
International Journal of Engineering Trends and Technology Volume 69 Issue 4, 236-246, April 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I4P232 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Parallel and Scalable Deep Learning Algorithms

for High Performance Computing Architectures
Sunil Pandey#1, Naresh Kumar Nagwani#2, Shrish Verma#3

#1Research Scholar, #2Associate Professor

Department of Computer Science and Engineering, NIT Raipur 492010, CG, India
#3Professor, Department of Electronics and Communication Engineering, NIT Raipur 492010, CG, India

1sys_admin@nitrr.ac.in, 2 nknagwani.cs@nitrr.ac.in, 3 shrishverma@nitrr.ac.in

Abstract — This paper elucidates the state-of-the-art

design of parallel and scalable deep learning algorithms

for high-performance computing (HPC) architectures.

The paper starts with an application-focused introduction
to deep learning. The HPC architectures discussed next

include multicore processors and multi systems, which

are representatives of the shared and distributed parallel

programming paradigms, respectively. Followed by this is

a discussion of the computational challenges inherent in

deep learning. A review of research in deep learning and

HPC has been carried out, and a short summary in the

tabular form was provided. Open research directions in

the field have been highlighted. Key steps in the deep

learning algorithm development process for HPC are then

discussed, followed by the possible outcomes. One section
each has been dedicated to convolutional neural networks

and the high-performance computing environment. The

materials and methods used in a computational

experiment in deep parallel learning have been described

next. The experiment involves the design and development

of a parallel algorithm and program for compute-

intensive deep learning primitive and its performance

testing. The results and the performance of the deep

learning parallel program have been discussed. The

paper ends with the concluding remarks in the

conclusions.

Keywords — Parallel, Scalable, High Performance

Computing, Multicore, Compute Cluster, Shared Parallel,

Distributed Parallel, Deep Learning Algorithms.

I. INTRODUCTION

Deep learning is a young discipline in the field of

machine learning and is a very exciting and active

research area at present. Deep learning can be thought of

as an extension of the field of artificial neural networks

since, at their core, deep learning networks can be thought

of as very large artificial neural networks in many cases.

Deep learning networks are capable of automatically
learning features and patterns at multiple levels of

abstraction. Deep learning has seen many early successes

in a range of applications. Examples include but are not

limited to “Automatic Colorization of Gray-Scale Images”

[1-4], “Automatically Adding Sounds to Silent Movies”

[5], “Automatic Translation of Text” [6-8], “Image

Classification and Object Detection in Photographs” [9-

12], “Automatic Handwriting and Text Generation”

[13][14], “Automatic Image Caption Generation” [15].

Deep learning networks and algorithms have also been

used for predictive IoT data analytics [16], in medical

diagnosis [17], to develop a strategy for increased video
consumption [18], for the reduction of genome sequence

errors [19], for processing of remote sensing images [20],

etc. It can be observed that that the applications

highlighted above are all applications in the field of

Artificial Intelligence characterized by large datasets.

Common examples of deep learning networks include

“deep multilayer feed-forward neural networks,” “deep

convolutional neural networks,” and “deep recurrent

neural networks” [21]. Deep learning networks and

algorithms are typically applied to AI problems that
involve large dataset mining and big data analysis [22].

A typical deep learning network, the deep multilayer

feed-forward neural network is a very large artificial

neural network (ANN) having several layers of neurons

and several neurons in each layer. Massive amounts of

data are run through the system to train this ANN. As

deep learning networks are very large neural networks,

they are characterized by a very large number of

adaptable parameters or weights which are tuned in the

training phase. Parameter training is done in the training

phase using specialized mathematical algorithms, such as
the feed-forward error backpropagation algorithm for

multilayer feedforward neural networks. Since the number

of parameters involved in such networks is very large, the

training phase of deep learning networks is typically very

compute-intensive and can become prohibitively so on

high-dimensional data [23]. It is primarily due to the

compute-intensive nature of the deep learning algorithms

that there arises a need for the development of specialized,

efficient parallel, and distributed algorithms and codes for

high-performance computing architectures.

II. BUILDING BLOCKS OF HIGH-PERFORMANCE

COMPUTING SYSTEMS

Multicore, Multiprocessor, and Multi-systems can be

regarded as the basic or foundational building blocks of

contemporary high-performance computing systems. The

above can also be regarded as representing increasing

levels of parallelism in a modern multisystem high-

performance computing environment.

https://ijettjournal.org/archive/ijett-v69i4p232
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

237

A multicore processor [24] is a single processor which

contains two or more complete functional processing units,

also called the processor cores or the CPU cores. Such

chips are now the focus of two major processor

manufacturers, i.e., Intel and AMD. Fig. 1 shows the
high-level architecture of a typical multicore processor.

Fig. 1: Multicore HPC Architecture

A multiprocessor system refers to a system in which

two or more single-core or multi-core processors have

access to the same memory bank [25]. If the processors

have equal access to the system memory, then such a

system is called a symmetric multiprocessor system. Fig.

2 shows the architectural elements of a symmetric

multiprocessor system.

Fig. 2: Symmetric Multiprocessor Architecture

A multisystem refers to a group of symmetric

multiprocessor systems connected via a high-speed data

network. Due to the network latency, the processors of

one system cannot share a memory with the processors of

another system.

Such systems are appropriate for problems that do not

require frequent communication between processors, i.e.,

the loosely coupled problems, while tightly coupled

problems are more appropriate for symmetric

multiprocessor machines. Fig. 3 shows the architectural

details of a typical multisystem.

Fig. 3: Multisystem HPC Architecture

III. COMPUTATIONAL CHALLENGES OF DEEP

LEARNING

The computational challenges inherent in deep learning

are best highlighted by means of an illustrative example.
Fig. 4 shows a multilayer feed-forward neural network. If,

for example, there is a deep multilayer feed-forward

neural network with 100 neurons in each of its 10 hidden

layers for use as a classifier in lung cancer detection with

the dataset comprising of 10,000 high-resolution low-dose

CT scan images, then there are 1000 neurons, and

1,00,000 parameters to be adjusted in every cycle, not

counting the output layer neurons or the pre-processing

required by the high-resolution images in the feature
extraction phase.

Fig. 4: Typical Multilayer Feed Forward Net [23]

From the perspective of computation, training a large

deep neural network, as explained in the example above,

is not a trivial task, and training deep networks of such

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

238

size on typical desktops and workstations has been
observed to take inordinate times for completion.

Further on, the system resources are bogged down by

the compute-intensive deep learning training programs,

rendering the desktop or the workstation practically

useless for other tasks during the period that these training
programs are running.

This simple observation indicates to us that for true

deep learning for real-world applications, as against toy

models used for technology demonstration purposes, new

fast and efficient algorithms and/or customized software
and hardware solutions are an essential requirement.

Conventional algorithms, software, and hardware that is

typically designed and developed for serial execution

prove to be unsuitable for such computation-intensive
real-world tasks.

IV. LITERATURE REVIEW

Many researchers are working on accelerating deep

learning applications for achieving high computational

efficiencies on different architectures and platforms.
Some of the literature which is valuable in the context of

deep learning and high-performance computing is briefly
summarized in Table 1.

TABLE I

Review of Research on Deep Learning Acceleration

Author Title Research

“LeCun,
Y., et. al.

(2015)”

“Deep Learning” Analysis of Methods

and Applications
Deep Multilayer
NNs + CNN + RNN

“Chen,
X.W., et.
al.

(2014)”

“Big Data Deep
Learning:

Challenges and
Perspectives”

Analysis of
challenges in using

deep learning for
big data

“Najafaba
di, M.M.,
et. al.

(2015)”

“Deep learning
applications and

challenges in big
data analytics.”

Analysis of
challenges in using

deep learning for
big data

“Sun,

X.H.,
et.al.

(2008)”

“Scalable

Computing in
the Multicore
Era”

Analysis of speedup

models on multicore
architecture

“Giles

M.B., et.
al.

(2014)”

“Trends in HPC

for engineering
calculations.”

Analysis of key

developments on the
hardware side,

recent past + near
future

“Angelov,
P., et. al.

(2016)”

“Challenges in
Deep Learning”

Analysis of

challenges in deep
learning

“Dean, J.,
et. al.

(2012)”

“Large Scale

Distributed Deep
Networks”

Development of two

algorithms –
Downpour SGD +

Sandblaster for
large-scale
distributed training

“J.
Hauswald
et. al.

(2015)”

“DjiNN and
Tonic: DNN as a

service and its
implications for

future
warehouse-scale
computers.”

Open infrastructure
for Deep neural

networks as a
service in

Warehouse scale
computers

“Bouache
, M., et.
al.

(2016)”

“Deep Learning
GPU-Based

Hardware
Platform

Hardware and

Software Criteria
and Selection”

Hardware +
Software Criteria
and Selection

“Le,

Q.V., et.
al.

(2011)”

“On

Optimization
Methods for
Deep Learning”

Limited memory

BFGS + Conjugate
gradient (CG)

algorithms for pre-
training deep
networks

“Hegde,
V., et. al.

(2016)”

“Parallel and
Distributed Deep
Learning”

CNN + SGD +
ADMM +
Downpour SGD

“Keuper,
J., et. al.

(2015)”

“Asynchronous

Parallel
Stochastic

Gradient

Descent A
Numeric Core

for Scalable
Distributed

Machine
Learning
Algorithms” [32]

SGD

“Vanhouc
ke, V., et.
al.

(2011)”

“Improving the
Speed of Neural

Networks on
CPUs” [33]

Code speedup on
x86 CPUs

“Gupta,
S., et. al.

(2015)”

“Deep Learning
with Limited

Numerical
Precision” [34]

16-bit wide fixed-
point number
representation

“Chetlur,
S., et. al.

(2014)”

“cuDNN:
Efficient

Primitives for
Deep Learning”
[35]

High Performance
Library

Development for
GPU based deep
learning

“Delong,
A., et al.”

“Practical Guide
to Matrix

Calculus for
Deep Learning”
[36]

Matrix calculus for
deep learning
algorithms

“Baoyuan
Liu, et. al.

(2015)”

“Sparse
Convolutional

Neural
Networks”[37]

Sparsely connected
CNNs

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

239

“Ionescu,
C., et. al.

(2015)”

“Matrix
Backpropagation

for Deep
Networks with

Structured
Layers” [38]

Matrix formulation
of Backpropagation
Algorithm

“Zhang,
Y., et. al.

(2013)”

“Optimized

Deep Learning
Architectures

with Fast Matrix
Operation

Kernels on
Parallel
Platform” [39]

Design of fast

matrix operation
kernels on parallel

platforms for deep
learning

V. OPEN RESEARCH DIRECTIONS

Contemporary large-scale deep learning models need a
significant amount of computational power to reach

acceptable performance levels on medium and large-size

datasets, especially in real-time and online environments.

However, the amount of data available is growing very

rapidly in terms of volume, velocity, and variety. Thus,

there is a requirement for a class of deep learning

algorithms that can be trained efficiently on big data. HPC

architectures and infrastructures coupled with specially

designed parallel and distributed algorithms and codes

capable of efficient deep learning computations and

performance-optimized on such architectures and

infrastructures are also a key requirement for handling this
kind of data [26].

The models and data available for deep machine
learning applications have grown significantly over the

last few years. High-performance computing architectures

in combination with the right deep learning codes are

capable of accelerating the performance and enabling us

to make sense of such large data sets through recognition
of latent patterns and inherent knowledge.

The focus of most of the current literature and public

implementations of deep machine learning algorithms is

generally on either cloud-based, i.e., warehouse-scale

[27][28] or on small-scale GPU environments

[29][30][31]. These implementations do not scale well in

high-performance computing environments because of

inefficient data movement and network communication

within the multisystem computers, originating from

significant imbalances in the level of parallelism.
Furthermore, the application of deep machine learning to

extreme-scale scientific data remains by and large

unexplored. In order to leverage high-performance

computing for deep machine learning applications,

advancements are required in both algorithms and their

scalable, parallel, and distributed versions. Also, work is

disjointed; no structured performance and scalability

studies at different levels of CPU parallelism appear to

have been carried out, and not much benchmarking
data/benchmarks are available.

The computation-intensive nature of deep learning

algorithms leads to the following two clear research
directions:

1. The design of fast and computationally efficient

serial algorithms for training deep learning
networks, and

2. The design of parallel and scalable algorithms

for training deep learning networks exploiting

recent advances in high performance computing
architecture and hardware

Deep learning is being used for the solution to many

hard problems. It is clear that the training of deep learning

networks is a problem that is well-suited for HPC

ecosystems. Using parallel and distributed algorithms on
HPC hardware reduces the training time of deep learning

networks. The scaling property of the parallel and

distributed algorithms helps in the application of deep

learning to the ever-increasing volume of the data sets and
assists in the progress of deep learning.

Parallel and scalable algorithms for deep learning

enable many new applications and provide the capabilities

for experimenting with bigger models, larger datasets, and

more ideas within a given timeframe reducing the

artificial intelligence research cycle and product
development times.

VI. KEY PHRASES IN PARALLEL DEEP

LEARNING APPLICATION DEVELOPMENT

Key phases towards the research and development of
parallel and scalable deep learning algorithms for HPC

architectures are mentioned in Table 2. The phases

contain sub-tasks which are described in what follows.

The HPC architectures considered in this paper, i.e.,

multicore processors and compute clusters, represent the

proven and time-tested shared and distributed memory

parallel programming paradigms, respectively.

TABLE II

The Key Phases

Phase-A
Understanding the specific deep

neural network algorithm and the

HPC environment

Phase-B
Analysis and design of high-

performance deep learning algorithm
or computational primitive

Phase-C
Programming for multisystem

implementation

Phase-D
Performance and scalability

evaluation

Phase-E
Comparative evaluation of

performance with other platforms

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

240

Phase-A: Understanding the Specific Deep Neural

Network Algorithm and the HPC Environment

This is the learning and understanding phase. In this

phase, selection of the deep learning network algorithm,

or the computational primitive thereof, which is to be
taken up for parallelization, e.g., deep multilayer feed-

forward neural network, deep convolutional neural

network, deep recurrent neural network, etc. is done.

Literature is closely followed. This phase comprises the
following two subtasks:

Understanding the Algorithmic Implementation Details

of Selected Deep Neural Network or Computational

Primitive (Phase A1)

Widely used deep learning networks, e.g., deep

multilayer feed-forward neural network, deep

convolutional neural network, deep recurrent neural

network, etc., are studied with a focus on their
mathematical, algorithmic, and algorithmic

implementation details before selecting the

computationally intensive deep learning algorithm or the
computational primitive to be parallelized.

Understanding the Building Blocks of HPC architecture,

Programming and Performance Considerations (Phase

A2)

This phase involves a closer look at the HPC

architecture, parallel programming models, constructs,

programming languages, tools, libraries, and functions
available for implementing the selected deep learning

algorithm or computational primitive. Necessary

programming and code optimization considerations also

demand a closer look in this phase.

Phase-B: Analysis and Design of Parallel Deep

Learning Algorithm / Computational Primitive

This phase comprises the following subtasks:

Analysis of the Serial Algorithm (Phase B1)

An in-depth analysis of the serial algorithm of the

selected deep neural network or computational primitive

needs to be carried out in this phase.

Design of the HPC Algorithm (Phase B2)

In this subtask, the selected deep neural network or

computational primitive shall be partitioned into functions,

procedures, and subroutines, with an eye on identifying

significant parallel computation or distributed
computation opportunities.

Analysis of the HPC Algorithm (Phase B3)

A preliminary analysis of the parallel or distributed

HPC algorithm shall be done in this subtask.

Phase-C: Programming for HPC Implementation

This phase shall involve programming the selected

deep neural network, e.g., deep multilayer feed-forward

neural network, deep convolutional neural network, deep
recurrent neural network, etc., or the selected

computational primitive for the HPC architecture

considered. Debugging and testing shall also be carried

out alongside the development in this phase.

Phase-D: Performance and Scalability Evaluation

The following shall be performed using the selected

large dataset(s). The dataset shall be from large-scale

pattern recognition domains like imaging.

Performance Evaluation of Serial Vs. HPC Program

(Phase-D1)

The HPC program for the deep neural network, e.g.,

deep multilayer feed-forward neural network, deep

convolutional neural network, deep recurrent neural

network, etc., has to be run by varying the numbers of

nodes, and this data has to be compared with the

equivalent serial implementation on the selected dataset.

The main parameter to be noted for performance

evaluation are the execution times of the corresponding

programs.

Scalability Assessment of the HPC Program (Phase-D2)

In this subtask, the scalability of the system has to be

analyzed as well as empirically evaluated by running the

HPC program for the deep neural network, e.g., the deep

multilayer feed-forward neural network, deep

convolutional neural network, deep recurrent neural
network, etc. by varying the numbers of nodes which

participate in the computation. The clock times with

different numbers of nodes shall be noted. If the graph

between execution time and the number of nodes shows a

linear decreasing trend with a good slope, the algorithm

and its implementation are scalable. Otherwise, necessary

improvisations to the algorithm and/or the source code

will be necessitated to make the program scale better.

Comparative Evaluation of Performance and Scalability

with other Software (Phase-E)

In this task, the performance and scalability of the

multisystem program for the deep neural network, e.g.,

deep multilayer feed-forward neural network, deep

convolutional neural network, deep recurrent neural

network, etc., are compared with other software

implementations, if comparable.

VII. POSSIBLE OUTCOMES

Following are the possible outcomes of a sincere effort

in the design and development of parallel and distributed

deep learning algorithms for HPC architectures

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

241

1. Optimized high-performance deep learning codes

for HPC architectures.

2. The HPC codes can be used to handle big data

and test out larger models in deep learning,
which may not be practicable on desktops,

workstations, etc.

3. The HPC codes can also be used in deep learning

application development.

4. Performance and scalability benchmarks shall

become available for researchers and

practitioners.

5. Depending on the performance of the codes on

the large dataset used for performance and

scalability evaluation, new application spin-offs

are possible.

VIII. UNDERSTANDING DEEP NEURAL

NETWORKS: CONVOLUTIONAL TYPE

A CNN has primarily comprised of the following four

layers: the convolutional layer(s), pooling or sub-

sampling layer(s), non-linear layers, and fully connected
layer(s).

Each feature of a layer in a CNN receives its inputs

from a small neighborhood of features located in a local

receptive field of the previous layer. Using local receptive

fields, it is possible to extract fundamental visual features,

such as edges, corners, etc. These fundamental features

are combined in the higher layers.

The convolutional layers of a CNN are the feature

extractors. The weights of the convolutional filter kernels

are tuned during the training process. The convolutional
layers are able to extract local features because the

receptive fields in the hidden layers of the CNN are

restricted to small localized regions.

CNNs have found applications in computer vision,

image recognition, pattern recognition, speech signal

recognition, natural language processing (NLP), and video

analysis. In CNNs, the weights of the convolutional layer,

which is used in the feature extraction stage, and the

weights in the fully connected layers used for the

classification task are adapted during the training process.
The network structures of CNNs lead to optimal memory

and computation complexity requirements. They also give

superior performance in applications like image and

speech recognition, where the input is locally correlated.

Training and evaluation of CNNs require large

computational resources. The large requirements of

computational resources are sometimes met by graphical

processing units (GPUs), Digital Signal Processors

(DSPs), Field Programmable Gate Arrays (FPGAs), or

other specialized silicon architectures which have been

optimized for high throughput and lower power while

they execute the characteristic patterns of CNN

computation.

CNNs have achieved the highest correct detection rates

(CDRs) in image and pattern recognition applications -
99.77% on the MNIST database of handwritten digits [40],

97.47% on the NORB 3D objects dataset [41], and 97.6%

on ~5600 images of more than 10 objects [42]. They have

not only given better performance compared to other

detection algorithms but have also surpassed humans in

object classification tasks involving fine-grained

categories such as the particular breed of dog or bird

species [43].

Complex CNN architectures are built for difficult

classification problems by stacking up the four layers, i.e.,

the convolution layers, pooling or sub-sampling layers,
non-linear layers, and fully connected layers in different

permutations and combinations. Fig. 5 shows a typical

CNN architecture for the image classification problem.

Fig. 5: CNN Architecture for Image Classification

Convolution Layers: The convolution operation is the

feature extractor that is used for the extraction of the

different features of the input image. The initial

convolutional layers are used for the extraction of the
low-level image features, also called the fundamental

image features, i.e., the edges, lines, corners, etc. The

subsequent layers are used for the extraction of the

higher-level features.

Fig 6(a) explains the process of three-dimensional

convolution, which is used in CNNs. The input is of size

M x N x 3, which corresponds to an RGB image having

the red, blue, and green channels, respectively. It is

convolved with H filters, each of size k x k x 3 separately.

Each filter is comprised of three separate k x k x 1

convolutional kernels. The convolution operation of one
input image with one convolutional filter produces one

output feature. With H independent filters, H number of

output features are produced.

Beginning from the top-left corner of the input, each of

the filters is shifted from left to right, one element at a

time. When the top-right corner is reached, the filter is

moved one element in the downward direction and back

to the left corner in the horizontal direction. Once again,

the filter is shifted from left to right, one element at a time.

The process is continued until, eventually, the filter
reaches the bottom-right corner. At each receptive field,

pointwise multiplications between the image matrix value

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

242

and the corresponding convolutional filter kernel are

performed and their sums computed. These sums replace

the local receptive field in the output.

Fig. 6(a): Three Dimensional Convolution Process

Pooling Layers: The pooling / sub-sampling layer is

used for dimension reduction of the feature space making

the features robust to noise and distortion. Two common

pooling operations are in use. They are the max-pooling

and the average pooling operations, respectively. In max

pooling, the selected region or window of the input image

is replaced by its maximum value, while in the case of

average pooling, the selected region or window of the
input image is replaced by its average value. The window

or region shifts from the top left corner of the input image

to its bottom right corner in a manner similar to the

movement of the convolutional filter and kernels. In both

these operations, the input image is partitioned into non-

overlapping two-dimensional regions. Fig 6(b)

demonstrates the max and average pooling operations in a

CNN.

Fig. 6(b): Max and Average Pooling Operations

Nonlinear Layers: In order to signal the distinct

identification of likely features which are present in the

hidden layers, the CNNs make use of specific nonlinear

functions. Commonly used functions include the rectified
linear unit (ReLU), hyperbolic tangent, absolute

hyperbolic tangent, and the sigmoid functions. Since this

function operates on an element-by-element basis, the size

of the input and the output are the same.

The mathematical equations of these non-linear
functions are as follows:

Rectified Linear Unit (ReLU):

),0max(xy 

(1.1)

Hyperbolic Tangent:

xx

xx

ee

ee
xy








)tanh(

(1.2)

Absolute Hyperbolic Tangent:

xx

xx

ee

ee
xabsy








))(tanh(

(1.3)

Sigmoid Function:

xe
y




1

1

(1.4)

Fig. 6(c) shows the output when a ReLU function operates

on a selected 4 x 4 region of an image.

Fig. 6(c): ReLU operation on a selected image region

Fully Connected Layers: Fully connected layers are

typically used in the last layers of a CNN. The fully

connected layers comprise multiple artificial neurons, also

called perceptrons. The artificial neurons first compute the

weighted sum of the previous layer of features, add a bias

term and pass this output through a nonlinear function

which is typically the sigmoid function. During the

training phase, the weights are modified as per a training

algorithm so that the error or cost, which is a measure of

the difference between the expected and the actual outputs,

is minimized. The backpropagation algorithm is the most

commonly used training algorithm.

Fig. 6(d) shows the “computational” architecture of an

artificial neuron in the fully connected layer.

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

243

Fig. 6(d): Architecture of an Artificial Neuron

Fig. 6(e) shows the adjustment of weights of the neurons

of the fully connected layer during the training phase. The

weights are adjusted so as to minimize the error.

Fig. 6(e): Weight adjustment during the training phase

IX. UNDERSTANDING THE HIGH-

PERFORMANCE COMPUTING ENVIRONMENT

The building blocks of high-performance computing

systems have already been discussed in section II. In this

section, the computing environment for high-performance

computing systems is discussed.

The focus is primarily on the software side. Multicore

and multisystem models are the two high-performance

computing systems that have been considered in this work.

In this context, Java is a programming language that has

in-built features for the explicit programming of multicore

as well as multi systems. Besides, Java has the advantage

of being a modern “simple, general-purpose, object-

oriented, interpreted, robust, secure, architecture-neutral,

portable, high-performance, and multithreaded” computer

programming language with automatic memory

management

Java Multithreading: Multithreading refers to the

simultaneous execution of several threads. A thread is

defined as a lightweight process and is the smallest unit of

processing.

Threads use a shared memory model. There is no

separate memory allocation which saves memory and the

context switching between the threads is also faster

compared to a process. Threads execute independently of

each other. A multi-threaded program running on a single-
core chip needs to interleave the threads. However, in

multicore high-performance computing architectures, the

threads can be distributed across the available cores

enabling true parallel processing. Fig. 7 shows the events

and states of Java threads.

Fig 7: Events and States of Java Threads

Java Remote Method Invocation: Distributed

computing can be treated as partitioning an application

into separate computing agents, which are then distributed

and executed on a network of computers. However, all the

computing agents work in unison to execute tasks

cooperatively. Java provides a feature called remote

method invocation (RMI), which enables programs to

invoke Java objects on remote machines.

Two programs, one for the server and the other for the
client, are written in the case of an RMI application. A

remote object is created in the server program, and a

reference to that object is made available for the client

program using the RMI registry. The client program

makes requests for the remote server objects and invokes

its methods. The components of the RMI architecture

include the transport layer, the stub, the skeleton, and the

remote reference layer (RRL).

The transport layer enables a network connection

between the client and the server programs. Its role is to
manage the existing connections and also to set up new

connections when required. A stub is a representation of

the remote object at the client. It is the gateway to the

client program. The client-side stub communicates with

the server-side skeleton for passing requests to the remote

object. The remote reference layer manages the references

made by the client to the remote object.

Client-side calls to the remote object are received by

the stub, which passes this request to the RRL. On

receiving the client-side requests, the RRL invokes a

method called invoke of the remote object, which passes
this request to the corresponding RRL on the server-side.

The server-side RRL passes the request to the Skeleton,

which invokes the corresponding object on the server. The

result is passed back to the client. Fig. 8 illustrates the

architecture of RMI.

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

244

Fig 8: The RMI Architecture

If a client invokes a method on a remote object which

requires parameters, then these parameters are first

bundled into a message before sending them over the

network. The parameters may be primitive type

parameters or object type parameters. If the parameters

are of primitive type, they are assembled, and a header is
attached to the bundle. If the parameters are objects, then

they are serialized. This procedure is called marshaling.

On the server-side, the packed parameters are unbundled,

and after this step, the method called by the client is

invoked. This procedure is called unmarshalling.

The RMI registry is a namespace containing the names

of all the server objects. When the server creates an object

and needs to register it, it makes use of the bind or rebinds

methods. The objects are registered in the RMI registry

using a unique name called bind name.

For invoking a remote object on a server, the client

needs a reference of the remote object, which it fetches

from the registry using its bind name through the lookup

method.

X. MATERIALS AND METHODS

This section contains the details of the materials and

methods used in a computational experiment which

demonstrates the performance gains made through

parallelization of a deep learning primitive. The deep

learning primitive chosen in this experiment is the image

convolution operation in deep convolutional neural
networks. The convolution operation takes place in the

convolutional layers of the convolutional neural networks.

The operation is repetitively performed on all the input

images of a domain-specific image dataset. It is a very

compute-intensive operation. The image convolution S

between an image I and a kernel K is defined as follows











1

0

1

0

,,)*(
m

a

n

b

babjaiijij KIKIS

(2)

In this computational experiment, the image

convolution operation is performed on a high definition

1280 px by 720 px two-dimensional grayscale image

using 128 kernels of size 11 x 11. A multicore program

was written to perform this operation in parallel. The

program can be run on one or more cores of a multicore

processor machine. The program is written in the Java

programming language version 8. The program was

executed on a dual-socket AMD server with one AMD
Opteron (tm) Processor 6136 family. The processor has 8

CPU cores. The current speed of the processor is 2400

MHz. The server has a total of 8GB of DDR3 random

access memory, having a speed of 1333 MT/s. Fig. 9

shows the test image, a 1280 pixel x 720-pixel grayscale

image of a dog named Gugu on a hexagonal paver block

background.

Fig. 9: 1280 x 720-pixel test image of Gugu

XI. RESULTS AND DISCUSSION

Table III shows the results of the computational runs

when the program has been executed using 1, 2, 4, and 8

cores of the processor. Ten computational runs were

performed for each of the core counts. The net execution

time on each core has been calculated as the average of

the ten computational runs.

TABLE III

Results of the Computational Runs

CPU

Cores
1 2 4 8

 Run01 84.497 48.447 26.302 14.401

Run02 87.353 48.816 25.497 14.567

Run03 86.299 48.956 26.349 14.276

Run04 85.600 49.568 25.290 14.378

Run05 83.734 48.799 25.286 13.843

Run06 84.826 49.434 25.777 14.049

Run07 85.173 48.974 24.479 14.178

Run08 90.199 49.031 25.422 14.325

Run09 86.308 48.666 25.086 14.461

Run10 85.136 49.943 24.278 14.323

Total Time (s) 859.125 490.664 253.766 142.801

Avg Time (s) 85.9125 49.0664 25.3766 14.2801

E
x
e
c
u

ti
o
n

 T
im

e
 (

s)

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

245

The average computer time for one image for each core

count can be seen to decrease from approximately 86

seconds when utilizing a single processor core to

approximately 14 seconds when utilizing all the 8

processor cores. This is the time taken for performing
convolutions using 128 convolution kernels of size 11 x

11 on a grayscale high definition digital image of size

1280 pixels x 720 pixels.

This has been visualized in Fig. 10, which is a plot of

the average compute time versus the number of cores on

which the multicore program has been executed.

Fig. 10: Average compute time per image versus the

number of cores

In parallel computing, the overall speedup is defined as

the ratio of the old execution time and the new execution

time. The overall speedup between uni-core performance

and octa-core performance is calculated to be nearly 6 for

this computational experiment. This means that the

multicore program has completed the program execution

and produced the output on 8 numbers of processor cores
6 times faster than on a single processor core.

Table IV shows the overall speedups obtained in the

case of the multicore program considered.

TABLE IV

Overall speedups with core count

Core

Counts

Overall speedups

1 2 4 8

1 1 1.751 3.385 6.016

2 - 1 1.934 3.436

4 - - 1 1.777

8 - - - 1

It can be seen from the above table that the overall

speedup is 1.75 between uni-core performance and dual-
core performance. It is calculated to be 3.38 between

unicore and quadcore performance and 6 between unicore

and octa-core performance for this computational

experiment.

This data has been visualized in Fig. 11, which shows

the overall speedups versus the number of cores.

Fig. 11: Plot showing the ideal and actual overall

speedups versus the number of cores

In the ideal scenario, that is, if the program was perfectly

scalable, the overall speedup, which is an important

performance metric, should have been in the ratio of the

core counts. In the actual scenario, the overall speedup

obtained is lower, and from the graph, the gap between

the ideal and the actual speedups can be seen to widen

with increasing core counts. However, it can be said that

the program scales well on the processor considered.

This computational experiment demonstrates that the

compute-intensive primitives of deep learning are

amenable to parallelization. Significant performance gains

of nearly 600% have been obtained by developing a

multicore parallel program for the convolution operation

and executing the same by increasing the core counts. The

program can be seen to scale well with increasing core

counts on the server processor considered in the present

work.

XII. CONCLUSIONS

In this paper, an attempt has been made to elucidate the
state-of-the-art developments in the design of parallel and

scalable deep learning algorithms for HPC architectures.

Common deep learning algorithms have been highlighted.

An overview of the HPC architectures, including

multicore processors and multisystem, has been provided.

The computational challenges inherent in deep learning

necessitating the use of HPC have been brought out. A

review of research literature in deep learning acceleration

has been summarized in tabular form. Open research

directions have been identified. Key steps in the design

and development of parallel and distributed deep learning

algorithms for HPC architectures have been discussed,
followed by the possible outcomes. A detailed discussion

on CNNs and HPC environment has been made. Finally.

A multicore program for a compute-intensive deep

learning primitive has been designed and developed, and

its performance tested.

REFERENCES

[1] Zezhou Cheng, Qingxiong Yang, and Bin Sheng, "Deep

Colorization, in 2015 IEEE International Conference on

Computer Vision (ICCV), Santiago, (2015) 415-423.

[2] Zhang R., Isola P., and Efros A.A., Colorful Image Colorization,

European Conference on Computer Vision, Springer, 9907 (2016)

[3] Larsson G., Maire M., and Shakhnarovich G., Learning

Representations for Automatic Colorization, Computer

Sunil Pandey et al. / IJETT, 69(4), 236-246, 2021

246

Vision(ECCV), Lecture Notes in Computer Science - Springer,

9908, (2016).

[4] Hwang, Jeff, and You Zhou., Image Colorization with Deep

Convolutional Neural Networks, Stanford University,

[5] Andrew Owens et al., Visually Indicated Sounds, in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),

Las Vegas, (2016) 2405 - 2413.

[6] I Sutskever, O. Vinyals, and Q.V. Le., Sequence to Sequence

Learning, in Proc. Advances in Neural Information Processing

Systems 27 (2014) 3104–3112.

[7] K. Cho et al., Learning phrase representations using RNN

encoder-decoder for statistical machine translation, in Proc.

Conference on Empirical Methods in Natural Language

Processing, (2014) 1724–1734.

[8] Zhang Jiajun and Zong Chengqing., Deep Neural Networks in

Machine Translation: An Overview," IEEE Intelligent Systems,

30(5) (2015)16-25.

[9] A. Krizhevsky, I. Sutskever, and G. Hinton., ImageNet

classification with deep convolutional neural networks, in NIPS

Proceedings, (2012).

[10] A. G. Howard., Some improvements on deep convolutional

neural network-based image classification, in International

Conference on Learning Representation (ICLR), Banff, Canada,

(2014).

[11] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov., Scalable

Object Detection Using Deep Neural Networks, in IEEE

Conference on Computer Vision and Pattern Recognition,

Columbus, (2014) 2155-2162.

[12] D. Erhan, C. Szegedy, and A. Toshev., Scalable object detection

using deep neural networks, in CVPR, (2014).

[13] Alex Graves., Generating Sequences With Recurrent Neural

Networks, [Online]. https://arxiv.org/pdf/1308.0850.pdf

[14] Ilya Sutskever, James Martens, and Geoffrey E Hinton.,

Generating text with recurrent neural networks, in Proceedings of

the 28th International Conference on Machine Learning (ICML-

11), New York, NY, (2011) 1017-1024

[15] Andrej Karpathy and Li Fei-Fei., Deep Visual-Semantic

Alignments for Generating Image Descriptions, in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),

Boston, Massachusetts, (2015) 3128 - 3137.

[16] Ayushi Chahal, Preeti Gulia., Deep Learning: A Predictive IoT

Data Analytics Method, International Journal of Engineering

Trends and Technology, 68(7) (2020).

[17] P. Seetha Subha Priya, S. Nandhinidevi, M. Thangamani, S.

Nallusamy., A Review on Exploring the Deep Learning Concepts

and Applications for Medical Diagnosis, International Journal of

Engineering Trends and Technology, 68(10) (2020).

[18] Sangeeta, Preeti Gulia., Deep learning-based combating strategy

for COVID-19 induced increased video

consumption, International Journal of Engineering Trends and

Technology, 68(7) 2020.

[19] Ferdinand Kartriku, Robert Sowah, Charles Saah., Deep Neural

Network: An Efficient and Optimized Machine Learning

Paradigm for Reducing Genome Sequencing Error, International

Journal of Engineering Trends and Technology, 68(9) (2020).

[20] Ramya T.E., Marikkannan, M., Investigations on Combinational

Approach for Processing Remote Sensing Images Using Deep

Learning Techniques, International Journal of Engineering

Trends and Technology, 67(8) (2019).

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton., Deep

Learning, 521(2015) 436.

[22] X. W. Chen and X. Lin., Big Data Deep Learning: Challenges

and Perspectives, IEEE Access, 2 (2014) 514-525.

[23] M.M. Najafabadi et al., Deep learning applications and

challenges in big data analytics, Journal of Big Data, (2015) 1.

[24] Xian-He Sun, Yong Chen, and Surendra Byna., Scalable

Computing in the Multicore Era, in Proceedings of the Inaugural

Symposium on Parallel Algorithms, Architectures, and

Programming, Hefei: University of Science and Technology of

China Press, (2008).

[25] M. Tanveer, M.A. Iqbal, and F. Azam., Using Symmetric

Multiprocessor Architectures for High Performance Computing

Environments, International Journal of Computer Applications,

27(9) (2011).

[26] P. Angelov and A. Sperduti., Challenges in Deep Learning, in

European Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning, Bruges

(Belgium), M. B. Giles and I. Reguly, Trends in high-

performance computing for engineering calculations," in

Phil.Trans.R.Soc.A, (2016) 27-29.

[27] J. Dean et al., Large Scale Distributed Deep Networks, in 25th

International Conference on Neural Information Processing

Systems, Lake Tahoe, Nevada, (2012) 1223-1231.

[28] J. Hauswald et al., DjiNN and Tonic: DNN as a service and its

implications for future warehouse-scale computers, in

Proceedings 42nd Annual International Symposium on Computer

Architecture (ISCA), Portland, OR, USA, (2015) 27-40.

[29] M. Bouache and J. Glover., Deep Learning GPU-Based Hardware

Platform Hardware and Software Criteria and Selection, in ICS-

2016, Istanbul, Turkey,(2016).

[30] Q. Le et al., On Optimization Methods for Deep Learning," in

Proceedings of the International Conference on Machine

Learning, Washington, (2011)

[31] V. Hegde and S. Usmani., Stanford University, (2016).

https://web.stanford.edu/~rezab/dao/projects_reports/hedge_usma

ni.pdf [Online].

[32] J. Keuper and F.J. Pfreundt., Asynchronous Parallel Stochastic

Gradient Descent A Numeric Core for Scalable Distributed

Machine Learning Algorithms, in Proceedings of the Workshop

on Machine Learning in High-Performance Computing

Environments, Austin, TX, USA, (2015).

[33] V. Vanhoucke, A. Senior, and M. Z. Mao., Improving the speed

of neural networks on CPUs," in Proceedings of the Deep

Learning and Unsupervised Feature Learning NIPS Workshop,

Granada SPAIN,(2011).

[34] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan.,

Deep Learning with Limited Numerical Precision, Journal of

Machine Learning Research, 37 (2015).

[35] S Chetlur et al., cuDNN: Efficient Primitives for Deep Learning.

(2014).[Online]. https://arxiv.org/pdf/1410.0759.pdf

[36] A. Delong. Practical Guide to Matrix Calculus for Deep

Learning,http://www.psi.toronto.edu/~andrew/papers/matrix_calc

ulus_for_learning.pdf [Online]

[37] Baoyuan Liu, Min Wang, H. Foroosh, M. Tappen, and M.

Penksy., Sparse Convolutional Neural Networks, in 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),

Boston, MA, (2015) 806-814.

[38] C. Ionescu, O. Vantzos, and C. Sminchisescu., Matrix

Backpropagation for Deep Networks with Structured Layers, in

IEEE International Conference on Computer Vision (ICCV),

Santiago, (2015) 2965-2973.

[39] Y. Zhang and S. Zhang., Optimized Deep Learning Architectures

with Fast Matrix Operation Kernels on Parallel Platform, in IEEE

25th International Conference on Tools with Artificial

Intelligence, Herndon, VA, (2013) 71-78.

[40] Ciresan, Dan, Ueli Meier, and Jürgen Schmidhuber., Multi-

column deep neural networks for image classification, In IEEE

Conference on Computer Vision and Pattern Recognition (2012)

3642-3649.

[41] Ciresan, Dan, Ueli Meier, Jonathan Masci, Luca M. Gambardella,

and Jurgen Schmidhuber., Flexible, High-Performance

Convolutional Neural Networks for Image Classification, in

International Joint Conference on Artificial Intelligence, (2013)

1237–1242.

[42] Lawrence, Steve, C. Lee Giles, Ah Chung Tsoi, and Andrew D.

Back., Face Recognition: A Convolutional Neural Network

Approach, IEEE Transactions on Neural Networks, 8(1) (1997)

98-113.

[43] Russakovsky, O., Deng, J., Su, H. et al., ImageNet Large Scale

Visual Recognition Challenge. Int J Comput Vis, (115) 2015.

