpoint state
of the processes. Any process can have any one check-
point state at any given time:

1) open: represents that the checkpoint state is open.
2) tentative: represents that the checkpoint state of

the process is tentative.
3) permanent: represents that the checkpoint state of

the process is permanent.

B. Machine:

Macine represents the dynamic state of the system.
Machines may contain variables, invariants, events and
variants.

1) Variables:: In the machine of the model various
variables have been defined, which are described below:

• sender: The variable sender represents the sender
of message. The variable sender is a partial function

Figure 1. Abstract model of checkpoint process in Event - B

from the set PROCESS MSG to PROCESS. This is
given in Fig.1

inv 3: sender ∈ PROCESS MSG 7→ PROCESS

A representation of the form mm 7→ pp ∈ sender,
represents that message mm was sent by process pp.

• daemon: daemon represents the checkpoint initiator
process. daemon is any one process from the set
PROCESS. This is defined in Invariant 1.

4

ssrg 5
Text Box
 Bal Krishna Saraswat et al. / IJETT, 69(4), 1-9, 2021

Bal Krishna Saraswat et al. / IJETT, 68(10), 1-4, 2021

inv 1: daemon ⊆ PROCESS
• daemon status: Represents the status of the dae-

mon (initiator process). Any process can be a dae-
mon. It is a Total function from daemon to set state.
It is defined in Invariant 2.

inv 2: daemon status ∈ daemon → state
Daemon status can be any one of the four values:

– awaiting
– received all responses
– permanent ckpt broadcast
– idle

A representation of the form daemon status ∈ dae-
mon 7→ awaiting represents that daemon is waiting
to receive the response from checkpoint cohorts and
did not received the response from all the cohorts.

• sent msg: Represents the messages which was sent
by the process.

• time sent msg: Represents the timestamp of the
sent messages.

• msg category: Represents the category of the sent
message. Sent messages can of three types:

– tentative ckpt req
– tentative ckpt response
– permanent ckpt msg

This is given in Fig.1
inv6 : msg category ∈sent msg → category

A representation of the form msg category ∈ mm
7→ tentative ckpt req represents that the category of
the message mm is tentative checkpoint request.

• deliver: deliver represents the delivery of the mes-
sage to a process. It is a Relation between PRO-
CESS and PROCESS MSG. It is defined in Fig.1

inv7 : deliver ∈ PROCESS ↔ PROCESS MSG
A representation of the form deliver ∈ pp 7→ mm
represents that message mm has been delivered to
process pp.

• time response msg: represents the timestamp of all
reply messages to the coordinator.

• ckpt state: represents the checkpoint state of each
process. ckpt state can be any one of the three
values.

– open
– tentative
– permanent

ckpt state is a Total function from set PROCESS to
set checkpointstate. It is given in Fig.1
inv9 : ckpt state ∈ PROCESS → checkpointstate

A representation of the form pp 7→ tentative repre-
sents that process pp has taken tentative checkpoint.

• no of responded process: represents the number
of process responded for the request message for
checkpoint creation. It is a set of Natural numbers.

• tentative ckpt no: represents tentative checkpoint
number of each process. It is a Total function from
PROCESS to Natural number. it is defined in the
Fig.1.

inv 11: tentative ckpt no ∈ PROCESS → N
A representation of the form pp 7→ 1 represents
that process pp has taken a Tentatine checkpoint
number 1. tentative ckpt no store all the events
which happens on the process and used for recovery
purpose for that process.

• permanent ckpt no: Represents the permanent
checkpoint number.

2) Events: : Various events have been defined in
the machine. Informal information about the events
are given below:

– Broadcasting checkpoint request
message to the cohorts: In the event
Daemon checkpoint request broadcast in
Fig.2 daemon process pp broadcast a
checkpoint request message mm to all
the cohorts to take the tentative checkpoint.
The grd4: ensures that daemon always send

Figure 2. Broadcast operation of checkpoint process model

a fresh checkpoint request message to all the
cohorts. grd3: ensures that the status of the
daemon should be idle to sent a checkpoint
request message. If the given guards are true
then, timestamp is assigned to the checkpoint
request message by incrementing the tentative
checkpoint number of daemon process by
1, as given in Fig.2 (act1: & act2:). The
status of the daemon is set to awaiting and
category of the request message is set to
tentative ckpt req.

5

ssrg 5
Text Box
 Bal Krishna Saraswat et al. / IJETT, 69(4), 1-9, 2021

Bal Krishna Saraswat et al. / IJETT, 68(10), 1-4, 2021

– Checkpoint Request Message Receive
by Checkpoint Cohort: In the event
Cohort Checkpoint Request Receive in
Fig.3 all the checkpointing cohorts receive
the checkpoint request broadcast and then
updates its tentative checkpoint number with
timestamp of the request message or its current
timestamp value, whichever is higher. In fig.3

Figure 3. Checkpoint request receive operation of cohorts

grd4: and grd10: ensures that checkpoint
request message mm is not delivered to the
process pp, this is a fresh request message.
grd8: ensures that sender of the checkpoint
request message is daemon. grd6: ensures that
state of receiver process of the checkpoint
message should be open. If all the given
guards are true then message mm is delivered
to process pp in act1 : . In act2 : process
pp takes tentative checkpoint number as
maximum value of timestamp of the message
mm or the tentative checkpoint number of the
process incremented by 1.

– Checkpoint request Response by Cohort : In
the event Checkpoint Cohort Response given
in Fig.4 Every cohort process sends a times-
tamped response message to daemon. To allo-
cate a timestamp to a response message, the
process increases its tentative checkpoint num-
ber by one and uses that value as a timestamp.
In grd5: it is ensured that request message must
be delivered to cohort. The response message
mm must be a fresh response message , it
is ensured by grd3:. To send the response
message to daemon , the checkpoint state of the

Figure 4. Checkpoint response send operation of cohorts

cohort must be open. If all the guards are true

Figure 5. Checkpoint response send operation of cohorts

then the checkpoint state of the processpp is
set to tentative and message mm is added to the
set sent msg. Message category of the mm is
set to tentative ckpt response, which represents
that category is tentative checkpoint response
(act3:). Timestamp of the response message
mm is set to tentative checkpoint number in-
cremented by value 1 (act5:).

– Cohort Response Submission
at Daemon: In the event
Cohort Response submission At Daemon

6

ssrg 5
Text Box
 Bal Krishna Saraswat et al. / IJETT, 69(4), 1-9, 2021

Bal Krishna Saraswat et al. / IJETT, 68(10), 1-4, 2021

response messages from all the cohorts is
delivered to the daemon process. It is given in
Fig.5.
Whenever a daemon process receive a
message from a cohort with category
tentative ckpt response, it updates the
no of responded sites with 1. The value
of the timestamp of the response message
is also stored for the purpose of Permanent
checkpoint computation. grd3: ensures that
the response message mm is a fresh response
message, and it is not already delivered to
process pp. Message category of the response
message mm should be tentative ckpt response,
it is defined in grd4:. Status of the daemon
should be awaiting.
If all the given guards are true then the re-
sponse message mm should be deliverd to the
daemon in (act1:). Whenever receives the
response from any cohort daemon the updates
the no of responded process, it is defined in
(act2:). In (act3:) timestamp of the response
message is added to the pool of all timestamp
of the response messages.

– Permanent Checkpoint Computation: In the
event permanent ckpt computation daemon
must ensure that it has received the response
messages from the all the cohorts(grd2:), it is
given in Fig.6. daemon must ensure that its

Figure 6. Permanent Checkpoint Computation by daemon

status should be awaiting before computing the
permanent checkpoint number, it is defined in
(grd3 :).
When all the given guards are true then the
daemon changes its state from awaiting to
received all responses (act1:), and maximum
timestamp value from the received response
messages is assigned to the permanent ckpt no
(act2:).

– Broadcast of Permanent Checkpoint Number:
In the event Broadcast Permanent Ckpt No
permanent checkpoint number, is broadcasted

by daemon to all cohorts. It is given in Fig.7.
grd2: ensures that message mm is a fresh per-

Figure 7. Broadcast operation of permanent checkpoint number

manent checkpoint number message. We put
the grd3: to ensure that the value of perma-
nent checkpoint number should be maximum
of the timestamp of received messages. grd6:
to ensure that status of the daemon should
be received all responses. When all the given
guards are true, message mm is added to
the sent msg in (act2:). Category of the sent
permanent checkpoint message mm is set to
the permanent ckpt msg (act3:). The times-
tamp of the message mm is set to the value
of permanent ckpt no (act4 :). The status of
the daemon is set to permanent ckpt broadcast
(act5:).

– Permanent Checkpoint Message
receive by Cohort: in the event
Cohort Permanent Ckpt Message Receive
when cohort process receives the permanent
checkpoint number message from the daemon ,
it updates its tentative checkpoint number with
the received permanent checkpoint message
timestamp, it is given in Fig.8.
In grd4: of the Fig.8 it is checked that the
category of the received permanent checkpoint
message mm must be permanent ckpt msg. In
the grd6: it is ensured that message mm should
be a fresh permanent checkpoint message, it
is not the duplicate message already received
by the cohort . It is also ensured that the
checkpoint state of the cohort must be tentative
in grd7:.
If all the guards are true then message mm is

7

ssrg 5
Text Box
 Bal Krishna Saraswat et al. / IJETT, 69(4), 1-9, 2021

Bal Krishna Saraswat et al. / IJETT, 68(10), 1-4, 2021

Figure 8. Permanent checkpoint message receive operation by cohort

delivered to cohort pp and tentative checkpoint
number of cohort pp is set to the timestamp
of the received permanent checkpoint number
message mm.

– Swithcing The Checkpoint State From
Tentative to Permanent: In Fig.9 the event
Switching from Tentative to Permanent State
cohort’s checkpointing state is changed from
tentative to permanent. Before switching the
checkpoint state from tentative to permanent it
is ensured that received permanent chackpoint
message mm should have the category
permanent ckpt msg and it is also delivered to
the cohort process pp, it is defined in (grd3:)
and (grd7:). The checkpoint state of the cohort
process must be tentative.

Figure 9. switching from tentative to permanent operation by cohort

When the given guards are true then the check-
point state of the cohort process pp is changed
to permanent to tentative.

VI. CONCLUSION

The checkpoint process presented in this paper allows
any site to be the coordinator process, which we named

as daemon. Our checkpoint algorithm is based on the
concept of 2 phase commit protocol. If all the cohort
processes are ready to take a permanent checkpoint then
only all the tentative checkpoints are made permanent.
This algorithm always having the consistent set of check-
points.

Event - B is used to build the proposed model of the
distributed system’s checkpoint mechanism in this paper.
Event - B supports the Incremental model development
approach, and in each increment of the model we can
refine our model. The Rodin tool is used to do the model
checking and theorem proving. Rodin tool produces
the proof obligations and check the consistency of the
model during each refinement. Proof obligations can be
discharged using the interactive and automatic prover of
the Rodin. Around 70% oof the proofs are discharged by
the automatic prover. Only 30% of the proofs requires
interaction.

REFERENCES

[1] J. Abrial. The b-book: assigning programs to meanings cam-
bridge university press, 1996.

[2] J.-R. Abrial. Extending b without changing it (for developing
distributed systems). In 1st Conference on the B method,
volume 11, 1996.

[3] J.-R. Abrial. A system development process with event-b and
the rodin platform. In International Conference on Formal
Engineering Methods, pages 1–3. Springer, 2007.

[4] J.-R. Abrial and J.-R. Abrial. The B-book: assigning programs
to meanings. Cambridge University Press, 2005.

[5] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin. Rodin: an open toolset for modelling and reasoning in
event-b. International journal on software tools for technology
transfer, 12(6):447–466, 2010.

[6] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An
open extensible tool environment for event-b. In International
Conference on Formal Engineering Methods, pages 588–605.
Springer, 2006.

[7] J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved
and incremental development of ieee 1394 tree identify protocol.
Formal aspects of computing, 14(3):215–227, 2003.

[8] D. Y. Bal Krishna Saraswat, Raghuraj Suryavanshi. A com-
parative study of checkpointing algorithms for distributed sys-
tems. International Journal of Pure and Applied Mathematics,
118:1595–1603, 2018.

[9] R. Banach. Retrenchment for event-b: Usecase-wise development
and rodin integration. Formal Aspects of Computing, 23(1):113–
131, 2011.

[10] D. Basin, A. Fürst, T. S. Hoang, K. Miyazaki, and N. Sato. Ab-
stract data types in event-b-an application of generic instantiation.
arXiv preprint arXiv:1210.7283, 2012.

[11] J.-L. Boulanger. Formal methods applied to complex systems:
implementation of the B method. John Wiley & Sons, 2014.

[12] M. Butler and D. Yadav. An incremental development of the
mondex system in event-b. Formal Aspects of Computing,
20(1):61–77, 2008.

[13] K. M. Chandy and L. Lamport. Distributed snapshots: Determin-
ing global states of distributed systems. ACM Transactions on
Computer Systems (TOCS), 3(1):63–75, 1985.

[14] Clearsy. B4free tool homepage. www.b4free.com.
[15] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A sur-

vey of rollback-recovery protocols in message-passing systems.
ACM Computing Surveys (CSUR), 34(3):375–408, 2002.

8

ssrg 5
Text Box
 Bal Krishna Saraswat et al. / IJETT, 69(4), 1-9, 2021

Bal Krishna Saraswat et al. / IJETT, 68(10), 1-4, 2021

[16] S. Hallerstede. Justifications for the event-b modelling notation.
In International Conference of B Users, pages 49–63. Springer,
2007.

[17] M. Jandl, A. Szep, R. Smeikal, and K. M. Göschka. Increasing
availability by sacrificing data integrity-a problem statement. In
Proceedings of the 38th Annual Hawaii International Conference
on System Sciences, pages 291c–291c. IEEE, 2005.

[18] S. Kalaiselvi and V. Rajaraman. A survey of checkpointing
algorithms for parallel and distributed computers. Sadhana,
25(5):489–510, 2000.

[19] R. Koo and S. Toueg. Checkpointing and rollback-recovery for
distributed systems. IEEE Transactions on software Engineering,
(1):23–31, 1987.

[20] D. Manivannan, R. H. B. Netzer, and M. Singhal. Finding
consistent global checkpoints in a distributed computation. IEEE
Transactions on Parallel and Distributed Systems, 8(6):623–627,
1997.

[21] D. Manivannan and M. Singhal. Quasi-synchronous check-
pointing: Models, characterization, and classification. IEEE
Transactions on Parallel and Distributed Systems, 10(7):703–
713, 1999.

[22] D. Manivannan and M. Singhal. Asynchronous recovery without
using vector timestamps. Journal of Parallel and Distributed
Computing, 62(12):1695–1728, 2002.

[23] C. Métayer, J. Abrial, and L. Voisin. Event-b language, rodin
deliverable d7. eu-project rodin (ist-511599)(2005), 2005.

[24] M. T. Özsu and P. Valduriez. Principles of distributed database
systems. Springer Science & Business Media, 2011.

[25] B. Randell. System structure for software fault tolerance. Ieee
transactions on software engineering, (2):220–232, 1975.

[26] D. L. Russell. State restoration in systems of communicating
processes. IEEE Transactions on Software Engineering, (2):183–
194, 1980.

9

ssrg 5
Text Box
 Bal Krishna Saraswat et al. / IJETT, 69(4), 1-9, 2021

	Introduction
	Materials & Methods
	Event-B
	B - Notation
	Rodin

	System Model
	Event-B Model of Checkpoint Process in Distributed System
	Abstract Model of Checkpoint Process in Event - B
	Context:
	Machine:
	Variables:
	Events:

	Conclusion
	References

