
International Journal of Engineering Trends and Technology                                             Volume 69 Issue 5, 177-185, May 2021 
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I5P224                                                   © 2021 Seventh Sense Research Group® 

 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

An Improved Uniform Illustration Based 

Regression Testing By A Novel Heuristic Based 

Machine Learning Model 
 

U.Sivaji1, Dr.P.Srinivasa Rao2 

 

1Research Scholar, Department of Computer Science and System Engineering, Andhra University, Vishakhapatnam, 

Andhra Pradesh, India. 
2Professor, Department of Computer Science and System Engineering, Andhra University, Vishakhapatnam, Andhra 

Pradesh, India 
 

sivajiu17@gmail.com 

 
Abstract 

The regression testing process is defined as the testing 

progression, which is utilized for verifying the software or 

code changes without altering the original characteristics 

of the code. Nevertheless, the execution process is required 

high resources and time that reduced the accurate 

detection rate. In this research, a novel Optimized Levy 

C4.5 Mechanism (OLCM) approach is introduced for 

performing regression testing. Here, the selected test cases 

are ordered based on the weightage of test cases and it 
effectively detects the faults. Moreover, the fitness function 

of the proposed OLCM module is performed the regression 

testing and enhance the performance of the system. 

Moreover, the developed OLCM module is implemented 

using Network Simulator 2 that is attaining a high 

detection rate with lower execution time and resource 

utilization. Additionally, the obtained results are validated 

with prevailing regression testing methods for evaluating 

the efficiency of the proposed OLCM approach. 
 

Keywords: Regression testing, test suite, C4.5 algorithm, 

test case prioritization, levy flight optimization 

I. INTRODUCTION 
Regression testing method is utilized for identifying the 

changes in a code or software without modifying the 

complete working process of the original software [1]. 

Commonly, the software testing is demarcated as the 

partial or complete collection of implemented test cases 
that arerequired to re-execute to ensure the prevailing 

functionalities work fine [2]. For regression testing, the 

utilized code is initially debugged for identifying the bugs. 

Subsequently, the necessary modifications are developed 

for fixing [3]. The process of regression testing is 

performed on the appropriate test cases, which involves the 

affected and modified parts of the program or code [4]. 

Moreover, software maintenance involves error clear, 

enhancement, optimization, and removing the prevailing 

feature, which may affect the system performance so, the 

regression testing process is required [5]. In this, the test 
case selection is necessary that is categorized by returnable 

and obsolescent test cases [6]. Moreover, the collection of 

test cases is named as a test suite that can be grouped for 

the purpose of test execution processes [7]. Subsequently, 

the regression testing includes the testing prevailing 

software for authenticating that processing characteristics 

are can’t affect by the developed work [8]. Additionally, 

these testing are necessary for identifying the deficiencies 

primarily, which is performed based on several stages that 

are selecting, minimization, arrangement, execution of the 

test cases, and flaw mitigation [9]. 
Also, the regression testing progression is focused on the 

functional tests that involve quality assurance testing that is 

employed as the verification process [10]. The regression 

testing is not dependent on the encoding codes like C#, 
C++, and Java that can be verified in which the changes 

can affect the original features of the current program or 

codes [11]. Also, regression testing is referred to as the 

action of preservation level that is performedon the 

improved codes or software for determining the reliability 

of the programs [12]. The priority selection of the test 

cases is employed for detecting the faults in an earlier 

stage, which is assists in regression testing [13]. Here, 

theutilized test cases are required for evaluating the 

modifications and identify the faults in a particular time 

[14]. Moreover, TCP is utilized for scheduling the test 

cases for attaining the orders of test cases [22]. 
Subsequently, several approaches like Combinations of 

Code Coverage based Prioritization (CCCP), Honey Bee 

based Fuzzy rule (HBF), deep learning [15], and Kernel 

Fuzzy with c-means clustering (KFCM) are utilized in the 

regression testing process. However, these existing 

methods are affected by many limitations that are reduced 

the performance of the testing process. In this, the existing 

regression testing models are influenced by high execution 

time, duplicate faults detection, resource utilization, and 

lower faults detection, which are reduced the efficiency of 

the models. Therefore, a novel machine learning approach 
is developed in this paper to overcome the existing issues. 

The structure of this article is designed as Section 2 details 

the recent kinds of literature, and the system frame and 

issues arestated in Section 3. Moreover, section 4 detailed 

the introduced approach, then the results of the developed 

replica are explained in section 5 and the arguments are 

concluded in section.6. 

 

 

 

https://ijettjournal.org/archive/ijett-v69i5p224
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


U.Sivaji & Dr.P.Srinivasa Rao / IJETT, 69(5),177-185, 2021 

 

178 

II. RELATED WORKS 

Some of the current literatures based on regression 

testing are described as follows, 

The regression testing process has enhanced the fault 

detection rate by utilizing the test cases for execution. 

Moreover, the regression testing is depending on the 

progress of TCP for that the approach of code coverage is 

employed to monitor the prioritization. Here, Huang et al 

[16] developed the coverage model that is the combination 
of the concepts like combination coverage and code 

coverage. The introduced approach is named Combinations 

of Code Coverage based Prioritization (CCCP) that can 

identify the faults that increased the strength of the testing. 

The frequent changes in the software are permitted in the 

environments of Continuous Integration (CI) that creates 

software development. In this, the approaches based on test 

case prioritization (TCP) are utilized for determining the 

faults. Lima et al [17] demonstrated the approach based on 

TCP in the CI (TCPCI) environment. Thus, the developed 

TCPCI model diminished the testing issues, CI 
discriminations, features like test case instability, and 

parallel execution. 

Nayak et al [18] developed the Honey Bee optimization 

model based on the Fuzzy rule (HBF) for improving the 

detection rate of faults in TCP. This optimization model is 

employed to reduce the test cases with the use of test 

selection by the pre-existing test suite, which is performed 

based on forager bees and scout bees. Hence, this approach 

has enhanced the rate of fault detection using the function 

of bees.  

The regression testing of large projects is challengeable for 

identifying the test cases which is executed at the end of 
every release because that required more time and cost. So, 

Ali et al [19] developed the TCP method and integration 

model (TCPI) for enhancing the quality of releases using 

agile software. Here, the developed approach processed 

using two kinds of phases; primarily, the TCP process is 

performed using the clustering model, and secondly, select 

the test cases which have the ability of failure with higher 

frequency. Thus, it enhanced the fault detection percentage 

and reduced the amount of identifying duplicate faults. 

The TCP in regression testing is developed by Harikarthik 

et al [20] that primarily create the test cases, which are 
clustered using Kernel Fuzzy with c-means clustering 

(KFCM) approach. The test cases are categorized as 

relevant and irrelevant and here, the relevant cases are 

selected for providing TCP. For providing TCP, the KFCM 

approach utilized the model of an enhanced artificial neural 

network. Moreover, the process of weight optimization is 

done with the use of a whale algorithm. 
 

 

 

 

 

 

 

 

 

 

Table 1:Related works based on regression testing 

 

Author Method  Merits Demerits 

Huang et al 

[16] 

CCCP It can easily 

identify the 

faults. 

Processing time 

is high 

Lima et al 

[17] 

TCPCI Reduced the 

testing 
issues. 

The detection 

of duplication 
faults is large. 

Nayak et al 

[18] 

HBF Enhanced the 

fault 

detection 

rate. 

Large amount 

of data is not 

used. 

Ali et al [19] TCPI Reduced the 

detection of 

duplicate 

faults. 

Resource 

utilization is 

large. 

Harikarthik 

et al [20] 

KFCM It required 

less memory 

and time. 

Fault detection 

rate is low. 

The key functions of the introduced manner is given 

below, 

 Primarily, the test cases are collected from the test 
suite for processing the testing model. 

 Additionally, develop the Optimized Levy C4.5 

Mechanism (OLCM) for performing regression 

testing process. 

 Moreover, the developed OLCM model performs 

the functions like test case minimization, TCP, 

scheduling, and regression testing. 

 Here, the levy fitness function is introduced in the 

developed C4.5 Mechanism for attaining high-

efficiency outcomes in regression testing. 

 The simulation of this model is finished using the 
NS-2 tool and the proposed model effectively 

analyses the software performance. 

 Moreover, the performance metrics of the 

proposed OLCM model are calculated and 

evaluated using prevailing methods in terms of 

fault detection rate, precision, accuracy, and 

recall. 
 

III. SYSTEM MODEL ANDPROBLEM 

STATEMENT 
Normally, the regression testing models are utilized for 

enhancing the fault detection rate with the use of test case 

execution. This progression is a difficult task in the 

software improvement and maintenance manner. While 

modifying the program, the test cases are utilized to 

execute and the validation of attained results and the old 

outcome to reduce the unwanted modifications. If the 

validation of two outcomes is the same then that is not 

affecting the performance of the software. The system 

model for regression testing is represented in fig.1. 



U.Sivaji & Dr.P.Srinivasa Rao / IJETT, 69(5),177-185, 2021 

 

179 

Based on test case 

Selection

Based on test case 

minimization

Based on test case 

Prioritization 

Based on test case 

retest

Testing data

Selecting test cases

Execution process

high execution 

time

High resource 

utilization

Detect duplicate 

faults

Challenges 

Feature 

extraction

Regression 

testing

Fig.1System model for regression testing 

However, the large test suits are required more time and 

resources while executing the testing process. Moreover, 

test suite minimization is one of the difficulties while 

attaining extreme test coverage. To determine the 

frequency range of each test are the difficult tasks in 

regression testing. Thus, the developed machine learning 

approach enhances the performance with lower execution 

time, lower resource utilization, and high detection rate.  
 

IV. Proposed OLCM Methodology 

The process of regression testing is stated as the software 

testing progressions, which can be used to validate the 

system based on the modifications in a program. However, 

these testing techniques are utilized more time, and 
resources for executing regression testing used a large 

number of test cases. In this research, a novel Optimized 

Levy C4.5 Mechanism (OLCM) is introduced to overcome 

the above issues. Additionally, the proposed OLCM 

process is represented in fig.2.  

Test suite
Proposed Optimized Levy 

C4.5 mechanism (OLCM)

Test case prioritization 

Test case scheduling

Faults 

detection

Regression testing
Performance metrics

 

Fig.2. Process of OLCM methodology 

 

Primarily, the developed OLCM approach generated the 

test cases for performing the further process. 

Consequently, the processes of TCM and TCP are carried 

out by the developed OLCM model. Moreover, the TCP 

process in the testing is to schedule the test cases and 

detect the faults in an earlier stage. These test cases are 

utilized for evaluating the modifications in a program.  

Therefore, the developed approach is performing the 

regression testing process and detects the faults in the 

program. Also, it calculates the performance metrics that 

are validated with existing methods for identifying the 
efficacy of the proposed approach. 

 

A. Process of OLCM for regression testing 

The developed OLCM model is performed on the test case 
database for processing the regression testing, which has 

the ability to identify the performance of the software or 

code. The proposed OLCM model involves the processes 

like test case selection, TCP, and regression testing that is 

detailed below. 

 Test case selection 

Initially, the test suite is selected from a net source that 

involves the group of test cases with various categories of 

programs like C, C++, Java, and C#, which contains test 

data, steps, and conditions.The proposed Optimized Levy 

C4.5 Mechanism uniformly selects theC# test cases for 
processing. The developed OLCM model is selecting the 

testsuite that is mentioned as ST
and the selected test 

casesare mentioned in eqn.(1), 

),......,3,2,1(; niTT iS  (1)Where, iT
denotes the n 

number of test cases for C# program. Afterwards, the test 

case minimization process is carried out by the proposed 

model. 

 Test case minimization 

The levy flight optimization (LFO) [21] algorithm is 

utilized for identifying the best location that behavior is 

considered in this paper for recognizing the faults. Here, 

the faults are represented as 
),.......,2,1(; kiFi 

that are 

detected using the proposed OLCM and the faults 

detection rate are calculated. The rate of fault recognition 

is defined as the average quantity of faults per minutes by 
the test case that is calculated using eqn.(2), 

10*
_.

)( 









time

faultsofno
iFt

(2) 

Moreover, the impact of bugs are identified based on the 

severity (S) of test cases that is calculated using eqn.(3), 

10*
)(

)(
)( 










SMax

iS
iFI (3) 

Hence, the severity of the faults is identified and the 
impacts are calculated for performing the testing process.  

Here, the highest rates of bugs in the test cases are 

removed and the remaining test cases are processed. 

 

Algorithm 1: process of Optimized Levy C4.5 Mechanism 

Start 

{ 

Initialize the dataset ST  //test suitefor C# 

program 

int ),......,3,2,1(; niTT iS   //n number of test 

cases 



U.Sivaji & Dr.P.Srinivasa Rao / IJETT, 69(5),177-185, 2021 

 

180 

()trainTi   //dataset training 

Test case minimization()  

// Fault detection()  

 
iFfor   

 calculate )(iFt  //fault detection rate 

 Find severity )(iFI
 

 end for 

//Test case prioritization ()  

 Calculate weightage of the test cases 

 weightageiTw )(  

 
If

highiTW )(
then 1st priority 

 else 

 
If 

lowiTW )(
then it is last priority 

 end if 

// execution process 

Regression testing() 

Calculate the fitness function 

While  testingt max_  //t-regression testing 

 Run the test cases )( iTk using decision nodes 

  
jj Tkk   

 Update(t) 

 If  ji Tkk  do 

  
jj Tkk  ,  ii Tkk   

 end if 

Run the test cases )( jTk  

 
ji TkTk )(  

end while 

// calculate parameters 

output best solution 

} 

Stop 

  Process of Test case prioritization (TCP) 

The TCP process can be utilized for ordering the test cases 

that can provide the priority for test cases, which is 

diminished the cost, time, and resource utilization.  In this 

research, the utilized test cases are prioritized based on the 

weightage of the test cases on the basis of decision trees by 

OLCM. Here, the weightage of the test cases are calculated 

using eqn.(4), 

)()()( iFiFiT ItW 
(4)

 

Where,
 iFI denotes the impact of faults and 

)(iFt is the 

fault detection rate. Therefore, the utilized test cases are 

orderedusing the calculation of test cases weightage. Here, 

if the weightage is high then it is taken as 1st priority and 

each test caseisarranged in the descending order, which are 

performed the regression testing. 

 Regression testing  

Regression testing is identifying the modification in code 

that cannot change the original function of the software. In 

this process, the test suite is selected for processing that 

involves the group of test cases, which are utilized for test 
execution. After the TCP process, the test execution is 

carried out on the test cases that are mentioned by
)( iTk

. 

Here, the test execution is done with the use of OLCM 

decision trees. The decision trees of the OLCM has split 

the test cases and executed at lower time duration. 

Consequently, the identified faults are minimized and the 

attained test cases are mentioned as
)( jTk

.  The proposed 

model has effectively identified the bugs in the test cases 

while performing regression testing. Finally, the regression 

testing performed on the code for identifying any changes 

is occurred or not. The fitness function run the test case if 

the condition 
 

ji TkTk )(
 is satisfied then the function 

of the code is not changed. 

 

 Table.2 Detected faults and processing time of every 

test cases 

 

 
 

Test 

cases 

Number of 

fault 

detected 

Execution 

time 

T1 2 8 

T2 1 12 

T3 2 9 

T4 3 13 

T5 1 7 



U.Sivaji & Dr.P.Srinivasa Rao / IJETT, 69(5),177-185, 2021 

 

181 

Start

Stop

Calculate fault detection rate

Find severity of faults

Dataset training

Initialize the test suite dataset
// involves number of test 

cases

// fault detection process

Test case prioritization

weightageiTw )(

// calculate weightage 

of the test cases

highiTW )( lowiTW )(

()trainTi 

Scheduling the test cases

 testingtwhile max_

Test execution )( iTk

Update (t)

Test execution )( jTk

Calculate parameters

 ji TkTk )(

1
st
 

2
nd

 

Calculate the OLCM fitness function

// Update the function 

of code

Yes

No

 

Fig.3 block diagram of the proposed OLCM approach 

 

The procedure of the proposed OLCM approach is given in 

algorithm 1 and the block diagram representation is shown 

in fig.3. 

V. RESULTS AND DISCUSSION 

In this research, the introduced OLCM model has been 

implemented using network simulator 2 for performing the 
investigation of software performance of regression 

testing. The developed approach utilized the test suite for a 

testing process that involves number of test cases. Here, 

this model performs the TCP, faults detection, and 

regression testing in the test cases. Moreover, the 

performance parameters like accuracy, fault detection rate, 

execution time, recall, and precision are calculated. 

 

A. Case study 

The proposed model is utilized for performing the 

regression testing process that is solved in this section. In 

this approach, the test suite is considered for testing that 
involves the amount of test cases. Let the 5 numbers of test 

cases T1 to T5 and faults F1 to F5 for processing. Also, 

considered detected faults with execution time for the test 

cases are mentioned in table.2. 

Primarily, the test cases are diminished using OLCM 

function and the fault detection rate is calculated using 

eqn.(1). Also, some examples for FD rate calculation of 
the test cases are given in table.3. 

 

Table.3 FD rate for sample test cases 
 

 

 

 

 

 

 

 

 
 

 

 

Consequently, the fault impacts in the test cases are 

calculated based on the severity of fault using eqn.(2). 

Here, the maximum severity of fault is considered as 15 

and attained outcomes are mentioned in table.4. 

 

Table.4 calculation of bugs severity 

Test 

cases 
Severity of bugs 

T1     410*15/61 TFI  

T2   610*15/9)2( TFI  

T3   6.410*15/7)3( TFI  

T4   3.710*15/11)4( TFI

 T5   610*15/9)3( TFI

 
 

Subsequently, the TCP process is performed based on the 
weightage of the test cases. Moreover, the weightage of the 

test cases are calculated using eqn.(4) and attained values 

are mentioned in table.5, 

 

Table.5 calculation of test case weightage 
 

Test 

cases 
Weightage of test cases 

T1 5.645.2)1( TTW  

T2 83.6683.0)2( TTW  

T3 8.66.42.2)3( TTW  

T4 6.93.73.2)4( TTW

 
T5 4.764.1)5( TTW

 
 

Based on the highest value of weightage for the test cases 

are taken as the 1st priority and considered as the 

descending order for prioritization. Hence, the scheduled 

Test 

cases 
FD rate 

T1   5.210*8/2)1( TFt  

T2   83.010*12/1)2( TFt  

T3   2.210*9/2)3( TFt  

T4   3.210*13/3)4( TFt

 T5   4.110*7/1)5( TFt

 



U.Sivaji & Dr.P.Srinivasa Rao / IJETT, 69(5),177-185, 2021 

 

182 

test cases are T4, T5, T2, T3, and T1. Finally, the OLCM 

has effectively detect the bugs of the test cases when 

performs the regression testing.  
 

B. Performance metrics 

The proposed approach performs the regression testing 

process that calculated parameters like accuracy, fault 

detection rate; execution time, recall, and precision are 
validated by existing methods like HBF [18], CTFF [19], 

and KFCM [20]. 
 

a) Accuracy calculation 

The effectiveness of the developed OLCM model is 

identified using the calculation of accuracy. Accuracy of 

the proposed model is calculated using eqn.(5) that can 

determined the proposed model efficiency. 

ectiontotal

ectionexact
Accuracy

det

det


                                                   

(5) 

 Fig.4 Comparison of accuracy

 
The accuracy measurement of the developed OLCM 

method is compared with recent existing approaches like 

HBF, CTFF, and KFCM, which are detailed in table.6. 

 

Table.6 Evaluation of Accuracy 
 

Test 

cases 

Accuracy (%) 

HBF CTFF KFCM OLCM 

[proposed] 

10 
94 92 85 99.4 

20 
93.7 90.6 83 99 

30 
89.56 87.5 82.7 98.78 

40 
88.5 85.42 81.05 98.09 

50 
86.35 83.74 79 97 

Here, the prevailing methods are attained almost 94% 

accuracy only. The proposed method has achieved 99.4% 

high accuracy than other methods that is represented in 

fig.4. 
 

b) Execution time 

The time is required for completing entire process by the 

proposed approach is mentioned as execution time. Here, 

the time period is measured when the test cases are 

performed the regression testing process that is calculated 

using eqn.(6), 

timetotal

timeendingtimeStarting
Et

_

__ 
 (6) 

 Fig.5. Comparison of execution time

 
The existing methods are utilized more time duration for 

performing regression testing process that is reduced the 

efficiency of the model. The comparison of the execution 

time is detailed in table.7 and represented in fig.5. The 

proposed model utilized less time duration to perform the 

regression testing process than other approaches. 

 

Table.7 Evaluation of Execution time 
 

Test 

cases 

Execution time (ms) 

HBF CTFF KFCM OLCM 

[proposed] 

10 13 17 12 8 

20 15 18 14 9 

30 12 15 16 11 

40 18 23 21 15 

50 25 29 27 17 

 

 

c) Fault detection rate (FD) 

FD rate is calculated for identifying the maximum quantity 

of faults will be discovered while doing software testing by 

the OLCMapproach, which is calculated using eqn.(7). 



U.Sivaji & Dr.P.Srinivasa Rao / IJETT, 69(5),177-185, 2021 

 

183 

mmn

FTFTFT
FD mn

2

1..........
1 2211 







 
                                       

(7) 

Where, ii FT
denotes the test cases used for performance,

m represents the entireamount of bugs that is recognized 

in the code and n denotes the total quantity of test cases. 

 

Table.8 Evaluation of FD rate 

Test 

cases 

Fault detection rate (%) 

HBF CTFF KFCM OLCM 

[proposed] 

10 82.5 85 62 94 

20 78.3 83 61 93 

30 75.4 80 56 91.5 

40 79.6 76 57 89 

50 73.8 67 53 88.6 

 
The fault detection rate of the developed OLCM approach 

has validated with existing methods like HBF, CTFF, and 

KFCM, which is detailed in table.8. Here, the proposed 

OLCM approach has effectively detected the bugs in the 

program than other techniques that are illustrated in fig.6.  

 

 

Fig.6. Comparison of FD rate

 
The proposed model identified the maximum quantity of 

bugs while executing regression testing progression. The 

rate of FD of the OLCM approach is 94% that is an 

efficient outcome while comparing with prevailing 

techniques.  

 

 

 

d) Calculation of Precision  

Precision is measurement of finding the exact detection of 

faults with the use of OLCM approach, which is calculated 

by eqn.(8), 

ectionfalseectionexact

ectionexact
P

detdet

det




                                   

(8) 

Table.9 Evaluation of precision

 

Test 

cases 

Precision (%) 

HBF CTFF KFCM OLCM 

[proposed] 

10 87 90 75 98 

20 85.56 89.57 73.6 97.06 

30 81.08 87.8 71.45 95.78 

40 79.67 83.7 68.56 93.5 

50 76.8 81.9 65.8 91 

The precision value of the developed OLCM model is 

validated with the existing approaches like HBF, CTFF, 

and KFCM, which are detailed in table.9. The evaluation 

of the proposed OLCM method has achieved 98% high 

precision value while comparing with other approaches. 

 

 

Fig.7 Comparison of Precision

 
The existing KFCM method was achieved 75% precision 

value, the HBF model was achieved 87%, and the CTFF 

method was attained almost 90% precision value. Here, the 

OLCM manner has attained 98% that is represented in 

fig.7. 

 

e) Calculation of Recall  

Recall value is measured for finding the proficiency of the 

FD value with the use of OLCM approach for the quantity 

of test cases, which is computed using eqn.(9) 



U.Sivaji & Dr.P.Srinivasa Rao / IJETT, 69(5),177-185, 2021 

 

184 

outcomesected

ectionpositiveexact
R

det

det_


                                           

(9) 

Table.10 Evaluation of recall

  

 

 

 

 

 
 

 

 

 

 

 

 

 

The recall value of the developed OLCM model is 

validated with the existing approaches like HBF, CTFF, 

and KFCM, which are detailed in table.10. The evaluation 

of the recall is done using several quantities of test cases 
and the proposed method has reached a 98.5% recall value 

that is higher than other approaches. 

 Fig.8 Comparison of Recall

 
The existing KFCM method was achieved a 78% lower 
recall value, the HBF model was achieved 91%, and CTFF 

methods was attained almost 97% recall value. Here, the 

OLCM manner has attained 98.5% recall and the 

comparison is illustrated in fig.8. 
 

f) Calculation of memory utilization 

Resource utilization has been calculated to identify the 

effectiveness of the introduced method. In this work, 

OLCM used test cases with limited memory storage, which 

is referred to as the number of bytes described in Table 11. 

 

 

 

Table.11 Evaluation of Memory utilization

 

Test 

cases 

Memory utilization (bytes) 

HBF CTFF KFCM OLCM 

[proposed] 

10 5678 10239 11654 1000 

20 6700 11300 12354 2000 

30 8700 15445 13457 3000 

40 9400 17846 15245 4000 

50 10546 19456 16846 5000 

 

The amount of memory required for test events by OLCM 

is estimated with the techniques in practice. If the memory 

necessity is low, the method is more efficient, which is 

achieved by OLCM as illustrated in fig.9. 

 

 

Fig.9 Comparison of memory utilization

 The OLCM manner is validated with HBF, CTFF, and 

KFCM approaches that are utilized a high amount of 

memory. From fig.9, the proposed OLCM has been 

utilized a lower quantity of memory that is increased the 

efficiency and optimized the execution time.  

 

g) F-measure 

It is a trade-off between precision and recall that considers 

both precision value P and recall value R. Therefore, the 

value of F1-score can be evaluated by eqn. (10). 















RP

RP
measureF 2_

                                                 

(10) 

 

 

Test 

cases 

Recall (%) 

HBF CTFF KFCM OLCM 

[proposed] 

10 91 
97 

78 98.5 

20 89 
96 

74.8 97 

30 87.96 
94.57 

72.75 96.06 

40 85.07 
92 

69.47 94.78 

50 82.67 
89 

64.56 92.5 



U.Sivaji & Dr.P.Srinivasa Rao / IJETT, 69(5),177-185, 2021 

 

185 

Table.12 Evaluation of F-measure

  

 

 

 
 

 

 

 

 

 

 

 

 
 

The F-measure value of the developed OLCM model is 

validated with the existing approaches like HBF, CTFF, 

and KFCM, which are described in table.12. The 

estimation of the proposed method F-measure has attained 

98.24% that is efficient than the existing methods, which 

are described in fig.10.  

 

Fig.10 Comparison of F-measure 
 

The proposed OLCM model has attained high F-measure 

value than other existing approaches, which improved the 

efficiency for detecting faults while performing regression 

testing process. 

VI. CONCLUSION 
This work developed an innovative machine learning 

algorithm named as optimized levy C4.5 mechanism 

(OLCM) for performing regression testing process. 

Initially, the test cases are selected for C# program that is 

processed using OLCM. In this, the selected test cases 

have accomplished the procedures like test case 

minimization, TCP, test case scheduling, fault detection, 

and regression testing. Initially, the test cases are selected 

from the test suite that is minimized using the fitness 

function of the OLCM. Moreover, test cases are arranged 

based on the calculation of test cases. Thus, the proposed 

method has effectively performed the regression testing 
than other methods. Also, the OLCM method provided the 

highest fault detection rate among the prevailing 

approaches. Additionally, it achieved 99.4% high accuracy 

for performing the software testing process using OLCM. 

Moreover, this model is applicable for other programs like 

C, C++, Java, and so on. 
 

References 
[1] Bin Ali, Nauman, et al. On the search for industry-relevant 

regression testing research. Empirical Software Engineering 24.4 

(2019) 2020-2055. 

[2] Lübke, Daniel. Selecting and Prioritizing Regression Test Suites by 

Production Usage Risk in Time-Constrained 

Environments. International Conference on Software Quality. 

Springer, Cham, 2020. 

[3] Lu, Yun, and Xiuhong Chen. Joint feature weighting and adaptive 

graph-based matrix regression for image supervised feature 

Selection. Signal Processing: Image Communication (2020) 

116044. 

[4] Mahdieh, Mostafa, et al. Incorporating fault-proneness estimations 

into coverage-based test case prioritization methods. Information 

and Software Technology 121 (2020) 106269. 

[5] Nayak, Soumen, et al. An Improved Approach to Enhance the Test 

Case Prioritization Efficiency. Proceedings of ICETIT 2019. 

Springer, Cham, 2020. 1119-1128. 

[6] Rajput, Arpit, and Sheetal Joshi. Techniques of Test Case 

Prioritization. Decision Analytics Applications in Industry. 

Springer, Singapore, 2020. 443-453. 

[7] Khatri, Harsh, ShubhamTorvi, and JayakrishnaKandasamy. 

Prioritization of sustainability indicators using regression analysis: 

A case study. Materials Today: Proceedings 22 (2020): 2397-2403. 

[8] Al-Sabbagh, KhaledWalid, et al. Improving Data Quality for 

Regression Test Selection by Reducing Annotation Noise. 2020 

46th Euromicro Conference on Software Engineering and Advanced 

Applications (SEAA). IEEE, 2020. 

[9] Rhmann, Wasiur, et al. Software fault prediction based on change 

metrics using hybrid algorithms: An empirical study. Journal of 

King Saud University-Computer and Information Sciences 32.4 

(2020) 419-424. 

[10] Grano, Giovanni, et al. Scented since the beginning: On the 

diffuseness of test smells in automatically generated test 

code. Journal of Systems and Software 156 (2019) 312-327. 

[11] Durelli, Vinicius HS, et al. Machine learning applied to software 

testing: A systematic mapping study. IEEE Transactions on 

Reliability 68.3 (2019) 1189-1212. 

[12] Anwar, Zeeshan, et al. A hybrid-adaptive neuro-fuzzy inference 

system for multi-objective regression test suites 

optimization. Neural Computing and Applications 31.11 (2019) 

7287-7301. 

[13] Majd, Amirabbas, et al. SLDeep: Statement-level software defect 

prediction using deep-learning model on static code features. Expert 

Systems with Applications 147(2020): 113156. 

[14] Sharma, Pooja, and AmritLalSangal. Soft Computing Approaches to 

Investigate Software Fault Proneness in Agile Software 

Development Environment. Applications of Machine Learning. 

Springer, Singapore, 2020. 217-233. 

[15] Xiao, Lei, et al. LSTM-based deep learning for spatial–temporal 

software testing, DISTRIBUTED AND PARALLEL 

DATABASES (2020). 

[16] Huang, Rubing, et al. Regression test case prioritization by code 

combinations coverage,  Journal of Systems and Software 169 

(2020): 110712. 

[17] Lima, Jackson A. Prado, and Silvia R. Vergilio. Test Case 

Prioritization in Continuous Integration environments: A systematic 

mapping study, Information and Software Technology 121 (2020) 

106268. 

[18] Nayak, Soumen, et al. Regression test optimization and 

prioritization using Honey Bee optimization algorithm with fuzzy 

rule base, Soft Computing (2020) 1-18. 

[19] Ali, Sadia, et al. Enhanced regression testing technique for agile 

software development and continuous integration 

strategies., Software Quality Journal (2019) 1-27. 

[20] Harikarthik, S. K., V. Palanisamy, and P. Ramanathan. Optimal test 

suite selection in regression testing with test case prioritization 

using modified Ann and Whale optimization algorithm. Cluster 

Computing 22.5 (2019) 11425-11434. 

[21] Mokeddem, Diab. Parameter Extraction of Solar Photovoltaic 

Models Using Enhanced Levy Flight Based Grasshopper 

Optimization Algorithm, Journal of Electrical Engineering 

&Technology 16.1 (2021) 171-179. 

[22] Sivaji, U., and P. SrinivasaRao. Test case minimization for 

regression testing by analyzing software performance using the 

novel method, Materials Today: Proceedings (2021). 

 

Test 

cases 

F-measure (%) 

HBF CTFF KFCM OLCM 

[proposed] 

10 88.95 94.28 76.4 98.24 

20 86.76 93.35 75.67 97 

30 85.07 93 73.8 95.65 

40 83.6 92.67 69.2 94.13 

50 80.76 85.8 65.3 91.74 


