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Abstract – Extreme properties of mechanical metamaterials 

originate in their involved internal architecture. Instability-

driven metamaterials harness the phenomenon of elastic 

buckling accompanied by significant reconfigurations of the 

architecture to facilitate the variability of their properties. 

Two common geometrical motifs often used in the design of 

instability-driven metamaterials are periodically arranged 

voids embedded into a soft deformable matrix and stiff 

periodic lattices with different architectures. Here the 

buckling behavior of metamaterials that combine these two 

design ideas is studied. By employing the Bloch-Floquet 
approach, it is demonstrated that the involved interplay 

between two periodic patterns significantly affects the 

critical strain values corresponding to the onset of 

instability. Moreover, two distinct buckling modes defined by 

the number of periodically arranged voids in the unit cell 

are observed. If the unit cell contains an even number of 

voids, then the local mode accompanied by equivalent 

reconfiguration in every unit cell is realized. However, if the 

unit cell contains an odd number of voids, then metamaterial 

acquires new periodicity via the formation of alternating 

patterns. The observed interplay between two periodic 
systems within one metamaterial can be further employed 

for more advanced designs to control the propagation of 

elastic waves.       
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I. INTRODUCTION  
The first structures classified as mechanical metamaterials 

are so-called pentamode extreme materials proposed in 1995 

[1]. These classical pentamode metamaterials assembled 

from the repeating unit cells combine extremely low shear 

modulus with a high bulk modulus, resulting in their fluid-

like mechanical behavior. Despite more than 25 years of 
development, the most novel mechanical metamaterials 

employ similar fundamental design principles [2]. Their 

extreme properties originate in the sophisticated internal 

architecture, usually assembled from the repeating unit 

cells [3]. The rational selection of the internal architecture 

enables the creation of a variety of mechanical metamaterials 

that demonstrate very high stiffness [4], negative Poisson’s 

ratio [5,6], or capacity to harness elastic energy [7]. 

Moreover, the periodic structure can give rise to the 

unconventional properties associated with the propagation of 

elastic and acoustic waves [8,9]. For metamaterials with 

various designs, such phenomena as the formation of 

bandgaps [10], negative refraction [11,12], or superlensing 

[13] were reported. These metamaterials often employ 

composite microstructure. The interplay between constituents 

with different properties results in the enhanced performance 

of the composites [14–16]. 

Traditionally, mechanical metamaterials, despite very 
involved behavior, have one fundamental weakness—their 

mechanical properties usually cannot be altered after 

fabrication. Taking into account current trends in the 

development of adaptive materials, there is a particular 

interest in creating reconfigurable mechanical metamaterials 

that can alter their internal architecture and properties in 

response to external stimuli [17]. In recent years, various 

types of reconfigurable mechanical and acoustic 

metamaterials inspired by principles of origami and kirigami 

have been presented [18,19]. These three-dimensional 

structures capable of changing their geometry in response to 
mechanical actuation can be employed as waveguides to 

control acoustic waves [20]. At the same time, such 

structures are very challenging for manufacturing and, 

moreover, are poorly scalable. A fundamentally different 

approach of transforming external mechanical stimuli into 

the reconfiguration of the internal structure exploits the 

phenomenon of elastic buckling [21–24]. Indeed, while 

elastic buckling is strongly undesirable for classical 

engineering materials, it is accompanied by significant 

displacements and changes in geometry that can be employed 

in the design of mechanical metamaterials [25]. This 

phenomenon is especially pronounced in composite materials 
with hyperelastic constituents capable of withstanding large 

deformations [26,27]. By employing the geometrical 

reconfigurations associated with loss of stability, it is 

possible not only to reversibly change the mechanical 

behavior of metamaterials but also to control the propagation 

of elastic and acoustic waves [28,29]. Since elastic waves are 

sensitive to the internal periodicity of the structure [30,31] 

and internal stress fields [10], various designs of elastic 

metamaterials with tunable bandgaps have been recently 
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demonstrated. Tunability of the bandgaps/stopbands in such 

metamaterials were achieved, in particular, by the 

instability-induced formation of wavy interfaces [24,32–35]. 

Moreover, by employing a composite structure with stiff 

inclusions embedded into the soft hyperelastic matrix, it 
seems possible to create materials with controlled auxeticity 

and tunable bandgap characteristics simultaneously [6]. 

Among the variety of instability-driven mechanical 

metamaterials, two main design ideas can be often observed. 

The first type of mechanical metamaterials relies on the 

periodically distributed voids in a soft deformable matrix 

[30,36]. Metamaterials of the second type consist of stiff 

elements or networks embedded into a soft matrix [10,31]. 

This manuscript demonstrates that a combination of these 

two ideas enables the creation of mechanical metamaterials 

with two different types of buckling modes. 

II. MATERIALS AND METHODS 

 

A. Geometry and mechanical properties of metamaterials 
Fig. 1 shows a metamaterial with the stiff square network 

embedded into the soft deformable matrix with voids. The 

lattice period 𝑎, the width of stiff struts 𝑡, the volume 

fraction of periodically arranged circular voids 𝑣𝑓 and 

number of voids within a single unit cell 𝑛2 univocally 

define the geometry of the metamaterial. The struts and 

matrix were considered to be hyperelastic materials with neo-

Hookean strain energy density  

 

𝑊 = 0.5𝜇(𝐼1 − 3) − 𝜇 ln(𝐽) + 0.5𝜆(ln(𝐽))
2, 

 

where 𝐼1 and 𝐽 are the first and third invariants of the right 

Cauchy-Green deformation tensor, 𝜇 and 𝜆 are the Lame 

constants. Subscripts N and M stand for network and matrix, 

respectively. The materials are assumed to be nearly 

incompressible, so 
𝜆𝑀

𝜇𝑀
=

𝜆𝑁

𝜇𝑁
= 100, while 𝜇𝑐 = 𝜇𝑁/𝜇𝑀 > 1. 

 

 
Fig. 1. Four unit cells of the considered metamaterials 

with stiff square networks and voids. 

B. Search for instabilities  
To search for the onset of instability the finite element 

(FE) software COMSOL 5.4 was utilized. FE analysis is a 

very common method in mechanical and civil engineering, 

enabling one to predict the properties of complex 

structures [37]. Since the buckling of the considered 

metamaterials may lead to the formation of new periodicity 

with a larger lattice parameter, the analysis based on the 
Bloch-Floquet approach was employed using the following 

procedure [30]. 

 

1. The primitive unit cell in the undeformed state was 

identified (see insert in Fig. 2). 

2. The selected unit cell was subjected to equibiaxial 

compression by applying the following periodic boundary 

conditions: 

{
 
 

 
 𝑢|𝑙𝑒𝑓𝑡 − 𝑢|𝑟𝑖𝑔ℎ𝑡 = 𝜀𝑎

𝑣|𝑙𝑒𝑓𝑡 − 𝑣|𝑟𝑖𝑔ℎ𝑡 = 0 

𝑢|𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑢|𝑡𝑜𝑝 = 0

 𝑣|𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑣|𝑡𝑜𝑝 = 𝜀𝑎

 , 

where 𝑢 and 𝑣 are horizontal and vertical displacements, 

respectively, 𝑎 is the period of a square lattice, and 𝜀 is the 

applied strain (positive for compression). 

3. For the obtained deformed state, a sweep along the 

perimeter of the IBZ was performed to compute dispersion 

relations 𝜔(𝒌), where 𝜔 is the eigenfrequency for the 

corresponding wavevector 𝒌 at the IBZ contour (see insert in 

Fig. 2) [38]. To this end, Bloch-Floquet conditions were 

superimposed on the finitely deformed metamaterials using 

the following equations on the primitive unit cell boundaries: 

{
 
 

 
 
𝑢𝑟𝑖𝑔ℎ𝑡 = 𝑢𝑙𝑒𝑓𝑡𝑒

−𝑖𝑘𝑥𝑎

𝑣𝑟𝑖𝑔ℎ𝑡 = 𝑣𝑙𝑒𝑓𝑡𝑒
−𝑖𝑘𝑥𝑎

𝑢𝑡𝑜𝑝 = 𝑢𝑏𝑜𝑡𝑡𝑜𝑚𝑒
−𝑖𝑘𝑦𝑎

𝑣𝑡𝑜𝑝 = 𝑣𝑏𝑜𝑡𝑡𝑜𝑚𝑒
−𝑖𝑘𝑦𝑎

 

where 𝑘𝑥 and 𝑘𝑦 are the components of wavevector 𝒌.   

4. If 𝜔(𝒌) > 0 for all wavevectors 𝒌 except for the trivial 

one 𝒌 = (0,0), then the material remains stable at the strain 

𝜀. 
5. The steps 2-4 were repeated with gradually increasing 

applied strain 𝜀 until the non-trivial 𝒌𝒄𝒓 with 𝜔(𝒌𝒄𝒓) = 0 is 

found. The determined 𝜀𝑐𝑟 = 𝜀 and 𝒌𝑐𝑟 are the critical strain 

and critical eigenmode, respectively, corresponding to the 
onset of instabilities. 

III. RESULTS 

A. Metamaterials with a singular void within the unit cell 

Elastic waves are sensitive to the geometry of the 
metamaterials and the internal stress state. As a result, 

equi-biaxial compression leads to the evolution of the 

dispersion curves with an increase in applied strain. Fig. 2 

shows the lowest branches of the dispersion curves 

calculated for the vectors 𝒌 at the IBZ contour (see insert in 

Fig. 2) for various levels of applied strain. As one can see, 

for applied strain 𝜀 =3.3%, the first eigenvalue at the point 

M is zero, reflecting the onset of instability. Since zero 

eigenfrequency is observed not in the origin of IBZ, new 
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periodicity is formed, as shown in Fig. 3. The updated unit 

cell is four times larger than the initial unit cell and is 

characterized by the alternating pattern for voids.  

 
Fig. 2. Dispersion curves in the vicinity of instability for 

metamaterial with singular void and 𝒗𝒇 = 𝟎.𝟐𝟓, 𝒕 =

𝟎. 𝟎𝟐, 𝝁𝑵/𝝁𝑴 = 𝟑𝟓. Insert shows Irreducible Brillouin 

Zone (IBZ)  

This observation is consisted with already reported results 

for the instability-driven metamaterials without stiff square 

networks. Fig. 4 shows the dependencies of the critical 

buckling strain on the volume fraction of the voids in the 

metamaterials with singular central voids and stiff square 

lattice. Even for the case 𝜇𝑁 = 𝜇𝑀, corresponding to the 

metamaterial without networks, critical buckling strain 

non-monotonically depends on the volume fraction of the 
voids. Note that due to geometrical restrictions, the volume 

fraction of the voids cannot exceed 𝑣𝑓
𝑚𝑧𝑥 = 𝜋/4 for the 

metamaterial without stiff network and 𝑣𝑓
𝑚𝑎𝑥 = 𝜋 (

𝑎−𝑡

2𝑎
)
2

if 

network struts have the thickness 𝑡. One can see that with an 

increase in the contrast between the elastic modulus of the 

stiff network and soft matrix, the metamaterials become less 

stable regardless of the volume fraction of voids. At the same 

time, this effect is not very pronounced for the metamaterials 

with relatively small or large 𝑣𝑓. Moreover, for 𝑣𝑓 → 𝑣𝑓
𝑚𝑎𝑥 , 

the value of the critical strain is close to the value of the 

critical strain observed in the square networks in the absence 

of any soft matrix. 

 
Fig. 3. The alternating buckling mode for the 

metamaterial with a singular void in the unit cell. 

Fig. 4. Dependencies of the buckling strain on the volume 

fraction of the voids in the metamaterial with a singular 

void in the unit cell and 𝒕 = 𝟎. 𝟎𝟐. 

Therefore, one can see that for the small 𝑣𝑓, the loss of 

stability in considered metamaterials is guided mainly by the 

voids, while for the large values of 𝑣𝑓, the stiff network plays 

the dominant role. By defining the maximum on the curve as 

the transition between the void-dominated and 

network-dominated buckling, it can be concluded that the 
increase in the elastic modulus contrast leads to a more 

prominent contribution of the stiff networks to the bucking 

process for the same 𝑣𝑓. 

B. Metamaterials with multiple voids in one unit cell 

Here the metamaterials with multiple voids (𝑛 × 𝑛) 
arranged in the square lattice with smaller period 𝑎/𝑛 are 

considered (Fig. 1). The volume fraction of the voids remains 

the same, while the diameter of the voids decreases with an 

increase in their number. Note that for the truly periodic 

arrangement of the voids throughout the whole infinite 

specimen, the number of voids cannot exceed a critical value 

𝑛𝑚𝑎𝑥 to avoid intersection with the stiff network, that can be 

determined from geometry as 𝑛𝑚𝑎𝑥 = ⌊
𝑎

𝑡
(1 − 2√

𝑣𝑓

𝜋
)⌋. 

Search for the onset of instabilities in the metamaterials with 

multiple voids reveals the sufficient difference between 

metamaterials with odd and even number of voids located in 

the single unit cell. The evolution of the dispersion curves for 

the unit cells with an odd number of voids is similar to the 

case considered above. The first non-trivial zero eigenvalue 

corresponds to the point M at the IBZ contour (𝜔(𝑀) = 0). 

As a result, the period of the metamaterial increases two-fold 

in each direction, and the area of the updated unit cell is four 

times larger as compared with the initial state (Fig. 6a). 
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Fig. 5. Dispersion curves in the vicinity of instability for 

metamaterial with 𝒏 = 𝟒 and 𝒗𝒇 = 𝟎. 𝟐𝟓, 𝒕 = 𝟎. 𝟎𝟐.  

At the same time, the dispersion curves for the 

metamaterial with an even number of voids in the unit cell 

demonstrate very different behavior. Fig. 5 shows the two 

lowest branches for the various applied strains. One may see 

that the second branch at the origin point G reaches zero 

(𝜔(𝐺) = 0) for strain 𝜀 = 3.2% while 𝜔(𝑀) > 0. The 

eigenmodes corresponding to the vector 𝒌 = (0,0) have the 
same periodicity as the initial metamaterial, and the unit cell 

keeps its size after buckling, while the local reconfigurations 

occur within the matrix as shown in Fig. 6b. To avoid 

ambiguity, the mode of buckling associated with the change 

in the periodicity is defined as alternating mode (Fig. 6a). In 

contrast, local mode corresponds to local reconfiguration 

within the unit cell (Fig. 6b).  

 

 
Fig. 6. Alternating (a) and local (b) buckling modes. 

Employed Bloch-Floquet approach enables us to continue 

the analysis even beyond the onset of instabilities. Therefore 

the critical strains for the alternating patterns corresponding 

to 𝜔(𝑀) = 0 can be obtained even in the metamaterials with 

an even number of voids. Fig. 7 shows the dependencies of 

the onsets of instabilities on the number of voids in 
horizontal or vertical directions within the unit cell. Square 

and circle symbols represent the first and the second-lowest 

values of the strains with either 𝜔(𝑀) or 𝜔(𝐺) equal to zero, 

respectively, while the interior of the symbols reflects the 

buckling mode. For the extreme case of 𝜇𝑀 = 𝜇𝑁, in the 

absence of a stiff network due to the periodicity of the void 

arrangement, the critical strain does not depend on the 

number of voids (dashed line). Indeed, regardless of the 

number of voids, the metamaterials can be scaled up or 

down, such as the geometrical relationship between the 

period of the pattern and the diameter of the voids remains 

the same.  

 
Fig. 7. Dependencies of the buckling strains for local 

(filled) and alternative (open) patterns on the number of 

voids within the unit cell (𝒏𝟐). 

The addition of the stiff network (𝜇 ≠ 𝜇𝑀) breaks the 

scaling law. Similar to the metamaterial with a single void 

(Fig. 4), stiff networks lead to the decrease in the value of 

primary critical strain regardless of the number of voids 

(Fig. 7). However, here the primary buckling mode is 

univocally determined by the parity. Simultaneously, the 
difference between two critical strains decreases with an 

increase in the number of voids. For instance, while the 

difference between primary and secondary buckling strains 

for metamaterials with 𝑣𝑓 = 0.25 and 𝜇𝑁/𝜇𝑀 = 35 is 2.9% 

if only a singular void is located in the middle of the unit 

cell, the critical strains in the metamaterial with the same 

geometrical and material parameters and 144 voids differ 

only by 0.05%. It means that in practical applications, 

various imperfections associated with the manufacturing 
process or with misaligned loading may affect the primary 

buckling mode in considered mechanical metamaterials. Fig. 

7 also reveals that the critical strain non-monotonously 

depends on the number of voids. With an increase in the 

number of voids in the unit cells, it tends to some threshold 

value (dotted horizontal line).  

 

 
Fig. 8. Buckling mode in metamaterial with stiff square 

networks and square voids. 
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It is determined that this threshold strain corresponds to 

the onset of instabilities in the metamaterial with a singular 

square void in the center, assuming the same volume fraction 

of the voids (Fig. 8). Such metamaterial can be treated as the 

traditional square lattice with modified struts, however, the 
critical strain in this case is always lower as compared to the 

stiff network embedded into a continuous matrix without any 

voids (dash-dotted horizontal line in Fig. 7). The fact that 

buckling strain in the metamaterial with multiple voids with 

decreasing diameter tends to the buckling strain in the 

metamaterial with a single square void requires further 

investigation with the employment of homogenization 

techniques. This question is beyond the scope of the current 

research and will be considered in the future.  

IV. CONCLUSIONS 

Here, two classical motifs often found in the 

instability-driven mechanical metamaterials were combined. 

It was demonstrated that the involved interplay between stiff 
square networks and periodically arranged voids leads to the 

formation of two types of buckling patterns. If the unit cell in 

an undeformed state contains an even number of voids, then 

buckling keeps the overall periodicity, and only local 

changes within the unit cell are observed. At the same time, 

for the unit cell containing an odd number of voids, the 

buckling leads to a change in the periodicity accompanied by 

the formation of the alternating pattern. The critical buckling 

strains generally depend on the geometrical and materials 

characteristics, however, these dependencies are non-

monotonous. In particular, for metamaterial with stiff square 

lattice and a singular void, an increase in the void diameter 
leads to the transition between void-dominant and network-

dominant regimes, affecting the sensitivity of the buckling 

strain to the elastic modulus contrast. The rich design space 

and non-trivial instability-driven reconfigurations open new 

avenues for advanced metamaterials that can be employed to 

control the propagation of the elastic waves.  
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