
International Journal of Engineering Trends and Technology Volume 69 Issue 4, 228-235, April 2021

ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I4P231 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

High Utility-Occupancy Sequential Pattern Mining

Algorithm Based On Utility-Occupancy Framework

Saritha Vemulapalli 1, 2, *, Shashi Mogalla 2

1 Dept. of Information Technology, VNR Vignana Jyothi Inst. Of Engg. & Tech., Hyderabad, Telangana, India
2 Dept. of Computer Science & Systems Engineering, Andhra University College of Engineering(A), Visakhapatnam, Andhra

Pradesh, India

* saritha_v@vnrvjiet.in, smogalla2000@yahoo.com

Abstract - Classical sequential pattern mining (SPM)

algorithms can not generate patterns that are interesting

and potentially useful in all real-world applications due to

equal significance for all the items and using only frequency

as an interestingness measure. Some real-world applications

involve items of different nature, whose significance is

measured using different criteria such as utility, risk, profit,

weight, time duration, etc. In addition to the utility of items

constituting a pattern, the significance of a pattern is also

influenced by its occupancy in its supporting sequences. To

deal with the above problems, we propose a variant of SPM

called high utility-occupancy sequential pattern mining

(HUOSPM) to discover more interesting, potentially useful,

and dominant patterns. In this paper, the authors devised

two compact data structures called seqlist to represent

information about each sequence of the quantitative

sequence dataset and uolist to maintain candidate patterns

information. The authors proposed a novel utility-occupancy

framework based HUOSPM algorithm, which discovers the

patterns using seqlist and uolist. The authors also proposed

search space pruning strategies called pattern extension

utility-occupancy, reduced sequence utility-occupancy, and

extension upper bound utility-occupancy. Experimentation

was carried out on real datasets with varying support

threshold and utility occupancy threshold to evaluate the

quality of patterns. It is observed from results that the

patterns generated by our proposed HUOSPM algorithm are

qualitative compared to baseline algorithm prefix span and

also it can completely discover HUOSP’s.

Keywords — Data mining, Pattern discovery, Pattern-

Growth, Utility-Occupancy, Variant sequential patterns.

I. INTRODUCTION

Discovering interesting and potentially useful patterns

from diversified datasets is important for decision making in

many real world applications. Classical Sequential pattern

mining (SPM) intend to find frequent patterns represents

time-ordered behavior. Sequential patterns constitute

frequently appearing ordered events, wherein each event is

made up of an item set, which represents interdependencies

exist between the items belonging to events that make up.

Initially SPM was implemented in [1], plays an essential role

in solving real-world problems in varied domains like web

usage mining, retail sector, stock exchange, e-commerce and

bioinformatics, etc are of kind time related behavior. For

example diagnosing disease based on the chronological order

of medical symptoms of a patient, identifying customers

buying behavior based on transaction data of retail store,

finding telephone call patterns from users telephone calling

records, finding weather patterns from weather dataset to

predict climate condition (weather forecasting) and finding

users navigational patterns from click-stream data for better

administration of website.

Classical SPM algorithms discover complete set of patterns

by considering all items with equal significance using only

frequency as interestingness measure. However some real

world applications involve items of different nature and

hence the significance of items is assessed in different

perspectives measured using various criteria such as utility,

risk, profit, weight, time duration, etc. Hence patterns

generated by classical SPM algorithms may not be

interesting and potentially useful for the users in all contexts.

To address the above issue a variant of SPM called High

utility sequential pattern mining (HUSPM) [2, 3, 4, 5, 6, 7, 8]

is developed to extract patterns of contextual significance by

extending the sequence dataset with item significance as an

additional characteristic for each item depending on the

context. These patterns are the subset of sequential patterns

set having utility greater than utility threshold. For example,

in supermarket dataset, the significance of an item is

measured in terms of the profit earned on it, which increases

with the quantity of the item sold and accordingly the

significance of the item varies for different occurrences of

the item in a sequence. In case of web-usage dataset, the

time spent on a web page represents the significance of that

web page.

In addition to the utility of items constituting a pattern, the

significance of a pattern is also influenced by its occupancy

in its supporting sequences. Occupancy implies the

proportion of the length of the pattern in their supporting

sequences. In many real-world applications, the

completeness of the pattern is measured using occupancy. In

general sequential patterns have low occupancy, which

implies they represent a small portion in their supporting

https://ijettjournal.org/archive/ijett-v69i4p231
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Saritha Vemulapalli & Shashi Mogalla / IJETT, 69(4), 228-235, 2021

229

sequences. To address the above issue variant of SPM called

high occupancy sequential pattern mining (HOSPM) [9] is

proposed to find out more dominant patterns. However,

existing HOSPM algorithms ignore item utility, and on the

contrary, HUSPM algorithms ignore pattern occupancy.

Hence, to address the above problems, the authors propose a

utility-occupancy framework based HUOSPM algorithm to

discover HUOSP’s from a sequence dataset extended with

utility information. The proposed algorithm measures the

pattern interestingness using both support threshold and

utility-occupancy threshold. The structure of the remaining

paper is described below. A brief overview of related variant

sequential pattern mining algorithms is presented in section

II. The problem statement is discussed in section III. THE

proposed HUOSPM algorithm, notations, and definitions are

discussed in section IV. Experimentation is discussed in

section V. Section VI encloses conclusions.

II. Related Work

A. Review on HUSPM

Classical SPM algorithms produce patterns by considering

equal significance for all the items and frequency as an

interesting measure. In some applications of the real world,

every item has different nature; hence the significance of

items is different and is measured using various criteria such

as utility, risk, profit, weight, interest, time, etc. Hence

patterns generated by traditional algorithms may not be

interesting and potentially useful for the user. To address the

aforementioned issue, a variant of SPM called HUSPM is

proposed [2, 3, 4, 5, 6, 7, 8] to discover the more interesting,

potentially useful patterns. UtilityLevel [2] algorithm

discovers utility patterns using candidate generate and test

approach, and UtilitySpan [2] algorithm is based on pattern

growth strategy. Both the algorithms support downward

closure property using swu. UtilityLevel [2] algorithm

generates high swu level-k candidate patterns by joining with

level-(k-1) high utility patterns. First, it generates the length-

1 candidate patterns having high swu value, and then

subsequently generates length-2 candidate patterns by joining

length-1 high utility patterns and so on until no more

candidate patterns are generated with high swu value. At

each level, candidate patterns are tested by scanning the

dataset once to generate high utility sequential patterns. It

suffers from more number of candidate generation and

dataset scans. To overcome this drawback, a pattern-growth-

based strategy is used in UtilitySpan [2] algorithm, which

recursively divides the search space using the divide-and-

conquer method. The UtilitySpan algorithm read the dataset

once to find length-1 high utility patterns. Consequently, it

constructs projected databases for length-1 high utility

patterns. Then, recursively explore high utility larger patterns

by scanning the projected database once using the pattern-

growth approach. Therefore, it reduces the runtime

significantly. In USpan[3], the authors proposed a generic

framework and algorithm for finding HUSP’s. In USpan, the

search space is represented using LQS-tree. It generates

candidate patterns by extending the pattern with item

extension or sequence extension while exploring the LQS-

tree using a depth-first-search strategy. SWU measure and

SWDC properties are used for pruning unpromising

sequences in order to improve the mining performance.

Utility matrix is used in USpan for data representation,

which is complex and memory-consuming. In PHUS [4], the

authors proposed a projection-based HUSPM algorithm. It

improves the performance by candidate pruning, using

projection-based maximum utility measure and SUUB

measure in generating tight upper bounds. In HuspExt [5],

the authors proposed an algorithm using an upper bound

called CRoM. It prunes unpromising sequences using PBCG

strategy. However, due to its incorrect upper bound, it can’t

identify the complete HUSP’s. Hence, the author proposed

HUS-Span [6] algorithm to find the complete HUSPs using

tight utility upper bound measures called PEU and RSU of

prefix-pattern. In HUSP-ULL [7], the authors proposed an

algorithm using data structure UL-list and look-ahead and

irrelevant item pruning strategies for pruning unpromising

sequences. The authors proved that the execution time of the

HUSP-ULL algorithm is less when compared to the above

HUSPM algorithms. In AHUS [8], authors devised array

data structure and also pruning mechanism for efficiently

pruning non-HUSPs. The author’s also proposed AHUS-P

[8] algorithm for identifying HUSP’s concurrently. The

experimental results proved that both the algorithms

outperform the HUS-Span with respect to mining time and

memory used.

B. Review on HOSPM

However, HUSPM algorithms can discover the more

interesting and potentially useful HUSP’s. In the majority of

real-world applications, the completeness of the pattern is

measured using occupancy. In general sequential patterns

have low occupancy, which implies they represent a small

portion in their supporting sequences. Hence, sequential

patterns may not be interesting and potentially useful for the

user. To address the aforementioned issue variant of SPM

called HOSPM is proposed to discover the more dominant

patterns. In DOFRA[9], the authors proposed an algorithm

for finding qualified sequential patterns using occupancy-

based measures for reducing the search space. It finds the

qualified patterns by computing the occupancy of a pattern

using support and occupancy thresholds. The algorithm also

discovers top-k qualified sequential patterns, which satisfy

support and occupancy thresholds.

C. Review on HUOPM

However, HUSPM algorithms can discover the more

interesting and potentially useful HUSP’s. In the majority of

real-world applications, the completeness of the pattern is

measured using occupancy. In general, utility sequential

patterns have low occupancy, which implies they represent a

small portion in their supporting sequences. Even though

Saritha Vemulapalli & Shashi Mogalla / IJETT, 69(4), 228-235, 2021

230

HOSPM algorithms can identify the more dominant patterns,

but they don’t consider item significance into account.

Hence, HUSP’s and HOSP’s may not be interesting and

potentially useful for the user. To address both the problems

listed above, we propose a variant of SPM called HUOSPM

to discover the more interesting, potentially useful, and

dominant patterns. The existing HUOPM algorithms [10, 11]

are designed for non-sequential datasets (i.e., transaction

datasets), where the order of elements is not maintained.

OCEAN [10] algorithm discovers high utility occupancy

patterns from transaction datasets. However, it generates

incomplete patterns due to the inappropriate computation of

utility information, and also, it is not efficient due to

inappropriate utilization of the support and utility-occupancy

thresholds. In HUOPM [11], the authors proposed an

algorithm, compact data structures FU-tree and UO-list.

HUOPM algorithm effectively discovers high utility

occupancy patterns from transaction datasets using FU-tree

and UO-list without generating candidates. The authors

proved that it outperforms the OCEAN algorithm.

III. Problem Statement

Let QSD = {S1, S2,.., Si,.., Sm} is a quantitative sequence

dataset, where each sequence Si is a sequence of time-

ordered quantitative events expressed as < e1 e2 ..ei.. ek > and

each event ei is a quantitative itemset containing items

associated with utility (i.e., ei is a subset of I). Let I =

{it1,it2,….,itn} be finite set of distinct items. Items that belong

to each item set are organized in lexicographic order. Given

the sequences p =< x1 x2 … xn > and q=< y1 y2 … ym >, then

p is a subsequence of q and q contains p denoted as p⊆ q, if

∃ 1≤ j1< j2 <…< jn ≤m ∈ Z: x1 ⊆ yj1, x2 ⊆ yj2,…, and xn ⊆ yjn

. If the sequence ‘s’= < e1 e2 … ej…. ek > contains L

number of items, then it is called L-length sequence. The

sequence length is defined as L =|s|, where |s|= Σk
j=1|ej|. If the

sequence ‘s’= < e1 e2 … ej…. ek > contains k number of

events, then the size of sequence is defined as k. The count of

sequences that contain pattern p determines the support of p

is denoted as sup(p). Utility refers to the usefulness of an

item in terms of time duration, profit, weight, etc. For a given

support threshold denoted by α (0 < α ≤ 1) and utility-

occupancy threshold denoted by ß (0 < ß ≤ 1), HUOSPM

identify interesting patterns from the sequential dataset with

utility information that holds a significant amount of support

and utility-occupancy by considering item weight, time

duration, profit, risk, etc.

Let I = {a,b,c,d,e,f,g} denote the set of distinct items. The

QSD shown in Table 1 has 4 item set sequences, wherein

each item has the quantity associated with it, representing the

utility of an item that may vary with the event. For example

the third sequence (b[35]c[15]) (a[25]b[45]c[30] consists of

three events e1 = (b[35]c[15]) , e2 = (c[20]) and e3 =

(a[25]b[45]c[30]). Utility of b is 35 and c is 15 in e1 while

the utility of c is 20 in e2 and utility of b is 45, and c is 30 in

e3. The pattern is said to occur in a sequence at an index

position based on the last matching item of the pattern in the

sequence. In sequence 3, pattern (b)(c) occurred at two

positions as its last symbol c is contained in 2nd and 3rd

events.

Table I. A Sample Quantitative Sequence Dataset

IV. Proposed Utility-Occupancy Framework based

HUOSPM Algorithm, Notations, and Definitions

For a given support threshold denoted by α (0 < α ≤ 1) and

utility-occupancy threshold denoted by ß (0 < ß ≤ 1), the

proposed High Utility-Occupancy Sequential pattern mining

(HUOSPM) identify interesting patterns from the

quantitative sequential dataset; the patterns extracted are in

sequential order, with a high frequency of occurrence and

high level of utility as well as occupancy. The algorithm

explores the pattern space starting from singleton patterns

and recursively extending the patterns either by item

extension or sequence extension before applying α and ß

thresholds to ensure that the extended pattern is eligible for

further expansion. An extended pattern with an item

appended to the last event of a given pattern sp is called an

item extension of the prefix-pattern sp. Similarly, an

extended pattern with an item appended as a separate new

event to the last event of a given prefix-pattern sp is called

sequence extension of the prefix-pattern sp. The complete

details of our proposed algorithm are discussed below.

A. ArrayList data structure for representing quantitative

sequence dataset

In this paper, the authors devised a compact data structure

called seqlist to represent information about each sequence of

the quantitative sequence dataset. Proposed HUOSPM

algorithm uses the seqlist to keep track of details about items

of a specific sequence, their utilities, and suffix sequence

utilities for each sequence in the quantitative sequence
dataset (QSD).

seqlist is a 2-D list containing 3 rows and a varying

number of columns. The number of columns of seqlist for a

sequence s is equal to the sum of the sequence size and

sequence length representing the number of events in s. The

first row, slist denotes a sequence list, which contains a list

of items in sequence s. The second row, ulist, denotes a

utility list, which contains utilities of items in s. In the third

row, rulist denote a remaining utility list, which contains the

remaining utilities of the suffix sequences starting at

successive indexes in s. Events of a sequence are separated

with the same delimiting item as ‘-1’.

Definition 1: The quantity associated with an item i occurred

at index k in sequence s is the utility of i at k in s [8], denoted

as u(i, k, s) = { q(i, k, s) }.

Definition 2: The sum of utilities of an item i occurred at

(a[10]b[20])(b[25]c[50]d[10])(d[15]e[58])

(f[23] (a[30]b[40]c[25])(c[20]d[10])

(b[35]c[15])(c[20])(a[25]b[45]c[30])

(d[5]e[10])(a[18]g[10])(b[30]c[20]d[10])(f[10])

Saritha Vemulapalli & Shashi Mogalla / IJETT, 69(4), 228-235, 2021

231

different indices in sequence s is the utility of i in s [8],

denoted as u(i, s) = { Σ u(i, k, s) ∀ index k of i in s }.

Definition 3: The sequence utility is defined as the sum of

utilities of all items i in sequence s [8], denoted as u(s) = {

Σ u(i, s) ∀ i ∈ s }.

Definition 4: The utility of a pattern sp occurred at index k

in sequence s is defined as the sum of utilities of all items i

in sp at index j in s [8], denoted as u(sp, k, s) = {Σ u(i, j, s)

∀ i ∈ sp }.

Definition 5: The utility-occupancy of a pattern sp occurred

at index k in sequence s is defined as the utility of sp

occurred at k divided by the utility of s, denoted as uo(sp, k,

s) = u(sp, k, s) / u(s).

Definition 6: The utility-occupancy of a pattern sp in its

supporting sequence s is defined as the maximum utility-

occupancy of sp in s, denoted as uo (sp, s) = max{ uo(sp, k,

s) ∀ index k of sp in s }.

Definition 7: The utility-occupancy of a pattern sp in QSD is

the ratio of the sum of utility-occupancy of sp in its

supporting sequences divided by support count of sp, is

denoted as uo(sp) = (Σ sp⊆ s∧ s∈ QSD uo(sp, s))/ (sup(sp)).

Definition 8: For the specified support threshold denoted by

α (0 < α ≤ 1) and utility-occupancy threshold denoted by ß (0

< ß ≤ 1), a pattern sp in QSD is called as HUOSP if sup(sp) ≥

α × |D| and uo(sp) ≥ β.

 Definition 9: The remaining utility of an item occurred at

index j in remaining utility list is defined as the sum of

utilities of items at the index k > j in ulist, where j and k

doesn’t contain delimiting items (dlitem) [8]. It is

mathematically expressed as rlist(s) [j] = Σ k > j ∧ ulist(s)[k] !=

dlitem ulist(s) [k].

B. ArrayList data structure for representing information

about promising patterns

A promising pattern may appear at various indices in a

sequence with different utility-occupancy values for each

occurrence, and hence the pattern’s growth needs to be

explored at different positions of the sequence. The authors

devised another compact data structure known as a utility-

occupancy list (uolist) to keep necessary information about

candidate patterns in a specific sequence. THE proposed

HUOSPM algorithm uses an uolist to maintain the

occurrence positions, utility-occupancy values, and pattern

extension utility-occupancies information about the

promising patterns. HUOSPM algorithm uses uolist of

prefix-pattern to generate uolist of its extended pattern

generated using sequence extension or item extension; thus,

HUOSPM algorithm can avoid scanning of the complete

dataset. uolist of pattern sp in sequence s, maintains the

occurrence positions, its utility-occupancies, and pattern

extension utility-occupancies at those occurrence positions in

s. uolist is a 2-D list, uolist[0] denote occurrence positions of

sp in s, uolist[1] denote utility-occupancies at those

occurrence positions, and uolist[2] denote pattern extension

utility-occupancies at those occurrence positions.

Definition 10: The utility-occupancy list of a pattern sp at

index k in a sequence s is the list of occurrence position of

sp, its utility-occupancy, and pattern extension utility-

occupancy at that occurrence position k in s, denoted as

uolist(sp, k, s).

Definition 11: The utility-occupancy list of a pattern sp in a

sequence s is the list of all occurrence positions of sp, its

utility-occupancies and pattern extension utility-occupancies

at those occurrence positions in s, denoted as uolist(sp, s) =

U{uolist(sp, k, s) ∀ index k of sp in s }.

Definition 12: The utility-occupancy list of a pattern sp in

QSD is the collection of the utility-occupancy lists of sp in

its supporting sequences of QDB, denoted as uolist(sp) = U

∀ s ∈ QSD uolist(sp, s).

Definition 13: Consider a pattern sp and its descendant sp′

generated by extending sp with item extension or sequence

extension. The utility-occupancy value of sp′ at index k in s

is denoted and described as uolist(sp′, k, s) = max {

uolist(sp, j, s) | ∀ index j of sp in s ∧ j < k} + (ulist(s)[k

]/u(s)).

Definition 14: The prefix extension utility [6] of a pattern sp

in a sequence s at index k is denoted and described as

peu (sp, k, s) = u(sp, k, s) + rlist(s)[k] , if rlist(s)[k] > 0.

 0, otherwise.

Definition 15: The prefix extension utility-occupancy of a

pattern sp in a sequence s at index k is denoted and described

as peuo (sp, k, s) = peu (sp, k, s)/u(s).

Definition 16: The prefix extension utility-occupancy of a

pattern sp in a sequence s is denoted and described as

peuo (sp, s) = max { peuo (sp, k, s) | ∀ index k of sp in s }.

Definition 17: The prefix extension utility-occupancy of a

pattern sp in quantitative sequence dataset QSD is denoted

and described as

peuo (sp) = (Σ s ∈ QSD ∧ sp⊆s peuo (sp, s)) /sup(sp).

Definition 18: The reduced sequence utility-occupancy of a

pattern sp′ generated by extending a pattern sp with item

extension or sequence extension in sequence s is denoted and

described as

 rsuo (sp′, s) = peuo(sp, s) if sp ⊆s ∧ sp′⊆s.

 0, otherwise.

Definition 19: The reduced sequence utility-occupancy

(rsuo) of a pattern sp in a given dataset is defined as

rsuo (sp) = (Σ s ∈ QSD rsuo (sp, s)) / sup(sp).

Definition 20: Extension upper bound utility-occupancy of

a pattern sp′ generated by extending a pattern sp with an item

i, denoted by euuo(sp′), is defined as euuo (sp′) = uo (sp) +

peuo (i).

Saritha Vemulapalli & Shashi Mogalla / IJETT, 69(4), 228-235, 2021

232

C. Proposed utility-occupancy framework-based approach

for discovering HUOSP’s

a) The abstract view of the proposed approach is

explained below:

 Pre Process the quantitative dataset for sanitizing it.

 Read the quantitative sequence dataset to

calculate the support count for each distinct

item i and find out frequent promising items j

such that sup(j) >= α × |D|

 Remove all unpromising items from the

quantitative sequence dataset to sanitize it.
 Extract high utility-occupancy patterns from

sanitized quantitative sequence dataset using the
proposed HUOSPM algorithm.

b) Proposed HUOSPM algorithm

HUOSPM algorithm starts with initializing promising

patterns with frequent promising items list, then constructs

the uolist for each promising pattern sp. If the utility-

occupancy of sp >= ß , then add sp to HUOSPList. For each

promising one-item pattern in sp, the HUOSPM algorithm

invokes the HUOSP Growth function. If pattern extension

utility-occupancy of sp is less than ß, then the

HUOSPGrowth function doesn’t continue its execution

further. On the other hand, the algorithm read the projected

database (uolist) of sp to find possible promising items list i-

extlist that occur after sp for the item extension and s-extlist

that occur after sp for the sequence extension. The algorithm

adds the items into i-extlist, s-extlist if euuo (definition 20) of

generated pattern sp′ by extending sp with an item i is

greater than ß, then the algorithm prune the remaining

unpromising items from i-extlist, s-extlist using rsuo

(definition 19). For each item i in i-extlist, the HUOSPM

algorithm generates pattern sp′ by extending sp with an item i

to from item extension and construct projected database

(uolist) of sp′. If the utility-occupancy of sp′ >= ß (definition

7), then add sp′ to HUOSPList. Next, the HUOSPM

algorithm recursively calls itself to explore the growth of sp′.

Similarly, for each item i in s-extlist, the HUOSPM algorithm

generates pattern sp′ by extending sp with an item i to from

sequence extension and construct projected database (uolist)

of sp′. If the utility-occupancy of sp′ >= ß (definition 7) ,

then add sp′ to HUOSPList. Next, the HUOSPM algorithm

recursively calls itself to explore the growth of sp′.

The proposed HUOSPM algorithm’s pseudo-code is

described below.

Input: Sanitized QSD, frequent promising items list, α, and ß.

Output: High Utility-Occupancy Sequential Patterns

(HUOSPList).

for each item sp ∈ frequent promising items list

 construct uolist(p)

if uo (sp) ≥ ß then

add sp to HUOSPList

end if

 HUOPGrowth (sp , uolist(sp), uo(sp) , peuo (sp))

end for

Method:

HUOSPGrowth (sp , uolist(sp), uo(sp) , peuo(sp))

begin

 if peuo (sp) < ß then return

 Scan the p-projected database and process each sequence

as described below

 Generate sp′ by extending a pattern sp with a promising

item i,

 if euuo (sp′) ≥ ß then // explore the growth of pattern sp

 identify items that occur after the pattern for the item

extension to form i-extlist list

 identify items that occur after the pattern for the

sequence extension to form s-extlist list

 end if

 for each item i ∈ i-extlist || s-extlist

 if (rsuo(i) < ß) then remove i from the respective list

 end for

 for each item i ∈ i-extlist

 sp′| ← item extension(sp,i)

 construct uolist(sp′)

 if sup(sp′) >= α then

 if uo (sp′) ≥ ß then

 add sp′ to HUOSPList

 end if

 HUOSPGrowth(sp′,uolist(sp′),uo(sp′),peuo(sp′)) //call

 HUOSPGrowth on extended pattern sp′.

 end if

 end for

 for each item i ∈ s-extlist

 sp′ ← sequence extension(sp,i)

 construct uolist(sp′)

 if sup(sp′) >= α then

 if uo (sp′) ≥ ß then

 add pI to HUOSPList

 end if

 HUOSPGrowth(sp′,uolist(sp′),uo(sp′),peuo(sp′)) //call

 HUOSPGrowth on extended pattern sp′.

 end if

 end for

end

c) Pruning strategy

Our proposed algorithm initially prune the search space

of candidate promising patterns by calculating upper

bound on the utility-occupancy using peuo (definition

17) and the support count, then efficiently prune the

remaining search space by pruning sequence extension

and item extension candidate items before constructing

extended candidate promising patterns using euuo

(definition 20), and then prune the remaining

unpromising items using rsuo (definition 19).

Saritha Vemulapalli & Shashi Mogalla / IJETT, 69(4), 228-235, 2021

233

Fig. 1 Abstract view of steps constituting proposed

 approach

V. Experimentation

Our proposed HUOSPM algorithm is implemented in Java

8. Experimentation was done on a system with

Intel(R)Xeon(R) processor E3-1225V5(3.30-GHz), 32GB

RAM operating on Windows 10.

A. SPMF: An open-Source library

SPMF [12] provides open-source java implementations of

various data mining algorithms. It provides various

algorithms for discovering knowledge using association

rules, sequential patterns and their variants, classification,

clustering, etc. It also provides real-time & synthetic datasets

used for testing the performance of various data mining

algorithms.

Datasets used in experimentation are collected from

SPMF Framework. SIGN_sequence_utility dataset is a real

dataset consisting of approximately 800 utterance sequences

of sign language. Kosarak10k_sequence_utility dataset is a

real dataset consisting of 10,000 click-stream sequences of a

Hungarian online news portal.

B. Experimental Results

Experimentation was conducted on SIGN_sequence_utility,

Kosarak10k_sequence_utility real datasets with varying

support count threshold and utility-occupancy threshold. Fig.

2 shows the evaluation of the HUOSPM algorithm in terms

of variation of runtime and number of patterns with respect

to variation of utility-occupancy threshold while extracting

high utility occupancy patterns from SIGN_sequence_utility

dataset with support threshold of 0.5 and

Kosarak10k_sequence_utility Dataset with support threshold

of 0.01. It is observed from the results that the HUOSPM

algorithm can completely discover HUOSP’s.

 a. SIGN_sequence_utility dataset with support

threshold 0.5

 b. Kosarak10k_sequence_utility dataset with

support threshold 0.01

 Fig. 2 Evaluation of runtime and number of patterns

Experimental analysis was also conducted to check the

correctness of the proposed algorithm. Average utility

occupancy is used as a metric for evaluating the quality of

patterns generated by the proposed algorithm. Tables II, III,

IV, V & VI represent the percentage of average utility

occupancy of patterns and performance under the fixed

utility-occupancy threshold and varying support threshold.

The quality of patterns is evaluated by calculating the

percentage of improvement in average utility occupancy

between the prefix span and proposed algorithm under the

fixed utility-occupancy threshold and varying support

threshold. Fig. 3 and 4 show the comparison of the

percentage of improvement in average utility occupancy

between the prefix span and the proposed algorithm.

0

20

40

60

80

100

120

140

160

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
.2

0
.1

5

0
.1

0
.0

5

N
u

m
b

e
r

o
f

p
at

te
rn

s

Ex
e

cu
ti

o
n

 T
im

e

Utility-Occupancy threshold

Execution
Time

Number of
Patterns

0

50

100

150

200

250

300

350

400

450

0

1000

2000

3000

4000

5000

6000

7000

0
.2

0
.1

0
.0

5

0
.0

1

N
u

m
b

e
r

o
f

p
at

te
rn

s

Ex
e

cu
ti

o
n

 T
im

e

Utility-Occupancy threshold

Execution
Time

Number of
Patterns

Saritha Vemulapalli & Shashi Mogalla / IJETT, 69(4), 228-235, 2021

234

Table II. Evaluation of % of average utility occupancy of

patterns on SIGN_sequence_utility Dataset

Table III. Evaluation of % of average utility occupancy

of patterns on SIGN_sequence_utility Dataset

SIGN_seque

nce_utility

Utility-

occupancy

threshold: 0.2

 Support

Threshold

Average

utility

occupancy

of prefix

span

Average utility

occupancy of

HUOSPM

% of

improv

ement

0.7 0.14 0.24 71.42

0.6 0.13 0.23 76.92

0.5 0.09 0.22 144.44

0.3 0.07 0.2 185.71

Table IV. Evaluation of % of average utility occupancy of

patterns on Kosarak10k_sequence_utility

Kosarak10

k_sequence

_utility

Utility-

occupancy

threshold:

0.7

 Support

Threshold

Average utility

occupancy of

prefix span

Average

utility

occupancy

of

HUOSPM

% of

improve

ment

0.03 0.49 0.76 55.10

0.02 0.44 0.77 75

0.01 0.35 0.74 111.42

0.005 0.24 0.72 200

0.004 0.2 0.71 255

0.003 0.17 0.71 317.64

Table V. Evaluation of % of average utility occupancy of

patterns on Kosarak10k_sequence_utility

Table VI. Evaluation of % of average utility occupancy of

patterns on Kosarak10k_sequence_utility

Fig. 3 Evaluation of % of improvement in average utility

occupancy of patterns on SIGN_sequence_utility Dataset

0

50

100

150

200

0.7 0.6 0.5 0.3 0.2

%
 o

f
im

p
ro

ve
m

e
n

t
in

 A
ve

ra
ge

u

ti
lit

y
o

cc
u

p
an

cy
 t

h
re

sh
o

ld

Support Threshold

% of
improvemnet
for utility-
occupancy
threshold :
0.2

% of
improvemnet
for utility-
occupancy
threshold :
0.1

SIGN_sequ

ence_utility

Utility-

occupancy

threshold: 0.1

Support

Threshold

Average

utility

occupancy

of prefix

span

Average utility

occupancy of

HUOSPM

% of

impro

veme

nt

0.7 0.14 0.18 28.57

0.6 0.13 0.17 30.76

0.5 0.09 0.14 55.55

0.3 0.07 0.12 71.42

0.2 0.08 0.14 75

Kosarak

10k_seq

uence_ut

ility

Utility-

occupancy

threshold:

0.5

Support

Threshol

d

Average

utility

occupancy

of prefix

span

Average

utility

occupancy

of

HUOSPM

% of

improv

ement

0.03 0.49 0.64 30.61

0.02 0.44 0.59 34.09

0.01 0.35 0.56 60

0.005 0.24 0.58 141.66

0.004 0.2 0.58 190

0.003 0.17 0.57 235.29

Kosarak10k

sequence

utility

Utility-

occupancy

threshold:

0.3

 Support

Threshold

Average

utility

occupancy of

prefix span

Average

utility

occupancy

of

HUOSPM

% of

improv

ement

0.03 0.49 0.51 4.08

0.02 0.44 0.49 11.36

0.01 0.35 0.42 20

0.005 0.24 0.38 58.33

0.004 0.2 0.37 85

0.003 0.17 0.37 117.64

Saritha Vemulapalli & Shashi Mogalla / IJETT, 69(4), 228-235, 2021

235

Fig. 4 Evaluation of % of improvement in average utility

occupancy of patterns on Kosarak10k_sequence_utility

Dataset

VI. CONCLUSIONS

From Fig. 3 and 4, it is clearly observed that patterns

generated by the proposed algorithm are qualitative

compared to prefix span. It can also be observed that patterns

generated by the HUOSPM algorithm produce better values

for lower support thresholds compared to prefix span.

In this paper, a novel variant of SPM called HUOSPM is

proposed by considering item utility, occurrence, and utility-

occupancy measures into account. The utility-occupancy

measure helps in discovering useful and interesting utility

patterns which contribute a major portion of utility in its

supporting sequences. The proposed novel generic utility-

occupancy framework based HUOSPM algorithm measures

the pattern interestingness using both support threshold and

utility-occupancy threshold. To our knowledge, no algorithm

is developed to solve this problem for sequential datasets.

The proposed algorithm effectively discovers HUOSP’s from

QSD using compact data structures seqlist and uolist.

HUOSPM algorithm efficiently discovers the patterns using

proposed search space pruning strategies called pattern

extension utility-occupancy (peuo), reduced sequence utility-

occupancy (rsuo), and extension upper bound

utility-occupancy (euuo). Experimental evaluations on real

datasets with varying support count threshold and utility-

occupancy threshold proved that the patterns discovered by

the HUOSPM algorithm are qualitative compared to prefix

span. HUOSPM algorithm can completely generate

HUOSP’s.

REFERENCES

[1] R. Agrawal and R. Srikant, Mining sequential patterns, In
Proceedings of 11th International Conference on Data Engineering,

IEEE. (1995) 3–14.

[2] Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., A novel approach for
mining high-utility sequential patterns in sequence databases, ETRI

Journal. 32(5)(2010) 676–686.

[3] J. Yin, Z. Zheng, and L. Cao, USpan: an efficient algorithm for
mining high utility sequential patterns, ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. p(2012)

660-668.
[4] G. C. Lan, T. P. Hong, V. S. Tseng, and S. L. Wang, Applying the

maximum utility measure in high utility sequential pattern mining,
Expert Systems with Applications. 41(11)(2014) 5071–5081.

[5] O. K. Alkan and P. Karagoz, CRoM and HuspExt: improving

efficiency of high utility sequential pattern extraction, IEEE
Transactions on Knowledge and Data Engineering. 27(10)(2015)

2645–2657.

[6] J. Z. Wang, J. L. Huang, and Y. C. Chen, On efficiently mining high
utility sequential patterns, Knowledge and Information Systems.

49(2) (2016) 597–627.

[7] W. Gan, J. C. W. Lin, J. Zhang, P. Fournier-Viger, H. C. Chao, and
P. S. Yu, Fast utility mining on sequence data, IEEE

TRANSACTIONS ON CYBERNETICS. 52(2)(2020) 2168-2267.

[8] Bac Le, Ut Huynh, Duy-Tai Dinh, A pure array structure and
parallel strategy for high-utility sequential pattern mining, Expert

Systems With Applications, Elsevier, 104(2018) 107-120.

[9] LEI ZHANG, PING LUO, LINPENG TANG, ENHONG CHEN,
QI LIU, MIN WANG, and HUI XIONG, Occupancy-Based

Frequent Pattern Mining, ACM Transactions on Knowledge

Discovery from Data. 10(2) (2015) 14:1- 14:33.
[10] B. Shen, Z. Wen, Y. Zhao, D. Zhou, and W. Zheng, OCEAN: Fast

discovery of high utility occupancy itemsets, in Proc. Pac.–Asia

Conf. Knowl. Disc. Data Mining. (2016) 354–365.
[11] Wensheng Gan, Jerry Chun-Wei Lin , Philippe Fournier-Viger,

Han-Chieh Chao, and Philip S. Yu, HUOPM: High-Utility

Occupancy Pattern Mining, IEEE TRANSACTIONS ON
CYBERNETICS. 50(3) (2020) 1195-1208.

[12] P. Fournier-Viger, C. W. Lin, A. Gomariz, A. Soltani, Z. Deng, H.

T. Lam, The SPMF open-source data mining library version 2, The
European Conference on Principles of Data Mining and Knowledge

Discovery. (2016) 36-40, URL: http://www.philippe-fournier-

viger.com/spmf/.

0

50

100

150

200

250

300

350

0.03 0.01 0.004

%
 o

f
im

p
ro

ve
m

e
n

t
in

 A
ve

ra
ge

 u
ti

lit
y

o
cc

u
p

an
cy

 t
h

re
sh

o
ld

Support Threshold

% of
improvemne
t for utility-
occupancy
threshold :
0.7

% of
improvemne
t for utility-
occupancy
threshold :
0.5

