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Abstract — This paper elucidates the state-of-the-art 

design of parallel and scalable deep learning algorithms 

for high-performance computing (HPC) architectures. 

The paper starts with an application-focused introduction 
to deep learning. The HPC architectures discussed next 

include multicore processors and multi systems, which 

are representatives of the shared and distributed parallel 

programming paradigms, respectively. Followed by this is 

a discussion of the computational challenges inherent in 

deep learning. A review of research in deep learning and 

HPC has been carried out, and a short summary in the 

tabular form was provided. Open research directions in 

the field have been highlighted. Key steps in the deep 

learning algorithm development process for HPC are then 

discussed, followed by the possible outcomes. One section 
each has been dedicated to convolutional neural networks 

and the high-performance computing environment. The 

materials and methods used in a computational 

experiment in deep parallel learning have been described 

next. The experiment involves the design and development 

of a parallel algorithm and program for compute-

intensive deep learning primitive and its performance 

testing. The results and the performance of the deep 

learning parallel program have been discussed. The 

paper ends with the concluding remarks in the 

conclusions. 

 
Keywords — Parallel, Scalable, High Performance 

Computing, Multicore, Compute Cluster, Shared Parallel, 
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I. INTRODUCTION 

Deep learning is a young discipline in the field of 

machine learning and is a very exciting and active 

research area at present. Deep learning can be thought of 

as an extension of the field of artificial neural networks 

since, at their core, deep learning networks can be thought 

of as very large artificial neural networks in many cases. 

Deep learning networks are capable of automatically 
learning features and patterns at multiple levels of 

abstraction. Deep learning has seen many early successes 

in a range of applications. Examples include but are not 

limited to “Automatic Colorization of Gray-Scale Images” 

[1-4], “Automatically Adding Sounds to Silent Movies” 

[5], “Automatic Translation of Text” [6-8], “Image 

Classification and Object Detection in Photographs” [9-

12], “Automatic Handwriting and Text Generation” 

[13][14], “Automatic Image Caption Generation” [15]. 

Deep learning networks and algorithms have also been 

used for predictive IoT data analytics [16], in medical 

diagnosis [17],  to develop a strategy for increased video 
consumption [18], for the reduction of genome sequence 

errors [19], for processing of remote sensing images [20], 

etc. It can be observed that that the applications 

highlighted above are all applications in the field of 

Artificial Intelligence characterized by large datasets.  

 

Common examples of deep learning networks include 

“deep multilayer feed-forward neural networks,” “deep 

convolutional neural networks,” and “deep recurrent 

neural networks” [21]. Deep learning networks and 

algorithms are typically applied to AI problems that 
involve large dataset mining and big data analysis [22].  

 

A typical deep learning network, the deep multilayer 

feed-forward neural network is a very large artificial 

neural network (ANN) having several layers of neurons 

and several neurons in each layer. Massive amounts of 

data are run through the system to train this ANN. As 

deep learning networks are very large neural networks, 

they are characterized by a very large number of 

adaptable parameters or weights which are tuned in the 

training phase. Parameter training is done in the training 

phase using specialized mathematical algorithms, such as 
the feed-forward error backpropagation algorithm for 

multilayer feedforward neural networks. Since the number 

of parameters involved in such networks is very large, the 

training phase of deep learning networks is typically very 

compute-intensive and can become prohibitively so on 

high-dimensional data [23]. It is primarily due to the 

compute-intensive nature of the deep learning algorithms 

that there arises a need for the development of specialized, 

efficient parallel, and distributed algorithms and codes for 

high-performance computing architectures. 

II. BUILDING BLOCKS OF HIGH-PERFORMANCE 

COMPUTING SYSTEMS 

Multicore, Multiprocessor, and Multi-systems can be 

regarded as the basic or foundational building blocks of 

contemporary high-performance computing systems. The 

above can also be regarded as representing increasing 

levels of parallelism in a modern multisystem high-

performance computing environment.  

 

https://ijettjournal.org/archive/ijett-v69i4p232
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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A multicore processor [24] is a single processor which 

contains two or more complete functional processing units, 

also called the processor cores or the CPU cores. Such 

chips are now the focus of two major processor 

manufacturers, i.e., Intel and AMD. Fig. 1 shows the 
high-level architecture of a typical multicore processor. 

 

 
 

Fig. 1: Multicore HPC Architecture 
 

A multiprocessor system refers to a system in which 

two or more single-core or multi-core processors have 

access to the same memory bank [25]. If the processors 

have equal access to the system memory, then such a 

system is called a symmetric multiprocessor system. Fig. 

2 shows the architectural elements of a symmetric 

multiprocessor system. 

 

 
 

Fig. 2: Symmetric Multiprocessor Architecture 

 
A multisystem refers to a group of symmetric 

multiprocessor systems connected via a high-speed data 

network. Due to the network latency, the processors of 

one system cannot share a memory with the processors of 

another system. 

 

Such systems are appropriate for problems that do not 

require frequent communication between processors, i.e., 

the loosely coupled problems, while tightly coupled 

problems are more appropriate for symmetric 

multiprocessor machines. Fig. 3 shows the architectural 

details of a typical multisystem. 

 
 

Fig. 3: Multisystem HPC Architecture 

 

III. COMPUTATIONAL CHALLENGES OF DEEP 

LEARNING 

The computational challenges inherent in deep learning 

are best highlighted by means of an illustrative example. 
Fig. 4 shows a multilayer feed-forward neural network. If, 

for example, there is a deep multilayer feed-forward 

neural network with 100 neurons in each of its 10 hidden 

layers for use as a classifier in lung cancer detection with 

the dataset comprising of 10,000 high-resolution low-dose 

CT scan images, then there are 1000 neurons, and 

1,00,000 parameters to be adjusted in every cycle, not 

counting the output layer neurons or the pre-processing 

required by the high-resolution images in the feature 
extraction phase. 

 

Fig. 4: Typical Multilayer Feed Forward Net [23] 

From the perspective of computation, training a large 

deep neural network, as explained in the example above, 

is not a trivial task, and training deep networks of such 
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size on typical desktops and workstations has been 
observed to take inordinate times for completion.  

Further on, the system resources are bogged down by 

the compute-intensive deep learning training programs, 

rendering the desktop or the workstation practically 

useless for other tasks during the period that these training 
programs are running.  

This simple observation indicates to us that for true 

deep learning for real-world applications, as against toy 

models used for technology demonstration purposes, new 

fast and efficient algorithms and/or customized software 
and hardware solutions are an essential requirement. 

Conventional algorithms, software, and hardware that is 

typically designed and developed for serial execution 

prove to be unsuitable for such computation-intensive 
real-world tasks.  

IV. LITERATURE REVIEW 

Many researchers are working on accelerating deep 

learning applications for achieving high computational 

efficiencies on different architectures and platforms. 
Some of the literature which is valuable in the context of 

deep learning and high-performance computing is briefly 
summarized in Table 1.  

 

TABLE I 

Review of Research on Deep Learning Acceleration 

 

Author Title Research 

“LeCun, 
Y., et. al. 

(2015)” 

“Deep Learning” Analysis of Methods 

and Applications 
Deep Multilayer 
NNs + CNN + RNN 

“Chen, 
X.W., et. 
al. 

(2014)” 

“Big Data Deep 
Learning: 

Challenges and 
Perspectives” 

Analysis of 
challenges in  using 

deep learning for 
big data 

“Najafaba
di, M.M., 
et. al. 

(2015)” 

“Deep learning 
applications and 

challenges in big 
data analytics.” 

Analysis of 
challenges in  using 

deep learning for 
big data 

“Sun, 

X.H., 
et.al. 

(2008)” 

“Scalable 

Computing in 
the Multicore 
Era” 

Analysis of speedup 

models on multicore 
architecture 

“Giles 

M.B., et. 
al. 

(2014)” 

“Trends in HPC 

for engineering 
calculations.” 

Analysis of key 

developments on the 
hardware side, 

recent past + near 
future 

“Angelov, 
P., et. al. 

(2016)” 

“Challenges in 
Deep Learning” 

Analysis of 

challenges in  deep 
learning 

“Dean, J., 
et. al. 

(2012)” 

“Large Scale 

Distributed Deep 
Networks” 

Development of two 

algorithms – 
Downpour SGD + 

Sandblaster for 
large-scale 
distributed training 

“J. 
Hauswald 
et. al. 

(2015)” 

“DjiNN and 
Tonic: DNN as a 

service and its 
implications for 

future 
warehouse-scale 
computers.” 

Open infrastructure 
for Deep neural 

networks as a 
service in 

Warehouse scale 
computers 

“Bouache
, M., et. 
al. 

(2016)” 

“Deep Learning 
GPU-Based 

Hardware 
Platform 

Hardware and 

Software Criteria 
and Selection” 

Hardware + 
Software Criteria 
and Selection 

“Le, 

Q.V., et. 
al. 

(2011)” 

“On 

Optimization 
Methods for 
Deep Learning” 

Limited memory 

BFGS + Conjugate 
gradient (CG) 

algorithms for pre-
training deep 
networks 

“Hegde, 
V., et. al. 

(2016)” 

“Parallel and 
Distributed Deep 
Learning” 

CNN + SGD + 
ADMM + 
Downpour SGD 

“Keuper, 
J., et. al. 

(2015)” 

“Asynchronous 

Parallel 
Stochastic 

Gradient 

Descent A 
Numeric Core 

for Scalable 
Distributed 

Machine 
Learning 
Algorithms” [32] 

SGD 

“Vanhouc
ke, V., et. 
al. 

(2011)”  

“Improving the 
Speed of Neural 

Networks on 
CPUs” [33] 

Code speedup on 
x86 CPUs 

“Gupta, 
S., et. al. 

(2015)” 

“Deep Learning 
with Limited 

Numerical 
Precision” [34] 

16-bit  wide   fixed-
point  number 
representation 

“Chetlur, 
S., et. al. 

(2014)” 

“cuDNN: 
Efficient 

Primitives for 
Deep Learning” 
[35] 

High Performance 
Library 

Development for 
GPU based deep 
learning 

“Delong, 
A., et al.” 

 

“Practical Guide 
to Matrix 

Calculus for 
Deep Learning” 
[36] 

Matrix calculus for 
deep learning 
algorithms 

“Baoyuan 
Liu, et. al. 

(2015)” 

“Sparse 
Convolutional 

Neural 
Networks”[37] 

Sparsely connected 
CNNs 
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“Ionescu, 
C., et. al. 

(2015)” 

“Matrix 
Backpropagation 

for Deep 
Networks with 

Structured 
Layers” [38] 

Matrix formulation 
of Backpropagation 
Algorithm 

“Zhang, 
Y., et. al. 

(2013)” 

“Optimized 

Deep Learning 
Architectures 

with Fast Matrix 
Operation 

Kernels on 
Parallel 
Platform” [39] 

Design of fast 

matrix operation 
kernels on parallel 

platforms for deep 
learning 

 

V. OPEN RESEARCH DIRECTIONS 

Contemporary large-scale deep learning models need a 
significant amount of computational power to reach 

acceptable performance levels on medium and large-size 

datasets, especially in real-time and online environments.  

However, the amount of data available is growing very 

rapidly in terms of volume, velocity, and variety. Thus, 

there is a requirement for a class of deep learning 

algorithms that can be trained efficiently on big data. HPC 

architectures and infrastructures coupled with specially 

designed parallel and distributed algorithms and codes 

capable of efficient deep learning computations and 

performance-optimized on such architectures and 

infrastructures are also a key requirement for handling this 
kind of data [26]. 

The models and data available for deep machine 
learning applications have grown significantly over the 

last few years. High-performance computing architectures 

in combination with the right deep learning codes are 

capable of accelerating the performance and enabling us 

to make sense of such large data sets through recognition 
of latent patterns and inherent knowledge. 

The focus of most of the current literature and public 

implementations of deep machine learning algorithms is 

generally on either cloud-based, i.e., warehouse-scale 

[27][28] or on small-scale GPU environments 

[29][30][31]. These implementations do not scale well in 

high-performance computing environments because of 

inefficient data movement and network communication 

within the multisystem computers, originating from 

significant imbalances in the level of parallelism. 
Furthermore, the application of deep machine learning to 

extreme-scale scientific data remains by and large 

unexplored. In order to leverage high-performance 

computing for deep machine learning applications, 

advancements are required in both algorithms and their 

scalable, parallel, and distributed versions. Also, work is 

disjointed; no structured performance and scalability 

studies at different levels of CPU parallelism appear to 

have been carried out, and not much benchmarking 
data/benchmarks are available. 

The computation-intensive nature of deep learning 

algorithms leads to the following two clear research 
directions: 

1. The design of fast and computationally efficient 

serial algorithms for training deep learning 
networks, and 

2. The design of parallel and scalable algorithms 

for training deep learning networks exploiting 

recent advances in high performance computing 
architecture and hardware 

Deep learning is being used for the solution to many 

hard problems. It is clear that the training of deep learning 

networks is a problem that is well-suited for HPC 

ecosystems. Using parallel and distributed algorithms on 
HPC hardware reduces the training time of deep learning 

networks. The scaling property of the parallel and 

distributed algorithms helps in the application of deep 

learning to the ever-increasing volume of the data sets and 
assists in the progress of deep learning.  

Parallel and scalable algorithms for deep learning 

enable many new applications and provide the capabilities 

for experimenting with bigger models, larger datasets, and 

more ideas within a given timeframe reducing the 

artificial intelligence research cycle and product 
development times. 

VI. KEY PHRASES IN PARALLEL DEEP 

LEARNING APPLICATION DEVELOPMENT 

Key phases towards the research and development of 
parallel and scalable deep learning algorithms for HPC 

architectures are mentioned in Table 2. The phases 

contain sub-tasks which are described in what follows. 

 

The HPC architectures considered in this paper, i.e., 

multicore processors and compute clusters, represent the 

proven and time-tested shared and distributed memory 

parallel programming paradigms, respectively.  

TABLE II 

The Key Phases 

 

Phase-A 
Understanding the specific deep 

neural network algorithm and the 

HPC environment 

Phase-B 
Analysis and design of high-

performance deep learning algorithm 
or computational primitive 

Phase-C 
Programming for multisystem 

implementation 

Phase-D 
Performance and scalability 

evaluation 

Phase-E 
Comparative evaluation of 

performance with other platforms 
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Phase-A: Understanding the Specific Deep Neural 

Network Algorithm and the HPC Environment 

This is the learning and understanding phase. In this 

phase, selection of the deep learning network algorithm, 

or the computational primitive thereof, which is to be 
taken up for parallelization, e.g., deep multilayer feed-

forward neural network, deep convolutional neural 

network, deep recurrent neural network, etc. is done. 

Literature is closely followed. This phase comprises the 
following two subtasks: 

Understanding the Algorithmic Implementation Details 

of Selected Deep Neural Network or Computational 

Primitive (Phase A1) 

Widely used deep learning networks, e.g., deep 

multilayer feed-forward neural network, deep 

convolutional neural network, deep recurrent neural 

network, etc., are studied with a focus on their 
mathematical, algorithmic, and algorithmic 

implementation details before selecting the 

computationally intensive deep learning algorithm or the 
computational primitive to be parallelized. 

 
Understanding the Building Blocks of HPC architecture, 

Programming and Performance Considerations (Phase 

A2) 

 

This phase involves a closer look at the HPC 

architecture, parallel programming models, constructs, 

programming languages, tools, libraries, and functions 
available for implementing the selected deep learning 

algorithm or computational primitive. Necessary 

programming and code optimization considerations also 

demand a closer look in this phase. 

 

 

Phase-B: Analysis and Design of Parallel Deep 

Learning Algorithm / Computational Primitive  

 

This phase comprises the following subtasks: 

 

Analysis of the Serial Algorithm (Phase B1) 

 

An in-depth analysis of the serial algorithm of the 

selected deep neural network or computational primitive 

needs to be carried out in this phase. 

 

Design of the HPC Algorithm (Phase B2 ) 

 

In this subtask, the selected deep neural network or 

computational primitive shall be partitioned into functions, 

procedures, and subroutines, with an eye on identifying 

significant parallel computation or distributed 
computation opportunities. 

 

Analysis of the HPC Algorithm (Phase B3 ) 

 

A preliminary analysis of the parallel or distributed 

HPC algorithm shall be done in this subtask.   

Phase-C: Programming for HPC Implementation 

 

This phase shall involve programming the selected 

deep neural network, e.g., deep multilayer feed-forward 

neural network, deep convolutional neural network, deep 
recurrent neural network, etc., or the selected 

computational primitive for the HPC architecture 

considered. Debugging and testing shall also be carried 

out alongside the development in this phase. 

 

Phase-D: Performance and Scalability Evaluation   

The following shall be performed using the selected 

large dataset(s). The dataset shall be from large-scale 

pattern recognition domains like imaging.  

 

Performance Evaluation of Serial Vs. HPC Program 

(Phase-D1) 
 

The HPC program for the deep neural network, e.g., 

deep multilayer feed-forward neural network, deep 

convolutional neural network, deep recurrent neural 

network, etc., has to be run by varying the numbers of 

nodes, and this data has to be compared with the 

equivalent serial implementation on the selected dataset. 

The main parameter to be noted for performance 

evaluation are the execution times of the corresponding 

programs. 

 
Scalability Assessment of the HPC Program (Phase-D2) 

 

In this subtask, the scalability of the system has to be 

analyzed as well as empirically evaluated by running the 

HPC program for the deep neural network, e.g., the deep 

multilayer feed-forward neural network, deep 

convolutional neural network, deep recurrent neural 
network, etc. by varying the numbers of nodes which 

participate in the computation. The clock times with 

different numbers of nodes shall be noted. If the graph 

between execution time and the number of nodes shows a 

linear decreasing trend with a good slope, the algorithm 

and its implementation are scalable. Otherwise, necessary 

improvisations to the algorithm and/or the source code 

will be necessitated to make the program scale better. 

 

Comparative Evaluation of Performance and Scalability 

with other Software (Phase-E) 
 

In this task, the performance and scalability of the 

multisystem program for the deep neural network, e.g., 

deep multilayer feed-forward neural network, deep 

convolutional neural network, deep recurrent neural 

network, etc., are compared with other software 

implementations, if comparable. 

VII. POSSIBLE OUTCOMES 

Following are the possible outcomes of a sincere effort 

in the design and development of parallel and distributed 

deep learning algorithms for HPC architectures 
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1. Optimized high-performance deep learning codes 

for HPC architectures. 

 

2. The HPC codes can be used to handle big data 

and test out larger models in deep learning, 
which may not be practicable on desktops, 

workstations, etc. 

 

3. The HPC codes can also be used in deep learning 

application development. 

 
4. Performance and scalability benchmarks shall 

become available for researchers and 

practitioners. 
 

5. Depending on the performance of the codes on 

the large dataset used for performance and 

scalability evaluation, new application spin-offs 

are possible. 

 

VIII. UNDERSTANDING DEEP NEURAL 

NETWORKS: CONVOLUTIONAL TYPE 

A CNN has primarily comprised of the following four 

layers: the convolutional layer(s), pooling or sub-

sampling layer(s), non-linear layers, and fully connected 
layer(s).  

 

Each feature of a layer in a CNN receives its inputs 

from a small neighborhood of features located in a local 

receptive field of the previous layer. Using local receptive 

fields, it is possible to extract fundamental visual features, 

such as edges, corners, etc. These fundamental features 

are combined in the higher layers. 

 

The convolutional layers of a CNN are the feature 

extractors. The weights of the convolutional filter kernels 

are tuned during the training process. The convolutional 
layers are able to extract local features because the 

receptive fields in the hidden layers of the CNN are 

restricted to small localized regions. 

 

CNNs have found applications in computer vision, 

image recognition, pattern recognition, speech signal 

recognition, natural language processing (NLP), and video 

analysis. In CNNs, the weights of the convolutional layer, 

which is used in the feature extraction stage, and the 

weights in the fully connected layers used for the 

classification task are adapted during the training process. 
The network structures of CNNs lead to optimal memory 

and computation complexity requirements. They also give 

superior performance in applications like image and 

speech recognition, where the input is locally correlated.  

 

Training and evaluation of CNNs require large 

computational resources. The large requirements of 

computational resources are sometimes met by graphical 

processing units (GPUs), Digital Signal Processors 

(DSPs), Field Programmable Gate Arrays (FPGAs), or 

other specialized silicon architectures which have been 

optimized for high throughput and lower power while 

they execute the characteristic patterns of CNN 

computation.  

CNNs have achieved the highest correct detection rates 

(CDRs) in image and pattern recognition applications - 
99.77% on the MNIST database of handwritten digits [40], 

97.47% on the NORB 3D objects dataset [41], and 97.6% 

on ~5600 images of more than 10 objects [42]. They have 

not only given better performance compared to other 

detection algorithms but have also surpassed humans in 

object classification tasks involving fine-grained 

categories such as the particular breed of dog or bird 

species [43]. 

 

Complex CNN architectures are built for difficult 

classification problems by stacking up the four layers, i.e., 

the convolution layers, pooling or sub-sampling layers, 
non-linear layers, and fully connected layers in different 

permutations and combinations. Fig. 5 shows a typical 

CNN architecture for the image classification problem. 

 

 
 

Fig. 5: CNN Architecture for Image Classification 

 

Convolution Layers: The convolution operation is the 

feature extractor that is used for the extraction of the 

different features of the input image. The initial 

convolutional layers are used for the extraction of the 
low-level image features, also called the fundamental 

image features, i.e., the edges, lines, corners, etc. The 

subsequent layers are used for the extraction of the 

higher-level features.  

 

Fig 6(a) explains the process of three-dimensional 

convolution, which is used in CNNs. The input is of size 

M x N x 3, which corresponds to an RGB image having 

the red, blue, and green channels, respectively. It is 

convolved with H filters, each of size k x k x 3 separately. 

Each filter is comprised of three separate k x k x 1 

convolutional kernels. The convolution operation of one 
input image with one convolutional filter produces one 

output feature. With H independent filters, H number of 

output features are produced.  

 

Beginning from the top-left corner of the input, each of 

the filters is shifted from left to right, one element at a 

time. When the top-right corner is reached, the filter is 

moved one element in the downward direction and back 

to the left corner in the horizontal direction. Once again, 

the filter is shifted from left to right, one element at a time. 

The process is continued until, eventually, the filter 
reaches the bottom-right corner. At each receptive field, 

pointwise multiplications between the image matrix value 
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and the corresponding convolutional filter kernel are 

performed and their sums computed. These sums replace 

the local receptive field in the output. 

 

 
Fig. 6(a): Three Dimensional Convolution Process 

 

Pooling Layers: The pooling / sub-sampling layer is 

used for dimension reduction of the feature space making 

the features robust to noise and distortion. Two common 

pooling operations are in use. They are the max-pooling 

and the average pooling operations, respectively. In max 

pooling, the selected region or window of the input image 

is replaced by its maximum value, while in the case of 

average pooling, the selected region or window of the 
input image is replaced by its average value. The window 

or region shifts from the top left corner of the input image 

to its bottom right corner in a manner similar to the 

movement of the convolutional filter and kernels. In both 

these operations, the input image is partitioned into non-

overlapping two-dimensional regions. Fig 6(b) 

demonstrates the max and average pooling operations in a 

CNN. 

 

 
Fig. 6(b): Max and Average Pooling Operations 

 

Nonlinear Layers: In order to signal the distinct 

identification of likely features which are present in the 

hidden layers, the CNNs make use of specific nonlinear 

functions. Commonly used functions include the rectified 
linear unit (ReLU), hyperbolic tangent, absolute 

hyperbolic tangent, and the sigmoid functions. Since this 

function operates on an element-by-element basis, the size 

of the input and the output are the same. 

 

The mathematical equations of these non-linear 
functions are as follows: 

 

Rectified Linear Unit (ReLU):  
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Fig. 6(c) shows the output when a ReLU function operates 

on a selected 4 x 4 region of an image. 

 

 
Fig. 6(c): ReLU operation on a selected image region 

 

 
Fully Connected Layers: Fully connected layers are 

typically used in the last layers of a CNN. The fully 

connected layers comprise multiple artificial neurons, also 

called perceptrons. The artificial neurons first compute the 

weighted sum of the previous layer of features, add a bias 

term and pass this output through a nonlinear function 

which is typically the sigmoid function. During the 

training phase, the weights are modified as per a training 

algorithm so that the error or cost, which is a measure of 

the difference between the expected and the actual outputs, 

is minimized. The backpropagation algorithm is the most 

commonly used training algorithm. 
 

Fig. 6(d) shows the “computational” architecture of an 

artificial neuron in the fully connected layer. 
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Fig. 6(d): Architecture of an Artificial Neuron 

 

Fig. 6(e) shows the adjustment of weights of the neurons 

of the fully connected layer during the training phase. The 

weights are adjusted so as to minimize the error. 

 
Fig. 6(e): Weight adjustment during the training phase  

 

IX. UNDERSTANDING THE HIGH-

PERFORMANCE COMPUTING ENVIRONMENT 

The building blocks of high-performance computing 

systems have already been discussed in section II. In this 

section, the computing environment for high-performance 

computing systems is discussed. 
 

The focus is primarily on the software side. Multicore 

and multisystem models are the two high-performance 

computing systems that have been considered in this work. 

In this context, Java is a programming language that has 

in-built features for the explicit programming of multicore 

as well as multi systems. Besides, Java has the advantage 

of being a modern “simple, general-purpose, object-

oriented, interpreted, robust, secure, architecture-neutral, 

portable, high-performance, and multithreaded” computer 

programming language with automatic memory 

management 
 

Java Multithreading: Multithreading refers to the 

simultaneous execution of several threads. A thread is 

defined as a lightweight process and is the smallest unit of 

processing.  

 

Threads use a shared memory model. There is no 

separate memory allocation which saves memory and the 

context switching between the threads is also faster 

compared to a process. Threads execute independently of 

each other. A multi-threaded program running on a single-
core chip needs to interleave the threads. However, in 

multicore high-performance computing architectures,  the 

threads can be distributed across the available cores 

enabling true parallel processing. Fig. 7 shows the events 

and states of Java threads.  

 

 
Fig 7: Events and States of Java Threads 

 

Java Remote Method Invocation: Distributed 

computing can be treated as partitioning an application 

into separate computing agents, which are then distributed 

and executed on a network of computers. However, all the 

computing agents work in unison to execute tasks 

cooperatively. Java provides a feature called remote 

method invocation (RMI), which enables programs to 

invoke Java objects on remote machines.  

 

Two programs, one for the server and the other for the 
client, are written in the case of an RMI application. A 

remote object is created in the server program, and a 

reference to that object is made available for the client 

program using the RMI registry. The client program 

makes requests for the remote server objects and invokes 

its methods. The components of the RMI architecture 

include the transport layer, the stub, the skeleton, and the 

remote reference layer (RRL).  

 

The transport layer enables a network connection 

between the client and the server programs. Its role is to 
manage the existing connections and also to set up new 

connections when required. A stub is a representation of 

the remote object at the client. It is the gateway to the 

client program. The client-side stub communicates with 

the server-side skeleton for passing requests to the remote 

object. The remote reference layer manages the references 

made by the client to the remote object.  

 

Client-side calls to the remote object are received by 

the stub, which passes this request to the RRL. On 

receiving the client-side requests, the RRL invokes a 

method called invoke of the remote object, which passes 
this request to the corresponding RRL on the server-side. 

The server-side RRL passes the request to the Skeleton, 

which invokes the corresponding object on the server. The 

result is passed back to the client. Fig. 8 illustrates the 

architecture of RMI. 
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Fig 8: The RMI Architecture 

 

If a client invokes a method on a remote object which 

requires parameters, then these parameters are first 

bundled into a message before sending them over the 

network. The parameters may be primitive type 

parameters or object type parameters. If the parameters 

are of primitive type, they are assembled, and a header is 
attached to the bundle. If the parameters are objects, then 

they are serialized. This procedure is called marshaling. 

On the server-side, the packed parameters are unbundled, 

and after this step, the method called by the client is 

invoked. This procedure is called unmarshalling. 

 

The RMI registry is a namespace containing the names 

of all the server objects. When the server creates an object 

and needs to register it, it makes use of the bind or rebinds 

methods. The objects are registered in the RMI registry 

using a unique name called bind name. 
 

For invoking a remote object on a server, the client 

needs a reference of the remote object, which it fetches 

from the registry using its bind name through the lookup 

method. 

X. MATERIALS AND METHODS 

This section contains the details of the materials and 

methods used in a computational experiment which 

demonstrates the performance gains made through 

parallelization of a deep learning primitive. The deep 

learning primitive chosen in this experiment is the image 

convolution operation in deep convolutional neural 
networks. The convolution operation takes place in the 

convolutional layers of the convolutional neural networks. 

The operation is repetitively performed on all the input 

images of a domain-specific image dataset. It is a very 

compute-intensive operation. The image convolution S 

between an image I and a kernel K is defined as follows  
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In this computational experiment, the image 

convolution operation is performed on a high definition 

1280 px by 720 px two-dimensional grayscale image 

using 128 kernels of size 11 x 11. A multicore program 

was written to perform this operation in parallel. The 

program can be run on one or more cores of a multicore 

processor machine. The program is written in the Java 

programming language version 8. The program was 

executed on a dual-socket AMD server with one AMD 
Opteron (tm) Processor 6136 family. The processor has 8 

CPU cores. The current speed of the processor is 2400 

MHz. The server has a total of 8GB of DDR3 random 

access memory, having a speed of 1333 MT/s. Fig. 9 

shows the test image, a 1280 pixel x 720-pixel grayscale 

image of a dog named Gugu on a hexagonal paver block 

background. 

 
Fig. 9: 1280 x 720-pixel test image of Gugu 

XI. RESULTS AND DISCUSSION 

Table III shows the results of the computational runs 

when the program has been executed using 1, 2, 4, and 8 

cores of the processor. Ten computational runs were 

performed for each of the core counts. The net execution 

time on each core has been calculated as the average of 

the ten computational runs.   

TABLE III 

Results of the Computational Runs 

 

 
CPU 

Cores 
1 2 4 8 

 Run01 84.497 48.447 26.302 14.401 

Run02  87.353 48.816 25.497 14.567 

Run03  86.299 48.956 26.349 14.276 

Run04  85.600 49.568 25.290 14.378 

Run05  83.734 48.799 25.286 13.843 

Run06 84.826 49.434 25.777 14.049 

Run07 85.173 48.974 24.479 14.178 

Run08 90.199 49.031 25.422 14.325 

Run09 86.308 48.666 25.086 14.461 

Run10 85.136 49.943 24.278 14.323 

Total Time (s) 859.125 490.664 253.766 142.801 

Avg Time (s) 85.9125 49.0664 25.3766 14.2801 
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The average computer time for one image for each core 

count can be seen to decrease from approximately 86 

seconds when utilizing a single processor core to 

approximately 14 seconds when utilizing all the 8 

processor cores. This is the time taken for performing 
convolutions using 128 convolution kernels of size 11 x 

11 on a grayscale high definition digital image of size 

1280 pixels x 720 pixels.  

 

This has been visualized in Fig. 10, which is a plot of 

the average compute time versus the number of cores on 

which the multicore program has been executed.    

 

 

Fig. 10: Average compute time per image versus the 

number of cores 

 

In parallel computing, the overall speedup is defined as 

the ratio of the old execution time and the new execution 

time. The overall speedup between uni-core performance 

and octa-core performance is calculated to be nearly 6 for 

this computational experiment. This means that the 

multicore program has completed the program execution 

and produced the output on 8 numbers of processor cores 
6 times faster than on a single processor core.  

 

Table IV shows the overall speedups obtained in the 

case of the multicore program considered. 

 

TABLE IV 

Overall speedups with core count 

 
Core 

Counts 

Overall speedups 

1 2 4 8 

1 1 1.751 3.385 6.016 

2 - 1 1.934 3.436 

4 - - 1 1.777 

8 - - - 1 

 

It can be seen from the above table that the overall 

speedup is 1.75 between uni-core performance and dual-
core performance. It is calculated to be 3.38 between 

unicore and quadcore performance and 6 between unicore 

and octa-core performance for this computational 

experiment.  

 

This data has been visualized in Fig. 11, which shows 

the overall speedups versus the number of cores.  

 

 

Fig. 11:  Plot showing the ideal and actual overall 

speedups versus the number of cores 

 

In the ideal scenario, that is, if the program was perfectly 

scalable, the overall speedup, which is an important 

performance metric, should have been in the ratio of the 

core counts. In the actual scenario, the overall speedup 

obtained is lower, and from the graph, the gap between 

the ideal and the actual speedups can be seen to widen 

with increasing core counts. However, it can be said that 

the program scales well on the processor considered.  

 
This computational experiment demonstrates that the 

compute-intensive primitives of deep learning are 

amenable to parallelization. Significant performance gains 

of nearly 600% have been obtained by developing a 

multicore parallel program for the convolution operation 

and executing the same by increasing the core counts. The 

program can be seen to scale well with increasing core 

counts on the server processor considered in the present 

work. 

XII. CONCLUSIONS 

In this paper, an attempt has been made to elucidate the 
state-of-the-art developments in the design of parallel and 

scalable deep learning algorithms for HPC architectures. 

Common deep learning algorithms have been highlighted. 

An overview of the HPC architectures, including 

multicore processors and multisystem, has been provided. 

The computational challenges inherent in deep learning 

necessitating the use of HPC have been brought out. A 

review of research literature in deep learning acceleration 

has been summarized in tabular form. Open research 

directions have been identified. Key steps in the design 

and development of parallel and distributed deep learning 

algorithms for HPC architectures have been discussed, 
followed by the possible outcomes. A detailed discussion 

on CNNs and HPC environment has been made. Finally. 

A multicore program for a compute-intensive deep 

learning primitive has been designed and developed, and 

its performance tested. 
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