
International Journal of Engineering Trends and Technology Volume 69 Issue 6, 216-224, June, 2021

ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I6P231 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Analysis and Design of High Performance Deep

Learning Algorithm: Convolutional Neural

Networks

Sunil Pandey#1, Naresh Kumar Nagwani#2, Shrish Verma#3

#1Research Scholar, #2Associate Professor

Department of Computer Science and Engineering, NIT Raipur 492010, CG, India
#3Professor, Department of Electronics and Communication Engineering, NIT Raipur 492010, CG, India

1sys_admin@nitrr.ac.in, 2 nknagwani.cs@nitrr.ac.in, 3 shrishverma@nitrr.ac.in

Abstract — Deep learning algorithms like convolutional

neural networks (CNNs) have a multi-layered

computational design. The CNN comprises of stacks of

different layers which perform feature engineering and

training or classification computations on the inputs which

are generally 3-D tensor datasets. Training a CNN is very

demanding in terms of computational resources and time.

Training times of several weeks and even months are not

unheard of. This is one of the important reasons limiting

widespread adoption of CNNs in new applications.

Performance enhancement of CNNs is therefore an active

R&D area. In view of this, the design of CNN algorithms

for high performance distributed and parallel computing

architectures assumes significance. The CNN can be

conceptualized as a pipeline system which makes CNNs

amenable to pipeline parallelism. In the present work, a

pipeline computation design and model of the CNN has

been proposed. The performance of the pipeline model of

the CNN has been analyzed based on representative data

generated through different computational experiments.

Analysis shows that a net performance gain of 18X can be

achieved on a CNN feature engineering pipeline by

combining pipeline parallelism with task parallelism.

Keywords — Deep Learning, Convolutional Neural

Networks, Pipeline Computing, Pipeline Parallelism, Task

Parallelism, High Performance Computing.

I. INTRODUCTION

Deep learning algorithms are a novel artificial

intelligence technology and are being applied towards the

solution of a multitude of engineering problems of this era.

A glance at the wide spectrum of applications for which

different deep learning technology has provided very

successful solutions can be made from [1-20]. However,

all deep learning algorithms are extremely compute

intensive and tend to consume copious amounts of

computer resources like computer time, processors,

accelerators, primary memory, secondary storage etc. for

their training and application which is proving to be a

limitation hindering growth and widespread adoption of

this otherwise promising technology.

The deep learning technology has been explained in

sufficient detail in [21]. The challenges of deep learning

technology which include its highly compute intensive

nature is a perspective which is shared by different

researchers [22-24]. In the effort to keep the training times

of deep learning algorithms reasonable, the high

performance features of contemporary computer

architectures need to be utilized. Multicore processors,

symmetric multiprocessor and compute cluster

architectures can play a very important role in this context.

They are the subject of discussion in [25][26] and [27]

respectively.

Distributed and parallel deep learning models have been

discussed in [28][29][30]. GPU based hardware accelerator

cards and libraries have also been deployed for

accelerating deep learning [30][31]. The compute intensive

optimization methods which are used in deep learning are

explained in [32]. The asynchronous stochastic gradient

descent method is the primary optimization algorithm of

distributed machine learning and is discussed in [33].

Techniques for improving the speed of neural networks

on CPUs are discussed in [34-36]. Matrix methods for

deep learning which are important from the perspective of

high performance deep learning implementations also are

discussed in [37-40]. The remarkable successes achieved

by deep learning technology have been highlighted in [41-

44].

The deep learning paradigm which has been taken up

for analysis in this paper is the convolutional neural

network (CNN). The CNN is comprised of multiple stacks

of layers which perform feature engineering and training

or classification computations on the input data which are

generally 3-D tensor datasets. Fig.1 shows the architecture

of a typical CNN with the input image of “Sundari”.

Fig. 1: Architecture of a typical CNN

https://ijettjournal.org/archive/ijett-v69i6p231
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sunil Pandey et al. / IJETT, 69(6), 216-224, 2021

217

The convolutional layer is the primary feature

engineering layer and is used for generating raw features

from the samples of the input 3-D tensor dataset by

performing convolution computations on them. The

nonlinear activation layer performs a nonlinear

transformation mapping of the raw features thereby

normalizing them. The pooling or the sub-sampling layer

is used for feature space dimension reduction. The fully

connected layers comprise of an artificial neural network

composed of multilayer perceptrons which is used in the

supervised training of the feature dataset through the

feedforward backpropagation algorithm. The CNN

architecture has been explained in necessary and sufficient

detail for the current work in Section VIII on

Understanding Deep Neural Networks: Convolutional

Type in [45].

The CNN can be visualized as a pipeline computation

with the input 3-D tensors flowing through its various

stages. Fig. 2 shows two of the popular CNNs, viz., the

LeNet (on the left) and the AlexNet (on the right). The

flow takes place from the bottom to the top.

For LeNet, the pipeline flow is described as follows.

The input is a 28 pixel x 28 pixel image. The first stage is

the convolutional stage which comprises of 6

convolutional filters of size 5 x 5 with a padding of 2. The

second stage is the pooling or sub-sampling stage which

comprises of non-overlapping average pooling windows of

size 2 x 2 with a stride of 2. The third stage is once again a

convolutional layer which comprises of 16 convolutional

filters of size 5 x 5 with no padding. The fourth stage is

similar to the second stage. The fifth, sixth and seventh

stages constitute the input, hidden and output layers of a

three-layer artificial neural network having 120, 84 and 10

artificial neurons respectively. The pipeline flow of the

AlexNet may be understood in similar terms.

Fig.2: LeNet (left) and AlexNet (right)

II. MATERIALS AND METHODS

In the present work, a pipeline computation design and

model of the CNN has been proposed. The performance of

the pipelined CNN model has been analyzed using

representative data obtained from different computational

experiments. In this section, the pipeline computation

model has been elucidated. The major advantage of

conceptualizing the CNN as a high level computational

pipeline of functional computational blocks is that it

becomes possible to apply high performance techniques

from the time tested pipeline parallel model. It then

becomes possible to map the individual blocks or even

entire pipelines on the multiple cores of one or more CPUs

spread over the multiple compute nodes of a high

performance computing cluster, for example.

Pipelined Computations

The concept of a software pipeline is of significance in

this paper. The software pipeline is a generic and a higher

level concept than the instruction pipelining model which

is a familiar model from the field of computer architecture

and processor design.

In a software pipeline, a larger computational problem

is divided into a series of ordered sequential tasks which

can be completed one after the other. The output of the

previous task becomes the input for the current task. The

individual tasks are then executed as a distinct process or

on separate processors. Fig. 3 illustrates a larger problem P

which has been partitioned into a series of 5 ordered

sequential tasks P0 through P4.

Fig. 3: Pipeline with 5 ordered, sequential tasks

P0 through P4

Pipeline Types

A pipelined algorithm can be designed for a specific

computational problem, with a resultant increase in the

speed of execution and higher performance if one of

the following conditions is satisfied:

(a) Multiple instances of the entire problem are to be

executed, or,

(b) A sequence of data samples are to be processed

through multiple independent computational

operations, or,

(c) If the information which is required to start the

next process in the queue can be passed prior to

the current process completing all its internal

operations.

The conditions in (a), (b), and (c) above lead to Type 1,

Type 2 and Type 3 pipeline computations respectively.

The timing or the space-time diagrams of the three types of

Sunil Pandey et al. / IJETT, 69(6), 216-224, 2021

218

pipelines are highlighted in Figs. 4 – 7 with the Figs. 4 and

5 being alternate representations of Type 1 pipeline model.

Fig. 4: Type 1 Pipeline Space Time Diagram

Fig. 5: Alternate Type 1 Pipeline Diagram

Fig. 6: Type 2 Pipeline Diagram

Fig. 7: Type 3 Pipeline Space-Time Diagram

Computing Platform

The ideal computing platform for pipelined

computations is a multiprocessor system with the

processors arranged in a line configuration as shown in Fig.

8.

Fig. 8: Computing platform for pipeline computing

A group of pipeline stages can be assigned to each

processor as illustrated in Fig. 9.

Fig. 9: Mapping of groups of pipeline stages to

 processors for pipelined computation

The pipeline parallel programming technique as a high

level parallel composition is discussed in [46].

Contemporary pipeline parallelism is discussed in [47].

The issues related to the construction of computational

pipelines are discussed in [48]. Troubleshooting of failed

computational pipelines is the matter of discussion in [49].

Pipeline scheduling has been discussed in [50]. An

analytical model of pipeline parallelism is given in [51].

Pipeline parallelism for streaming data has been exposited

in [52].

III. PIPELINE COMPUTATIONS IN

CONVOLUTIONAL NEURAL NETWORKS

The computations of the convolutional neural network

can be modelled as a software pipeline. The CNN software

pipeline can be separated into 5 distinct stages as

mentioned in Table I. Each of these layers corresponds to a

function.

The “LOAD” stage is used for loading an image

sample from the secondary storage, which is typically the

hard disk, to the primary memory. The “CONV” stage

performs the convolution operation on the loaded image

sample. The “NLMAP” stage is the nonlinear mapping

stage which performs a nonlinear mapping or transform on

the convolved image. The “POOL” stage performs the

pooling or the subsampling operation on the image

obtained from the “CONV” and “NLMAP” stages. The

“ANN” refers to the classifier stage which is a fully

connected stage used for supervised training on the

features from the “POOL” stage.

Sunil Pandey et al. / IJETT, 69(6), 216-224, 2021

219

TABLE I

The Five Stages of the CNN Software Pipeline

Stage Code Input

LOAD P0 Filename

CONV P1
Image file, Filter Size,

Filter Nos., Padding

NLMAP P2 Input from P1

POOL P3

Input from P2,

Pooling Window Size,

Stride

ANN P4
No. of Layers, MLPs in

each layer

A hypothetical CNN assumed to have a single stage

each of P0 through P4 is modelled as a CNN structure.

The pipeline structure of the hypothetical CNN can be

modelled as shown in Fig. 10 below

Fig.10: Pipeline structure of the CNN pipeline

In the above figure, d0, d1, d2, etc. represent the image

samples. The above model is a typical Type 2 pipeline

wherein a sequence of data samples are to be processed

through multiple independent computational operations.

Alternately, it is possible to group or consolidate the

stages P0 through P4 as a single instance of the complete

problem as illustrated in Fig. 11.

Fig.11: Pipeline structure of the CNN pipeline with

a single consolidated stage P

In this alternate scenario, multiple instances of the

entire problem are to be executed on individual data

samples, d0, d1, d2, etc. This alternate model is a typical

Type 1 pipeline.

The pipelined computation format affords considerable

flexibility when modelling the CNN. The CNN can be

modelled as a Type 1 or Type 2 pipeline. The stages can be

merged to form a single consolidated stage. It is also

possible to split a stage into two or more stages.

A CNN can be considered to be a high level pipeline

composition of the five stages mentioned in Table I above.

The LeNet CNN of Fig. 2 (left) is revisited for an example

of the composition described above.

Fig. 12: LeNet (left) LeNet Pipeline (right)

In order to analyse the CNN pipeline performance, the

execution times of the five stages of the CNN pipeline are

required as the input parameters and have been determined

through computational experiments. Table II shows the

experimentally determined times of the five stages of the

CNN software pipeline. These are the average compute

times for the processing of one data element, i.e., one input

image sample through the CNN pipeline.

TABLE II

Input Parameters: Experimentally determined times of

the stages of the CNN software pipeline

S.

No

.

Stage

Execution

Time, T

(s)
Remarks

1. P0 0.1
HD image 1280 pixels

x 720 pixels

2. P1 46

Convolutions of

image with 100 3x3

filters

3. P2 19.9

Nonlinear

hypertangent

activation function

4. P3 24.1
Average pooling 2x2

window

5. P4 29.84

50 inputs, 100 hidden

layer neurons, 10

outputs, 10000 epochs

The times seen in Table II are experimentally

determined times of the different stages of a CNN software

pipeline for a single HD image of 1280 pixels x 720 pixels.

Same is graphically represented in Fig. 13.

Sunil Pandey et al. / IJETT, 69(6), 216-224, 2021

220

Fig. 13: Experimentally Determined Times of the

stages of the CNN software pipeline

A real-world dataset from the domain of Materials Science

has been taken up for analysis using the CNN. The primary

motivation here was the design and analysis of a pipelined

version of the CNN for application on this dataset. This

dataset is the North Eastern University’s Steel Surface

Defect Dataset. This dataset comprises of a total of 6

classes. Each of these classes corresponds to one of six

surface defects which are common in hot-rolled steel strips.

These defects are the rolled-in scale (RS), patches (Pa),

crazing (Cr), pitted surface (PS), inclusion (In) and

scratches (Sc). Each class has 300 grayscale images. Size

of each image in the dataset is 200 pixels x 200 pixels.

Classification strategies applied on this dataset are

discussed in [53-55].

Fig. 14 shows the master CNN pipeline architecture

designed for the solution of this problem. The feature

engineering part of the CNN has been considered here for

this demonstration. The complete pipeline can be seen to

be a composition of six different pipelines. For example,

pipeline 1 comprises of loader1 followed by cnp11, cnp12,

cnp13, cnp14 and flattening1.

The convolutional, nonlinear mapping and pooling

stages have been consolidated into a single “cnp” stage.

An additional “flattening” stage can be seen. The flattening

operation is used for mapping of the final pooled two-

dimensional matrices into one-dimensional vectors. These

are the feature vectors which serve as the feature vector

input to the “classifier” stage. Four convolutional filter

stages with 25, 25, 25 and 25 numbers of 11 x 11 filters

have been considered. These filters can be observed to be

common for all the six CNN pipelines. These

convolutional filter perform the convolutional operation on

each individual image of the CNN dataset. For the

experiments, 100 images of each class were considered.

The master CNN pipeline architecture for the NEU

surface defect dataset is of a much higher level of

sophistication than the simple pipeline of Fig. 10. The

master pipeline is composed of six parallel pipelines. Each

of the pipelines corresponds to one of the classes of the

dataset. The six pipelines have been designed for

performing the feature engineering computations on the

input images corresponding to the six different classes of

the dataset in parallel. This provides the basis for much

higher performance as this approach combines pipeline

parallelism with task parallelism on CNN computations.

The net outcome is a multiplicative gain in speedup which

can be theoretically seen to be the product of the speedups

due to pipeline parallelism and the speedup due to task

parallelism.

Fig. 14: Master CNN pipeline architecture for NEU

Dataset composed of six pipelines

The representative times taken for the different stages of

the master CNN Pipeline architecture for NEU Dataset is

mentioned in Table III below

TABLE III

Input Parameters: Experimentally determined times of

the stages of the master CNN pipeline

Stage Execution Time, T in seconds

LOAD 5.89 5.63 5.91 5.83 5.71 5.67

CNP1 23.2 22.5 22.4 22.7 22.7 22.8

CNP2 6.56 6.43 6.44 6.46 6.36 6.22

CNP3 1.81 1.76 1.84 1.76 1.78 1.75

CNP4 0.68 0.66 0.64 0.66 0.66 0.65

FLAT 0.05 0.05 0.05 0.05 0.04 0.05

The graphical representation of the experimentally

determined representative times of the stages of the master

CNN pipeline is graphically depicted in Fig. 15.

Fig. 15: Experimentally Determined Times of the

stages of the CNN software pipeline

Sunil Pandey et al. / IJETT, 69(6), 216-224, 2021

221

IV. RESULTS AND DISCUSSION

In this section, the speedup in computation obtained

through the high performance pipelined version of the

CNN algorithm vis-a-vis the non-pipelined version is

discussed.

Speedup

The speedup is defined as the ratio of the time taken by

the non-pipelined version to the time taken by the

pipelined version on a given problem.

Pipeline with Equal Stage Execution Times:
For a p-stage pipeline with m samples and equal time

taken by the individual stages, the speedup can be derived

as follows:

 1


pm

mp
Speedup

(1)

Pipeline with Unequal Stage Execution Times:

For a p-stage pipeline with m samples and unequal time

taken by the individual stages, speedup can be derived as

follows:

p

p

i

p

i

m

m

Speedup












1

1

1

(2)

where τi is the time taken by stage Pi.

From Table II and Fig. 13, it is clearly observed that

the CNN pipeline involves stages with unequal times.

For a problem with 10000 samples, which represents

the size of typical datasets, the relation between speedup

and the number of equal pipeline stages is shown in Fig.

16.

Fig. 16: Relationship between speedup and number

of equal pipeline stages with 10k instances

It can be seen that in this ideal scenario where the time

taken by individual pipeline stages is the same, the

speedup is nearly equal to the number of pipeline stages.

The relationship is linear and scales excellently with the

number of pipeline stages.

This may lead to the conclusion that the non-pipelined

algorithm should be decomposed into a large number of

small pipeline stages for maximum performance. Such a

conclusion would be premature and naïve, however. In the

real world, the depth of a pipeline cannot be increased

indefinitely. This is because the individual blocks or

pipelines have to be mapped to different CPU cores during

parallel execution. These blocks and pipelines are required

to communicate the output as well as any intermediate data

between each other. This may involve inter-core, inter-

CPU as well as inter-node communication. Presence of

many such blocks would increase the communication

leading to a point where the communication overheads

start dominating computation and the performance starts

deteriorating.

Fig. 17: Relation between speedup and number of

instances in a pipeline with 5 equal stages

For a problem which has five equal pipeline stages, the

relation between speedup and the number of instances is

shown in Fig. 17. It can be seen that for a certain fixed

number of equal stages in a pipeline which is five in this

example, the speedup approaches the number of equal

pipeline stages with an increase in the number of instances,

m.

For a problem with 10000 samples and five unequal

pipeline stages, e.g., 1, 1.5, 1.75, 2 and 2.2 time units, the

speedup can be calculated to be 3.8. From this example

and the formula for speedup in the case of unequal pipeline

stages, it can be seen that the speedup and therefore the

performance of the pipelined algorithm is higher if the

different stages have as equal times as possible. The

possiblity of aggregating small consecutive pipeline stages

into a single pipeline stage and the partitioning of a larger

stage into two or more smaller stages allows for some

degree of flexibility in dealing with unequal pipeline stage

times.

Sunil Pandey et al. / IJETT, 69(6), 216-224, 2021

222

The data of Table II mentions the experimentally

determined times of the different stages of a CNN pipeline.

This data is useful for the determination of the relative

performance of the pipelined version of the CNN

algorithm in relation to the non-pipelined version of the

same. From the above data, the speedup is calculated as

4.02.

From the experimentally determined timing data given

in Table III related to the master CNN pipeline architecture

of Fig. 14, for North Eastern University’s surface defect

dataset, the speedup of the six individual pipeline stages

can be computed to be 3 approximately. From a look at the

design of the master CNN pipeline architecture of Fig. 14,

it is clear that the six pipelines which compose this

architecture are identical in all respects including the

stages, their number and arrangement, and the

convolutional filters as well. It is therefore a reasonable

expectation that the time taken for the execution of the

individual stages or blocks and the pipelines would be

identical. This fact is borne out through the data revealed

on experimentation.

Fig. 18: Stage and Total Times of CNN Pipeline

Two important observations can be made in this

context. First is that the pipelines have been designed to be

identical and therefore their execution times are nearly

equal. Second is that the pipelines are completely

independent of each other as can be seen from the stage or

task reliance graph of Fig. 14. In view of the two reasons

above, it is possible to achieve task parallelism in this

master CNN pipeline. Task parallelism by mapping

individual pipelines to different compute nodes can

therfore lead to nearly six fold performance gain over the

serial counterpart. This combined with the three fold

performance gain from pipelined operations results in an

18 times performance gain over the serial equivalent since

the gains are multiplicative.

Performance gain of 18 times is remarkable considering

the fact that there is no other performance enhancing

parameter which has been included in the discussion or

analysis as yet. For instance, no parallelization of

individual computational stages or blocks has been

discussed on multicore CPUs except the indpendent

mapping and execution of the blocks on individual CPU

cores. Specialized and esoteric hardware accelerators like

graphic processor units and tensor processing units, etc.

are also entirely excluded from the current discussion.

From the above analysis it is reasonably inferred that

the pipelined convolutional type deep learning algorithm

has a markedly higher perfornance than the conventional

non-pipelined or monolithic CNN algorithm. If the design

is for high performance then the pipelined CNN algorithm

of Table II and Fig. 10 is a clear winner having a

performance gain of up to four times when compared with

the equivalent monolithic traditional CNN algorithm. This

performance gain can be attributed solely to pipeline

parallelism and is not dependent or influenced by any other

factor.

Further, in the context of the master pipeline CNN

architecture designed for the NEU surface defects dataset,

the performance gain due to pipeline parallelism is

approximately 3. The performance gain due to task

parallelism is approximately 6. These gains are

multiplicative in nature and amplify each other to result in

a net performance gain of 18 times over the equivalent

monolithic serial non-pipelined CNN algorithm.

An 18-fold increase in the performance through

pipelined redesign of the convolutional neural network and

task mapping is considerable given the fact that this

performance gain is purely the result of pipelining the

algorithm design, domain partitioning and mapping with

no other performance enhancing parameter included in the

analysis.

V. CONCLUSIONS

The concept of computational pipelines and the

speedups resulting from pipeline implementations have

been explained in sufficient detail. A high performance

pipelined design of a deep learning algorithm of

convolutional type has been proposed in the current work.

The ideal from the perspective of maximum performance

is to design the software pipeline using the principle of

nearly equal pipeline stage times. In the limiting cases, the

speedup tends to approach the number of pipeline stages

which can be treated as the upper bound of the pipeline

performance. While equally timed stages may be very

desirable from the perspective of performance, they are

seldom practicable considering the nature of most

algorithms. Two examples of pipeline implementations of

CNNs have been designed and analysed. A five stage CNN

pipeline comprising of the instance or image loader, the

convoluter, the nonlinear transformer, the pooler and the

trainer stages has been elucidated. Another master CNN

computational pipeline has been designed for a real-world

problem of hot rolled steel strip surface defects

classification. This CNN pipeline specifically for feature

engineering consists of six identical and independent

Sunil Pandey et al. / IJETT, 69(6), 216-224, 2021

223

pipelines. The CNN pipelines have been analyzed on the

basis of data obtained from computational experiments by

timing the CNN stages. Analysis shows that the pipelined

CNN algorithm design in itself results in 4X better

performance than its conventional non-pipelined

monolithic counterpart for the configuration considered. In

the context of the CNN designed for surface defects

problem, the performance gain due to pipeline parallelism

is approximately 3X while that due to task parallelism is

approximately 6X which result in a net performance gain

of 18X over the equivalent monolithic serial non-pipelined

CNN algorithm. Speedups of the individual blocks on

account of other reasons like code optimizations, block

parallelization, hardware accelerators, etc. shall also result

in a multiplicative effect on the overall speedup.

REFERENCES
[1] Zezhou Cheng, Qingxiong Yang, and Bin Sheng, Deep Colorization,

in 2015 IEEE International Conference on Computer Vision (ICCV),

Santiago, (2015) 415-423.

[2] Zhang R., Isola P., and Efros A.A., Colorful Image Colorization,
European Conference on Computer Vision, 2016 - Springer, vol.

9907, 2016.

[3] Larsson G., Maire M., and Shakhnarovich G., Learning
Representations for Automatic Colorization, Computer

Vision(ECCV), Lecture Notes in Computer Science - Springer,

9908, 2016.
[4] Hwang, Jeff, and You Zhou, Image Colorization with Deep

Convolutional Neural Networks, Stanford University, 2016.

[5] Andrew Owens et al., Visually Indicated Sounds, in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),

Las Vegas, (2016) 2405 - 2413.

[6] I Sutskever, O. Vinyals, and Q.V. Le, Sequence to Sequence
Learning, in Proc. Advances in Neural Information Processing

Systems 27 (2014) 3104–3112.

[7] K. Cho et. al., Learning phrase representations using RNN encoder-
decoder for statistical machine translation, in Proc. Conference on

Empirical Methods in Natural Language Processing, (2014) 1724–

1734.
[8] Zhang Jiajun and Zong Chengqing, Deep Neural Networks in

Machine Translation: An Overview, IEEE Intelligent Systems, 30(5)

(2015) 16-25
[9] A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet

classification with deep convolutional neural networks, in NIPS

Proceedings, 2012.
[10] A. G. Howard, Some improvements on deep convolutional neural

network based image classification, in International Conference on
Learning Representation (ICLR), Banff, Canada, 2014

[11] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, Scalable

Object Detection Using Deep Neural Networks, in 2014 IEEE
Conference on Computer Vision and Pattern Recognition,

Columbus, (2014) 2155-2162.

[12] D. Erhan, C. Szegedy, and A. Toshev, Scalable object detection
using deep neural networks, in CVPR, 2014.

[13] Alex Graves, Generating Sequences With Recurrent Neural

Networks , 2014. [Online]. https://arxiv.org/pdf/1308.0850.pdf
[14] Ilya Sutskever, James Martens, and Geoffrey E Hinton, Generating

text with recurrent neural networks, in Proceedings of the 28th

International Conference on Machine Learning (ICML-11), New
York, NY,(2011) 1017-1024.

[15] Andrej Karpathy and Li Fei-Fei, Deep Visual-Semantic Alignments

for Generating Image Descriptions, in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston,

Massachusetts, (2015) 3128 - 3137.

[16] Ayushi Chahal, Preeti Gulia, Deep Learning: A Predictive IoT Data
Analytics Method, International Journal of Engineering Trends and

Technology, 68(7) 2020.

[17] P. Seetha Subha Priya, S. Nandhinidevi, M. Thangamani, S.
Nallusamy, A Review on Exploring the Deep Learning Concepts

and Applications for Medical Diagnosis, International Journal of

Engineering Trends and Technology, 68(10) (2020).

[18] Sangeeta, Preeti Gulia, Deep learning based combating strategy for

COVID-19 induced increased video consumption, International

Journal of Engineering Trends and Technology, 68(7) (2020).

[19] Ferdinand Kartriku, Robert Sowah, Charles Saah Deep Neural
Network: An Efficient and Optimized Machine Learning Paradigm

for Reducing Genome Sequencing Error, International Journal of

Engineering Trends and Technology, 68(9) (2020).
[20] Ramya T.E., Marikkannan, M. Investigations on Combinational

Approach for Processing Remote Sensing Images Using Deep

Learning Techniques, International Journal of Engineering Trends
and Technology, 67(8) (2019).

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep Learning,

521 (2015) 436.
[22] X. W. Chen and X. Lin, Big Data Deep Learning: Challenges and

Perspectives, IEEE Access, 2 (2014) 514-525.

[23] M.M. Najafabadi et. al., Deep learning applications and challenges
in big data analytics, Journal of Big Data, 1 (2015).

[24] P. Angelov and A. Sperduti, Challenges in Deep Learning, in

European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, Bruges

(Belgium), (2016) 27-29.

[25] Xian-He Sun, Yong Chen, and Surendra Byna, Scalable Computing
in the Multicore Era, in Proceedings of the Inaugural Symposium on

Parallel Algorithms, Architechures and Programming, Hefei:

University of Science and Technology of China Press, 2008.
[26] M. Tanveer, M.A. Iqbal, and F. Azam, Using Symmetric

Multiprocessor Architectures for High Performance Computing
Environments, International Journal of Computer Applications,

27(9)(2011)

[27] M. B. Giles and I. Reguly, Trends in high-performance computing
for engineering calculations, in Phil.Trans.R.Soc.A, 2014.

[28] J. Dean et. al., Large Scale Distributed Deep Networks, in 25th

International Conference on Neural Information Processing Systems,
Lake Tahoe, Nevada, (2012) 1223-1231.

[29] J. Hauswald et. al., DjiNN and Tonic: DNN as a service and its

implications for future warehouse scale computers, in Proceedings
42nd Annual International Symposium on Computer Architecture

(ISCA), Portland, OR, USA, (2015) 27-40.

[30] V. Hegde and S. Usmani. (2016) Parallel and Distributed Deep
Learning, Stanford University Online Report.

[31] M. Bouache and J. Glover, Deep Learning GPU-Based Hardware

Platform Hardware and Software Criteria and Selection, in ICS-
2016, Istanbul, Turkey, 2016.

[32] Q. Le et. al., On Optimization Methods for Deep Learning, in

Proceedings of the International Conference on Machine Learning,
Washington, 2011.

[33] J. Keuper and F.J. Pfreundt, Asynchronous Parallel Stochastic

Gradient Descent A Numeric Core for Scalable Distributed Machine
Learning Algorithms, in Proceedings of the Workshop on Machine

Learning in High-Performance Computing Environments, Austin,

TX, USA, 2015.
[34] V. Vanhoucke, A. Senior, and M. Z. Mao, Improving the speed of

neural networks on CPUs, in Proceedings of the Deep Learning and

Unsupervised Feature Learning NIPS Workshop, Granada Spain,
2011.

[35] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, Deep

Learning with Limited Numerical Precision, Journal of Machine
Learning Research, 37 (2015).

[36] S Chetlur et. al. (2014) cuDNN: Efficient Primitives for Deep

Learning. [Online]. https://arxiv.org/pdf/1410.0759.pdf
[37] A. Delong. Practical Guide to Matrix Calculus for Deep

Learning,http://www.psi.toronto.edu/~andrew/papers/matrix_calcul

us_for_learning.pdf [Online]
[38] Baoyuan Liu, Min Wang, H. Foroosh, M. Tappen, and M. Penksy,

Sparse Convolutional Neural Networks, in 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
(2015) 806-814.

[39] C. Ionescu, O. Vantzos, and C. Sminchisescu, Matrix

Backpropagation for Deep Networks with Structured Layers, in
2015 IEEE International Conference on Computer Vision (ICCV),

Santiago, (2015) 2965-2973.

[40] Y. Zhang and S. Zhang, Optimized Deep Learning Architectures
with Fast Matrix Operation Kernels on Parallel Platform, in 2013

IEEE 25th International Conference on Tools with Artificial

Intelligence, Herndon, VA, (2013) 71-78.

Sunil Pandey et al. / IJETT, 69(6), 216-224, 2021

224

[41] Ciresan, Dan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-

column deep neural networks for image classification. In 2012 IEEE

Conference on Computer Vision and Pattern Recognition 3642-

3649.
[42] Ciresan, Dan, Ueli Meier, Jonathan Masci, Luca M. Gambardella,

and Jurgen Schmidhuber. 2011. Flexible, High Performance

Convolutional Neural Networks for Image Classification. in 2013
International Joint Conference on Artificial Intelligence, 1237–1242.

[43] Lawrence, Steve, C. Lee Giles, Ah Chung Tsoi, and Andrew D.

Back. Face Recognition: A Convolutional Neural Network
Approach, 1997 IEEE Transactions on Neural Networks, 8(1) 98-

113.

[44] Russakovsky, O., Deng, J., Su, H. et al. ImageNet Large Scale
Visual Recognition Challenge. Int J Comput Vis vol. 115, 2015

[45] Sunil Pandey, Naresh Kumar Nagwani, Shrish Verma. Parallel and

Scalable Deep Learning Algorithms for High Performance
Computing Architectures International Journal of Engineering

Trends and Technology, 69(4) (2021) 236-246.

[46] Mario Rossainz-López, Manuel I. Capel, Odon D. Carrasco-Limón,
Fernando Hernández-Polo, Bárbara E. Sánchez-Rinza,

Implementation of the Pipeline Parallel Programming Technique as

an HLPC: Usage, Usefulness and Performance, Annals of Multicore
and GPU Programming, 4 (1). ISSN: 2341-3158.

[47] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim

Sukha, Zhunping Zhang, On-the-Fly Pipeline Parallelism, ACM
Transactions on Parallel Computing, 2(3).

[48] Halling-Brown M, Shepherd AJ. Constructing computational
pipelines. Methods Mol Biol. 2008;453:451-70. doi: 10.1007/978-1-

60327-429-6_24. PMID: 18712319

[49] Vivien Marx, When Computational Pipelines Go Clank. Nature

Methods, vol 17, 659–662 (2020)

[50] Saurav Chatterjee and Jay Strosnider, Distributed Pipeline

Scheduling: A Framework for Distributed, Heterogeneous Real-
Time System Design, The Computer Journal, 38(4) (1995).

[51] A. Navarro, R. Asenjo, S. Tabik and C. Cascaval, Analytical

Modeling of Pipeline Parallelism, 2009 18th International
Conference on Parallel Architectures and Compilation Techniques,

(2009) 281-290, doi: 10.1109/PACT.2009.28.

[52] Michael I. Gordon, William Thies, and Saman Amarasinghe. 2006.
Exploiting coarse-grained task, data, and pipeline parallelism in

stream programs. In Proceedings of the 12th international

conference on Architectural support for programming languages
and operating systems (ASPLOS XII). Association for Computing

Machinery, New York, NY, USA, 151–162.

[53] K. Song and Y. Yan, “A noise robust method based on completed
local binary patterns for hot-rolled steel strip surface defects,”

Applied Surface Science, 285 (2013) 858-864.

[54] Yu He, Kechen Song, Qinggang Meng, Yunhui Yan, “An End-to-
end Steel Surface Defect Detection Approach via Fusing Multiple

Hierarchical Features,” IEEE Transactions on Instrumentation and

Measuremente, 69(4) (2020) 1493-1504.
[55] Hongwen Dong, Kechen Song, Yu He, Jing Xu, Yunhui Yan,

Qinggang Meng, PGA-Net: Pyramid Feature Fusion and Global

Context Attention Network for Automated Surface Defect Detection,
IEEE Transactions on Industrial Informatics, 2020.

	Sunil Pandey#1, Naresh Kumar Nagwani#2, Shrish Verma#3
	Fig. 1: Architecture of a typical CNN
	Pipelined Computations
	Fig. 3: Pipeline with 5 ordered, sequential tasks
	P0 through P4
	Pipeline Types
	Fig. 4: Type 1 Pipeline Space Time Diagram
	Fig. 5: Alternate Type 1 Pipeline Diagram
	Fig. 6: Type 2 Pipeline Diagram
	Fig. 7: Type 3 Pipeline Space-Time Diagram
	Computing Platform
	Fig. 9: Mapping of groups of pipeline stages to
	TABLE I
	Fig.10: Pipeline structure of the CNN pipeline
	Fig. 12: LeNet (left) LeNet Pipeline (right)
	TABLE II
	Fig. 13: Experimentally Determined Times of the
	Fig. 14: Master CNN pipeline architecture for NEU
	TABLE III
	Fig. 15: Experimentally Determined Times of the
	Speedup
	Pipeline with Equal Stage Execution Times:
	Pipeline with Unequal Stage Execution Times:
	Fig. 16: Relationship between speedup and number
	Fig. 17: Relation between speedup and number of
	Fig. 18: Stage and Total Times of CNN Pipeline
	REFERENCES

