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Abstract — This paper proposes the hybridization of the 

three-point half-sweep linear rational finite difference 

(3HSLRFD) schemes with the half-sweep composite 

trapezoidal (HSCT) approach to derive the 3HSLRFD-

HSCT discretization schemes, in which these discretization 

schemes are used to derive the corresponding approximation 

equation for second-order linear Fredholm integro-

differential equation. Based on the approximation equation, 

the related linear system can be generated, in which its 

coefficient matrix is dense. Furthermore, the half-sweep 

Successive Over-Relaxation (HSSOR) technique is 

implemented to find the numerical solution of the linear 
system. To make a comparison, the full-sweep Gauss-Seidel 

(FSGS) and the full-sweep Successive Over-Relaxation 

(FSSOR) techniques are also presented as the control 

method. In numerical experiments, three parameters like the 

quantity of iterations, elapsed time and the maximum 

absolute errors have been recorded via three methods. 

Lastly, it can be pointed out that the HSSOR technique is 

more superior to the other two techniques, especially in 

terms of the quantity of iterations and elapsed time. 

Keywords — Second-order Integro-differential equations, 

Half-sweep SOR iterative method, Three-point half-sweep 
linear rational finite difference scheme, Half-sweep 

composite trapezoidal scheme. 

I. INTRODUCTION 

Integro-differential equations (IDEs) contribute a powerful 

tool in many branches of natural science and engineering. 

Many problems in fluid dynamics, finance, physics, 

astronomy, biology, and so on lead to these equations [1]-[3]. 

On the other hand, it is pretty troublesome to find the exact 

solution of the IDEs in plenty of practical problems. That is a 
reason why considerable works have been focusing on the 

development of efficient numerical methods for the 

approximate solutions of IDEs, for instance, Legendre-

spectral method [4], Bernstein polynomials method [5], 

spline collocation methods [6] and modified Adomian 

decomposition method [7]. In this paper, we fix attention on 

finding numerical solutions to second-order linear Fredholm 

integro-differential equation (SOLFIDE): 

𝑦′′(𝑡) = 𝛼(𝑡)𝑦′(𝑡) + 𝛽(𝑡)𝑦(𝑡) + 𝛾(𝑡) + ∫ 𝐾(𝑡, 𝑢)𝑦(𝑢)𝑑𝑢
𝑏

𝑎
,

  
  (1) 

𝑎 ≤ 𝑡 ≤ 𝑏, with two-point boundary conditions 𝑦(𝑎) = 𝑦𝑎, 

𝑦(𝑏) = 𝑦𝑏 ,  where the functions 𝛼(𝑡) , 𝛽(𝑡) , 𝛾(𝑡)  and the 

kernel 𝐾(𝑡, 𝑢) are known, 𝑎 and 𝑏 are constant, but the 𝑦(𝑡) 
is an unknown function that needs to be determined. 

Clearly, it can be observed that problem (1) contains the 

differential term and the integral term. The most classical 

method to discretize the differential terms is the finite 

difference (FD) method, which approximates the derivative 

of the interpolated function by the derivative of the 

polynomial interpolation function. Apart from the FD 

method, the linear rational finite difference (LRFD) [8], [9] 

has aroused much interest among researchers. Compared 

with the FD method, the LRFD method has better 

approximation and stability, mainly when calculating the 
one-sided derivative near the endpoint of the interval. 

Therefore, in recent years, many researchers apply the LRFD 

method to solve VIDEs [10], delay VIDEs [11], stiff ODEs 

[12]. These studies motivate us to implement the extended 

LRFD method to discretize the differential terms of the 

SOLFIDE (1). This paper constructs three-point half-sweep 

LRFD (3HSLRFD) schemes combined with a half-sweep 

composite trapezoidal (HSCT) approach to discretize the 

differential term and integral term of the SOLFIDE to 

generate a linear system. Here, this combination of the 

3HSLRFD scheme and the HSCT approach is referred to as 

the 3HSLRFD-HSCT discretization scheme. The half-sweep 
(HS) iteration concept will be explained in the next 

paragraph. 

In 1991, Abdullah [13] first proposed the HS iteration 

concept via the four-point EDG iterative technique for 

solving the Poisson equation of two-dimensional. Clearly, 

the author has shown that the main idea of HS iteration 

https://ijettjournal.org/archive/ijett-v69i6p221
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concept is to take only half of the quantity of entire points in 

the solution domain of the proposed problem. Consequently, 

the HS iteration concept has the potential to reduce 

computational complexity in the solution procedure, which 

naturally leads to fewer the quantity of iterations and faster 
elapsed time.  Due to its advantage of economic computation 

in implementing this concept, several applications of the HS 

iteration concept have been extensively carried out to 

investigate its performance of finding the numerical solution 

for fuzzy boundary value problem [14]-[17], robotic path 

planning [18], [19], and two-dimensional free space wave 

propagation problem [20,21].  By considering these 

advantages into account, further discussion of this paper 

concentrates on extending the implementation of the HS 

iteration concept with the Successive Over-Relaxation (SOR) 

technique, namely HSSOR, to obtain the numerical solution 

of the linear system, which is generated by applying the 
corresponded 3HSLRFD-HSCT approximation equation.  

The primary intention of the present paper is to seek out 

the numerical solution to problem (1). The solution process 

consists of two steps. The primary step is to construct the 

3HSLRFD-HSCT discretization scheme approximate 

equation of the problem (1) in section 2. The second step is 

to implement the HSSOR iterative method to find the 

numerical solution of the corresponding approximation 

equation for the problem (1) in section 3. Section 4 offers 

many numerical examples to validate the effectiveness of the 

proposed technique in this paper. Section 5 contains a brief 
conclusion as well as future work. 

II. DERIVATION OF APPROXIMATION EQUATION 

This section constructs and applies 3HSLRFD schemes 

and the HSCT approach to discretize the differential term 

and integral term of the problem (1) and get the 3HSLRFD-

HSCT discretization schemes to derive an approximation 

equation.  Before getting the formulation of the 3HSLRFD-

HSCT discretization scheme to derive the approximation 

equation, the following discussion attempts to explain these 

described schemes.  

Now, we introduce the concept of HS iteration. For the 

solution domain [𝑎, 𝑏] of problem (1), it is divided to into 𝑁 

subintervals of equal step length ℎ =
𝑏−𝑎

𝑁
， 𝑡𝑖 = 𝑢𝑖 = 𝑎 +

𝑖ℎ,  𝑖 = 0,1,⋯ , 𝑁. In our paper, the value of 𝑁 is given by 

𝑁 = 2𝑝, 𝑝 ≥ 1 . Based on the full-sweep (FS) iteration 

concept, the general solution process takes out all the 

partition points. Whereas the HS iteration method is that we 

only take out the even partition points. The distribution of 

grid points is shown in Fig. 1 a) and b) are FS iteration 

method and HS iteration method, respectively. Referring to 

Fig. 1, the FS and HS iteration concepts will only calculate 

approximate values onto node points (type ●) until the 

convergence condition is met. After that, the direct method 
[13] can then be used to calculate other approximate 

solutions at the other points (type ○). Compared with ℎ for 

each grid size of the FS iteration, each grid size of the HS 

iteration is 2ℎ, so it is logical that the latter is much faster 

and more computationally economical than the former.  
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Fig. 1 Distribution of the uniform mesh size for full-sweep 

and half-sweep cases. 

Taking into account the distribution of uniformly node 

points in the HS case, we begin to combine the HS iteration 

method alone with LFRD and CT schemes, respectively, to 
construct both new schemes, namely HSLRFD and HSCT. 

Further, we attempt to hybridize 3HSLRFD and HSCT 

discretization schemes to develop a fast and reliable 

algorithm, finding the numerical solution of problem (1). To 

do this matter, we need to discuss how to obtain the 

3HSLRFD-HSCT approximation equation via both newly 

established schemes. 

A. The Three-Point Half-Sweep Linear Rational Finite 

Difference Schemes 

In this subsection, we try to establish the 3HSLRFD 

schemes which mainly applied to discretize the 𝑦′(𝑡)  and 

𝑦′′(𝑡) of problem (1). Firstly, we review the LRFD method, 
as mentioned in introduction, LRFD method is derived from 

LBRI.  

Let 𝑡0, 𝑡1,⋯ , 𝑡𝑚  be 𝑚+ 1  genuine abscissas and 

corresponding values 𝑦(𝑡0), 𝑦(𝑡1), ⋯𝑦(𝑡𝑚) . The LBRI to 

these data will be expressed as follows: 

 𝑌𝐹𝑚(𝑡) = ∑ (
(
𝜉𝐹𝑗
𝑡−𝑡𝑗

)𝑦(𝑡𝑗)

(∑
𝜉𝐹𝑗
𝑡−𝑡𝑗

𝑚
𝑗=0 )

)𝑚
𝑗=0    (2) 

where the weights 𝜉𝐹𝑗 , 𝑗 = 0,1,⋯𝑚. (0 ≤ 𝑑 ≤ 𝑚)  were 

proposed by Floater and Hormann [22] in 2007. For nodes of 
equal step size, the weights formulas are 

 𝜉𝐹𝑗 =
(−1)𝑗−𝑑

2𝑑
∑ (

𝑑
𝑗 − 𝑠

) , 𝑠∈𝐽𝐹𝑗
 (3) 

where 

𝐽𝐹𝑗 = {𝑠 ∈ {0,1,⋯ ,𝑚 − 𝑑}: 𝑗 − 𝑑 ≤ 𝑠 ≤ 𝑗}. 

In 2011, Berrut et al. [8] introduced the derivative of LBRI, 

the formulation of LRFD to approximate the 𝑦′(𝑡) and 𝑦′′(𝑡) 
on 𝑡0, 𝑡1,⋯ , 𝑡𝑚 is written as 

 𝑦′(𝑡𝑖) ≈ 𝑌𝐹𝑚
′ (𝑡𝑖) =

1

ℎ
∑ Δ𝐹𝑖,𝑗

(1)
𝑦(𝑡𝑗)

𝑚
𝑗=0 , (4) 

and 

 𝑦′′(𝑡𝑖) ≈ 𝑌𝐹𝑚
′′ (𝑡𝑖) =

2

ℎ2
∑ Δ𝐹𝑖,𝑗

(2)
𝑦(𝑡𝑗)

𝑚
𝑗=0 , (5) 

where 
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 Δ𝐹𝑖,𝑗
(1)

=

{
 

 
𝜉𝐹𝑗

(𝑖−𝑗)𝜉𝐹𝑖
, 𝑗 ≠ 𝑖,

−∑ Δ𝐹𝑖,𝑞
(1)
,𝑚

𝑞=0
𝑞≠𝑖

𝑗 = 𝑖.
 (6) 

and 

 Δ𝐹𝑖,𝑗
(2)

=

{
 
 

 
 Δ𝐹𝑖,𝑖

(1)
𝜉𝐹𝑗

(𝑖−𝑗)𝜉𝐹𝑖
−

Δ𝐹𝑖,𝑗
(1)

𝑖−𝑗
,        𝑗 ≠ 𝑖,

−∑ Δ𝐹𝑖,𝑞
(2) ,𝑚

𝑞=0
𝑞≠𝑖

           𝑗 = 𝑖.
 (7) 

Based on the idea of the HS iteration concept introduced 

and the Equations (2)-(3) in this section. The HSLBRI on 

𝑡0, 𝑡2,⋯ , 𝑡𝑚 (𝑚 here and below is even) will be constructed 

as 

 𝑌𝐻𝑚(𝑡) = ∑ (
(
𝜉𝐻𝑗
𝑡−𝑡𝑗

)𝑦(𝑡𝑗)

(∑
𝜉𝐻𝑗
𝑡−𝑡𝑗

𝑚
𝑗=0,2 )

)𝑚
𝑗=0,2 , (8) 

where 

 𝜉𝐻𝑗 =
(−1)

𝑗
2
−𝑑

2𝑑
∑ (

𝑑
𝑗

2
− 𝑠

) , 𝑠∈𝐽𝐻𝑗
 (9) 

which 

𝐽𝐻𝑗:= {𝑠 ∈ {0,1,2,⋯ ,
𝑚

2
− 𝑑} :

𝑗

2
− 𝑑 ≤ 𝑠 ≤

𝑗

2
}. 

Similarly, based on the HS iteration concept and Equation 

(4)-(7), the the schemes of HSLRFD to approximate the  

𝑦′(𝑡) and 𝑦′′(𝑡) on 𝑡0, 𝑡2,⋯ , 𝑡𝑚 is written as 

 𝑦′(𝑡𝑖) ≈ 𝑌𝐻𝑚
′ (𝑡𝑖) = ∑

1

ℎ
Δ𝐻𝑖,𝑗
(1) (𝑡𝑗)

𝑚
𝑗=0,2 , (10) 

and 

 𝑦′′(𝑡𝑖) ≈ 𝑌𝐻𝑚
′′ (𝑡𝑖) = ∑

2

ℎ2
Δ𝐻𝑖,𝑗
(2) (𝑡𝑗)

𝑚
𝑗=0,2 , (11) 

where 

 Δ𝐻𝑖,𝑗
(1)

= {

𝜉𝐻𝑗

(𝑖−𝑗)𝜉𝐻𝑖
,           𝑗 ≠ 𝑖,

−∑ Δ𝐻𝑖,𝑞 ,
𝑚
𝑞=0,2
𝑞≠𝑖

𝑗 = 𝑖,
 (12) 

and 

 Δ𝐻𝑖,𝑗
(2)

=

{
 
 

 
 Δ𝐻𝑖,𝑖

(1)
𝜉𝐻𝑗

(𝑖−𝑗)𝜉𝐻𝑖
−

Δ𝐻𝑖,𝑗
(1)

𝑖−𝑗
, 𝑗 ≠ 𝑖,

−∑ Δ𝐻𝑖,𝑗
(2)
,𝑚

𝑞=0,2
𝑞≠𝑖

𝑗 = 𝑖.
 (13) 

Compared with HSLBRI Equation (8) and HSLRFD 

Equations (10)-(11) schemes constructed in this paper, the 
previous LBRI Equation (2) and LRFD Equation (4)-(5) 

schemes are also called FSLBRI and FSLRFD, respectively. 

As taking 𝑚 = 2 for Equation (2), so we need to consider 

three-nodes to construct the derivation of 3HSLRFD 

formula. 

By observing Equation (8), we can see its interpolation 

function about (
𝑚

2
+ 1)  nodes. Now let us consider the 

interpolation function at the these nodes of 𝑡𝑖−2, 𝑡𝑖 , 𝑡𝑖+2, 𝑖 =
2,4,⋯ ,𝑁 − 2 . Meanwhile, combining with Equation (9)-

(13), we can quickly derive the 3HSLRFD schemes, whose 

expression are 

 𝑦′(𝑡𝑖) = 𝑌′(𝑡𝑖) + τ
(1)(𝑡𝑖)，   𝑖 = 2,4,⋯ ,𝑁, (14) 

and 

 𝑦′′(𝑡𝑖) = 𝑌
′′(𝑡𝑖) + τ

(2)(𝑡𝑖)，    𝑖 = 2,4,⋯ ,𝑁, (15) 

where τ(1)(𝑡𝑖) and τ(2)(𝑡𝑖) are truncation errors. 

 𝑌′(𝑡𝑖) =
1

ℎ
∑ Δ𝑖,𝑗

(1)𝑦(𝑡𝑗),
𝑖+2
𝑗=𝑖−2  (16) 

and 

 𝑌′′(𝑡𝑖) =
2

ℎ2
∑ Δ𝑖,𝑗

(2)
𝑦(𝑡𝑗),

𝑖+2
𝑗=𝑖−2  (17) 

where 

 Δ𝑖,𝑗
(1) = {

𝜉𝑖,𝑗

(𝑖−𝑗)𝜉𝑖,𝑖
,                     𝑗 ≠ 𝑖,

−(Δ𝑖,𝑖−2
(1)

+ Δ𝑖,𝑖+2
(1) ),    𝑗 = 𝑖.

 (18) 

and 

 Δ𝑖,𝑗
(2) = {

(
Δ𝑖,𝑖
(1)
𝜉𝑖,𝑗

(𝑖−𝑗)𝜉𝑖,𝑖
−

Δ𝑖,𝑗
(1)

(𝑖−𝑗)
) , 𝑗 ≠ 𝑖,

−(Δ𝑖,𝑖−2
(2) + Δ𝑖,𝑖+2

(2) ) ,        𝑗 = 𝑖.

 (19) 

In this study, we apply the 3HSLRFD schemes in 

Equations (14)-(19) to discretize 𝑦′(𝑡) and 𝑦′′(𝑡) of problem 

(1) in order to derive the three-point linear rational finite 

difference-quadrature approximation equation of Equation 

(1). we concentrated primarily on the 3HSLRFD at 𝑑 = 1, 

and the values of 𝜉𝑖,𝑗 , 𝐷𝑖,𝑗
(1)

 and 𝐷𝑖,𝑗
(2)

 (i = 2,4,⋯ , N − 2) are 

shown in Tables 1 and 2. Then the order of error accuracy 

can be acquired by Berrut et al. [8] as |τ(1)(𝑡𝑖)| = 𝑂(ℎ), 

|τ(2)(𝑡𝑖)| = 𝐶  where 𝐶 is a constant. 

TABLE 1. The values of 𝝃𝒊,𝒋. 

 
𝝃𝒊,𝒊−𝟏 𝝃𝒊,𝒊 𝝃𝒊,𝒊+𝟏 

−1/2 1 −1/2 
 

TABLE 2. The values of 𝚫𝒊,𝒋
(𝟏)

 and 𝚫𝒊,𝒋
(𝟐)

. 

𝚫𝒊,𝒊−𝟐
(𝟏)

 𝚫𝒊,𝒊
(𝟏)

 𝚫𝒊,𝒊+𝟐
(𝟏)

 𝚫𝒊,𝒊−𝟐
(𝟐)

 𝚫𝒊,𝒊
(𝟐)

 𝚫𝒊,𝒊+𝟐
(𝟐)

 

−1/4 0 1/4 1/8 −1/4 1/8 

B. The Half-Sweep Composite Trapezoidal Scheme 

In this subsection, we attempt to present the HSCT 

scheme from family of quadrature methods which is applied 

to discretize the integral term of problem (1) to construct an 

approximation equation coincide with differential term in 

section 2.1. In general, the quadrature scheme can be 
expressed as 

 ∫ 𝑦(𝑢)𝑑𝑢
𝑏

𝑎
= ∑ 𝐶𝐹𝑗𝑦(𝑢𝑗)

𝑁
𝑗=0 + �̃�𝑁(𝑦), (20) 

where 𝐶𝐹𝑗  denotes the independent numerical coefficients 
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and �̃�𝑁(𝑦)  denotes the truncation error. we consider the 

composite trapezoidal (CT) scheme to construct the 

quadrature scheme to derive an approximation equation of 

Equation (1). As a result, the 𝐶𝐹𝑗 based on the CT scheme is 

as follows 

 𝐶𝐹𝑗 = {
1

2
ℎ,         𝑗 = 0, 𝑁,

ℎ,          𝑗 = 1,2,⋯ , 𝑁 − 1.
 (21) 

In our paper, we also call Equation (20) as a full-sweep 

composite trapezoidal (FSCT) scheme. In contrast with the 

FSCT scheme of Equation (21), The HSCT approach is 

obtained by combining the HS iteration method with the CT 

method as follows [23]-[26] 

 ∫ 𝑦(𝑢)𝑑𝑢
𝑏

𝑎
= ∑ 𝐶𝑗𝑦(𝑢𝑗)

𝑁
𝑗=0,2 + 𝛿𝑁(𝑦), (22) 

where 

 𝐶𝑗 = {
ℎ,            𝑗 = 0,𝑁,
2ℎ,          𝑗 = 2,4,⋯ ,𝑁 − 2.

 (23) 

By substituting Equations (14), (15) and (22) into 

Equation (1), the general form of the 3HSLRFD-HSCT 

approximate equation can be constructed as 

 
2

ℎ2
∑ Δ𝑖,𝑗

(2)𝑖+2
𝑗=𝑖−2 𝑦𝑗 =

1

ℎ
𝛼𝑖 ∑ Δ𝑖,𝑗

(1)𝑦𝑗
𝑖+2
𝑗=𝑖−2 + 𝛽𝑖𝑦𝑖 + 𝛾𝑖 +

   ∑ 𝐶𝑗𝐾𝑖,𝑗𝑦(𝑢𝑗)
𝑁
𝑗=0,2 ,         (𝑖 = 2,4,⋯ ,𝑁 − 2. ) (24) 

where 𝛼𝑖 = 𝛼(𝑡𝑖), 𝛽𝑖 = 𝛽(𝑡𝑖), 𝛾𝑖 = 𝛾(𝑡𝑖), 𝐾𝑖,𝑗 = 𝐾(𝑡𝑖 , 𝑡𝑗) and 

𝑦𝑖 = 𝑦(𝑡𝑖).  
The related linear systems can be easily shown as a result 

of the approximation equation (24). 

 𝑀𝑦 = 𝐹, (25) 

where 𝑀 = �̃�𝑇�̃�, F=�̃�𝑇�̃�,  

𝑦𝑇 = [𝑦2, 𝑦4,⋯ , 𝑦𝑁−4, 𝑦𝑁−2], 

�̃�𝑗 = [�̃�2, �̃�4,⋯ , �̃�𝑁−4, �̃�𝑁−2]
𝑇

=

[
 
 
 
 
 
 𝛾2 + ℎ𝐾2,0𝑦0 + ℎ𝐾2,0𝑦𝑁 −

1

4ℎ
𝛼2𝑦0 −

1

4ℎ2
𝑦0

𝛾4 + ℎ𝐾4,0𝑦0 + ℎ𝐾4,0𝑦𝑁
⋮

𝛾𝑁−4 + ℎ𝐾𝑁−4,0𝑦0 + ℎ𝐾𝑁−4,0𝑦𝑁

𝛾𝑁−2 + ℎ𝐾𝑁−2,0𝑦0 + ℎ𝐾𝑁−2,0𝑦𝑁 +
1

4ℎ
𝛼𝑁−2𝑦𝑁 −

1

4ℎ2
𝑦𝑁]
 
 
 
 
 
 

. 

So far, the first step of the solution process has been 
completed, and we have obtained the 3HSLRFD-HSCT 

discretization schemes for the derivation of approximation 

equation (24) and use it to generate the corresponding linear 

system (25). Due to the HSCT discretization scheme for the 

integral term, it can be observed that the main characteristic 

of the coefficient matrix 𝑀 of the linear system (25) is dense 

matrix. 

 

 

III. DERIVATION OF THE HALF-SWEEP 

SUCCESSIVE OVER-RELAXATION TECHNIQUE 

In this part, we turn our attention to the second step, which 

is to find the numerical solution to the linear system (25). 

There are two approaches for solving the linear system: 

direct and iterative. The former is suitable for solving the 

exact solution of a linear system with a low-scale coefficient 

matrix. Nonetheless, it is known from Section 2 that the 

coefficient matrix of the linear system (25) is a large-scale 

and dense matrix. Therefore, the iterative techniques are 

widely regarded as an appropriate method for such a linear 
system. At the same time, we already know that the HS 

iteration method can reduce the iteration complexity and thus 

accelerate the convergence rate. As a result, we combine the 

HS iteration method with the SOR iterative technique to 

produce the HSSOR technique, which we then implement to 

acquire the numerical solution of the linear system (25). 

To start the discussion of constructing the formula of the 

HSSOR technique, let us decompose the coefficient matrix, 

𝑀 as the summation of three matrices which is expressed as 

follows 

 𝑀 = 𝐷 − 𝐿 −𝑈, (26) 

where 𝐷, 𝐿 and 𝑈  are matrices that are the diagonal, the 

strictly lower triangular, and the strictly upper triangular. 

Therefore, the formulation for the HSSOR technique can be 

demonstrated [18], [20], [27], [28] 

 (𝐷 − 𝜔𝐿)𝑦(𝑘+1) = ((1 − 𝜔)𝐷 +𝜔𝑈)𝑦(𝑘) +𝜔𝐹, (27) 

where 𝜔 is relaxation factor, 𝑘  is the number of iterations 

and 𝑦(𝑘) = [𝑦2
(𝑘)
, 𝑦4

(𝑘)
,⋯ , 𝑦𝑁−2

(𝑘)
 ]
𝑇

. As taking 𝜔 = 1 , 

Equation (27) can be reduced as the HSGS iterative method.  

According to Equation (27), we can get 

𝑦𝑖
(𝑘+1) = 𝑦𝑖

(𝑘) +
𝜔(𝐹𝑖 −∑ 𝑀𝑖,𝑗𝑦𝑗

(𝑘+1) −𝑖−2
𝑗=2 ∑ 𝑀𝑖,𝑗𝑦𝑗

(𝑘)𝑁−2
𝑗=𝑖 )

𝑀𝑖,𝑖

, 

  (𝑖 = 2,4,⋯ , 𝑁 − 2. ) 

The HSSOR technique is used to get the numerical answer 

of the linear system (25). The process of  iteration is repeated 
until the solution falls within a predefined acceptable error 

bound. By calculating the values of the matrices 𝐷, 𝐿 and U 

as shown in Equation (26). Algorithm 1 describes the general 

algorithm for the HSSOR technique for solving the linear 

system (25) with an approximate solution to the vector  𝑦(𝑘). 
In this case, we use the MATLAB software to run Algorithm 

1. 

Algorithm 1 HSSOR technique 

(a) All of the paramaters are initialised. Set 𝑘 = 0 , and 

𝑦𝑖
(0)
= 0, 𝑖 = 2,4,⋯ , 𝑁 − 2. 

(b) For 𝑘 = 1,2,3,⋯, perform 

(i). Evaluate 

𝑦𝑖
(𝑘+1)

= 𝑦𝑖
(𝑘)
+
𝜔(𝐹𝑖 −∑ 𝑀𝑖,𝑗𝑦𝑗

(𝑘+1)
−𝑖−2

𝑗=2 ∑ 𝑀𝑖,𝑗𝑦𝑗
(𝑘)𝑁−2

𝑗=𝑖 )

𝑀𝑖,𝑖

, 

(𝑖 = 2,4,⋯ , 𝑁 − 2.) 
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(ii). A convergence test is performed. If the error 

‖𝑦(𝑘+1) − 𝑦(𝑘)‖ ≤ 𝜎 = 10−10  is satisfied, proceed to 

step (c). Otherwise continue to repeat (b).       

(c) Display the numerical solution. 

(d) Stop. 

Based on Algorithm 1, we can calculate that each iteration 

of the HSSOR method requires (
1

4
𝑁2 +

1

2
𝑁) 

additions/subtractions and (
1

4
𝑁2 + 𝑁) 

multiplications/divisions. However, for FSSOR iterative 

method 𝑖 = 1,2,⋯𝑁 − 1 , which requires (𝑁2 +𝑁) 
additions/subtractions and (𝑁2 + 2𝑁) 
multiplications/divisions, as shown in Table 3. Compared 
with the FSSOR method, the HSSOR method significantly 

reduces its computational complexity. 

 

TABLE 3. Arithmetic operations per iteration for 

FSSOR and HSSOR in solving SOLFIDE. 

 +/− ×/÷ 

FSSOR 𝑁2 + 𝑁 𝑁2 + 2𝑁 

HSSOR 
1

4
𝑁2 +

1

2
𝑁 

1

4
𝑁2 +𝑁 

IV. NUMERICAL EXPERIMENTS AND RESULTS 

ANALYSIS 

In this part, we carry out the numerical experiments over 

three examples to manifest the efficiency of the HSSOR 

methods, which derived by considering the 3HSLRFD-

HSCT approximation equation for solving problem (1). 

Example 1 [29] Consider the SOLFIDE  

 𝑦′′(𝑡) = 32𝑡 + ∫ (1 − 𝑡𝑢)𝑦(𝑢)𝑑𝑢
1

−1
, (28) 

−1 ≤ 𝑡 ≤ 1,  with two-point boundary values 𝑦(−1) =

−
5

2
, 𝑦(1) =

15

2
, and the true solution of Equation (28) is 

𝑦(𝑡) = 5𝑡3 +
3

2
𝑡2 + 1. 

Example 2 [30] Consider the SOLFIDE 

 𝑦′′(𝑡) = 2 −
16

15
𝑡 −

16

15
𝑡2 + ∫ (𝑡𝑢2 − 𝑡2𝑢2)𝑦(𝑢)𝑑𝑢

1

−1
, (29) 

−1 ≤ 𝑡 ≤ 1,  with two-point boundary values 𝑦(−1) =
1, 𝑦(1) = 3, and the true solution of Equation (29) is 𝑦(𝑡) =
𝑡2 + 𝑡 + 1. 

Example 3 [30] Consider the SOLFIDE 

 𝑦′′(𝑡) = 𝑒𝑡 − 𝑡 + ∫ 𝑡𝑢𝑦(𝑢)𝑑𝑢
1

0
, (30)                                                   

−1 ≤ 𝑡 ≤ 1,  with two-point boundary values 𝑦(0) =
1, 𝑦(1) = 𝑒, and the true solution of Equation (30) is 𝑦(𝑡) =
𝑒𝑡. 

In getting the numerical solution, the SOR iteration family 
such as FSSOR and HSSOR iterative methods is inspected to 

solve the linear system in which the controlling roles of the 

FSGS and FSSOR iterative methods are played. We carry 

out MATLAB software to do a lot of numerical experiments 

and compare the results in aspects of the quantity of 

iterations (Iterations), the elapsed time (Time) in seconds and 
the maximum values of absolute errors (Error) at five 

different numbers of subintervals 𝑁 = 32, 64, 128,256,512. 

All the corresponding results are displayed in Table 4 to 

Table 6.  

The results listed in Table 4 to Table 6 indicate that the 

HSSOR method based on the 3HSLRFD-HSCT scheme has 

the smallest amount Iterations and faster Time of the three 

strategies. Meanwhile, the results are depicted in Figs. 2-4. 

For the last parameter Error, it can be pointed out that the 

accuracy of all proposed techniques is in smart agreement. 

Moreover, we can also find the relationship between the 
FSSOR method and the HSSOR method. When the value of 

𝑁  of the latter method is two times that of the former 

method, the corresponding value of the three parameters is 

half of that of the former method. Finally, we calculate the 

percentage reduction of the first two parameters obtained by 

the FSSOR method and the HSSOR method compared with 

the values obtained by the FSGS method, which are as high 

as about 99%, as shown in Table 7. The incontestable results 

imply that HSSOR iterative method based on the 3HSLRFD-

HSCT discretization scheme achieves the numerical solution 

with the highest efficiency. 

V. CONCLUSIONS AND FUTURE WORK 

This paper has successfully constructed the 3HSLRFD-

HSCT discretization scheme, which is utilized to discretize 

the differential term and integral term of problem (1) to 

obtain the approximation equation and then generate the 

corresponding linear system (25). Next, we implement the 
HSSOR technique to find the numerical solution of system 

linear (25). The numerical experiments showed that the 

proposed method could achieve the desired accuracy fast 

with low Iterations and fast Time. The comparison with the 

other two approaches also elucidates that the HSSOR 

technique performs better in aspects of the Iterations and 

Time. This significant performance is not only thanks to the 

good approximation of the 3HSLRFD approach but also 

because the HSSOR and FSSOR iterative methods have the 

advantage of accelerating convergence. This conclusion is 

because both FSSOR and HSSOR iterative methods have 

involved one weighted parameter as an accelerating 
parameter. Apart from the SOR  family, which is categorised 

as one of the point iteration families, this analysis can be 

continued to deal with the application of Alternating Group 

Explicit [14]-[17] and weighted mean [23]-[26] iteration 

families can be used as a linear solver. 
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TABLE 4. Comparison of results for three different techniques for Example 1. 

Parameters Methods 
𝑵 

32 64 128 256 512 

Iterations 

FSGS-3LRFD 185224 2492458 32429703 400325235 4513359199 

FSSOR-3LRFD 

(𝜔) 

8216 

(1.89470000) 

58845 

(1.94304900) 

435012 

(1.97389410) 

3139706 

(1.98725000) 

21559438 

(1.99293625) 

HSSOR-3LRFD 

(𝜔) 

1141 

(1.79251000) 

8216 

(1.89470000) 

58845 

(1.94304900) 

435012 

(1.97389410) 

3139706 

(1.98725000) 

Time 

(seconds) 

FSGS-3LRFD 0.4624 7.6251 232.2066 6634.2979 190132.3872 

FSSOR-3LRFD 0.0262 0.2959 4.2856 59.6045 903.6976 

HSSOR-3LRFD 0.0047 0.0299  0.2737  4.1652  54.2396  

Error 

FSGS-3LRFD 1.2910E-03 3.2510E-04 1.0914E-04 4.5008E-04 4.9842E-03 

FSSOR-3LRFD 1.2908E-03 3.2270E-04 8.1130E-05 2.2816E-05 2.2708E-05 

HSSOR-3LRFD 5.1588E-03 1.2908E-03 3.2267E-04 8.1130E-05 2.2816E-05 

 

 

Fig. 2 Iterations and Time (seconds) versus 𝑵 of two different techniques for Example 1. 

 

 

TABLE 5. Comparison of results for three different techniques for Example 2. 

Parameters Methods 
𝑵 

32 64 128 256 512 

Iterations 

FSGS-3LRFD 448234 5959234 76098613 910442625 9658341997 

FSSOR-3LRFD 

(𝜔) 

9670 

(1.9443380000) 

70503 

(1.9723800000) 

486033 

(1.9853554600) 

3470593 

(1.9927109326)  

26735660 

(1.9967859460) 

HSSOR-3LRFD 

(𝜔) 

1349 

(1.8873600000) 

9670 

(1.9443380000) 

70503 

(1.9723800000) 

486033 

(1.9853554600) 

3470593 

(1.9927109326) 

Time 

(seconds) 

FSGS-3LRFD 1.0256 27.3561 566.8762 14873.0139 414576.0779 

FSSOR-3LRFD 0.0327 0.8217 11.9369 58.8191 1364.6092 

HSSOR-3LRFD 0.0040  0.0294  0.3074  4.1724  58.2971  

Error 

FSGS-3LRFD 5.3204E-04 1.3904E-04 1.2114E-04 1.1261E-03 1.2686E-02 

FSSOR-3LRFD 5.3154E-04 1.3323E-04 3.2263E-05 5.6794E-06 4.7144E-02 

HSSOR-3LRFD 2.1151E-03 5.3154E-04 1.3323E-04 3.2263E-05 5.6794E-06 
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Fig. 3 Iterations and Time (seconds) versus 𝑵 of two different techniques for Example 2. 

 

 

TABLE 6. Comparison of results for three different techniques for Example 3. 

Parameters Methods 
𝑵 

32 64 128 256 512 

Iterations 

FSGS-3LRFD 461118 6163295 79290805 960096418 10428247925 

FSSOR-3LRFD 

(𝜔) 

9239 

(1.94229380) 

66863 

(1.97106190) 

482119 

(1.98553030) 

3685270 

(1.99341000) 

24259791 

(1.99643221) 

HSSOR-3LRFD 

(𝜔) 

1295 

(1.88417900) 

9239 

(1.94229380) 

66863 

(1.97106190) 

482119 

(1.98553030) 

3685270 

(1.99341000) 

Time 

(seconds) 

FSGS-3LRFD 1.0987 23.7031 622.6473 15178.6218 441013.7995 

FSSOR-3LRFD 0.0305  0.3315  3.6553  60.0946  992.9554  

HSSOR-3LRFD 0.0043 0.0348  0.3415  3.9125  61.6715  

Error 

FSGS-3LRFD 6.7632E-06 1.0129E-05 9.9643E-05 1.1235E-03 1.1207E-02 

FSSOR-3LRFD 6.0313E-06 1.2856E-06 1.2249E-06 8.4393E-06 5.3243E-05 

HSSOR-3LRFD 2.4195E-05 6.0313E-06 1.2856E-06 1.2249E-06 8.4394E-06 

 

 

Fig. 4 Iterations and Time (seconds) versus 𝑵 of two different techniques for Example 3. 
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TABLE 7. The percentage reductions in Iterations and Time of the HSSOR and FSSOR techniques in comparison to 

the FSGS technique. 

Example Methods Iterations Time 

1 
FSSOR-3LRFD 95.57%-99.52% 94.33%-99.52% 

HSSOR-3LRFD 99.38%-99.93% 98.98%-99.97% 

2 
FSSOR-3LRFD 97.84%-99.72% 96.81%-99.67% 

HSSOR-3LRFD 99.70%-99.96% 99.61%-99.99% 

3 
FSSOR-3LRFD 97.99%-99.77% 97.22%-99.77% 

HSSOR-3LRFD 99.73%-99.96% 99.61%-99.99% 
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