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Abstract — Deep learning algorithms like convolutional 

neural networks (CNNs) have a multi-layered 

computational design. The CNN comprises of stacks of 

different layers which perform feature engineering and 

training or classification computations on the inputs which 

are generally 3-D tensor datasets. Training a CNN is very 

demanding in terms of computational resources and time. 

Training times of several weeks and even months are not 

unheard of. This is one of the important reasons limiting 

widespread adoption of CNNs in new applications. 

Performance enhancement of CNNs is therefore an active 

R&D area. In view of this, the design of CNN algorithms 

for high performance distributed and parallel computing 

architectures assumes significance. The CNN can be 

conceptualized as a pipeline system which makes CNNs 

amenable to pipeline parallelism. In the present work, a 

pipeline computation design and model of the CNN has 

been proposed. The performance of the pipeline model of 

the CNN has been analyzed based on representative data 

generated through different computational experiments. 

Analysis shows that a net performance gain of 18X can be 

achieved on a CNN feature engineering pipeline by 

combining pipeline parallelism with task parallelism. 

 

Keywords — Deep Learning, Convolutional Neural 

Networks, Pipeline Computing, Pipeline Parallelism, Task 

Parallelism, High Performance Computing. 

I. INTRODUCTION 

Deep learning algorithms are a novel artificial 

intelligence technology and are being applied towards the 

solution of a multitude of engineering problems of this era. 

A glance at the wide spectrum of applications for which 

different deep learning technology has provided very 

successful solutions can be made from [1-20]. However, 

all deep learning algorithms are extremely compute 

intensive and tend to consume copious amounts of 

computer resources like computer time, processors, 

accelerators, primary memory, secondary storage etc. for 

their training and application which is proving to be a 

limitation hindering growth and widespread adoption of 

this otherwise promising technology.  
 

The deep learning technology has been explained in 

sufficient detail in [21]. The challenges of deep learning 

technology which include its highly compute intensive 

nature is a perspective which is shared by different 

researchers [22-24]. In the effort to keep the training times 

of deep learning algorithms reasonable, the high 

performance features of contemporary computer 

architectures need to be utilized. Multicore processors, 

symmetric multiprocessor and compute cluster 

architectures can play a very important role in this context. 

They are the subject of discussion in [25][26] and [27] 

respectively.  
 

Distributed and parallel deep learning models have been 

discussed in [28][29][30]. GPU based hardware accelerator 

cards and libraries have also been deployed for 

accelerating deep learning [30][31]. The compute intensive 

optimization methods which are used in deep learning are 

explained in [32]. The asynchronous stochastic gradient 

descent method is the primary optimization algorithm of 

distributed machine learning and is discussed in [33].  
 

Techniques for improving the speed of neural networks 

on CPUs are discussed in [34-36]. Matrix methods for 

deep learning which are important from the perspective of 

high performance deep learning implementations also are 

discussed in [37-40]. The remarkable successes achieved 

by deep learning technology have been highlighted in [41-

44]. 
 

The deep learning paradigm which has been taken up 

for analysis in this paper is the convolutional neural 

network (CNN). The CNN is comprised of multiple stacks 

of layers which perform feature engineering and training 

or classification computations on the input data which are 

generally 3-D tensor datasets. Fig.1 shows the architecture 

of a typical CNN with the input image of “Sundari”. 

 

 
 

Fig. 1: Architecture of a typical CNN 

https://ijettjournal.org/archive/ijett-v69i6p231
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The convolutional layer is the primary feature 

engineering layer and is used for generating raw features 

from the samples of the input 3-D tensor dataset by 

performing convolution computations on them. The 

nonlinear activation layer performs a nonlinear 

transformation mapping of the raw features thereby 

normalizing them. The pooling or the sub-sampling layer 

is used for feature space dimension reduction. The fully 

connected layers comprise of an artificial neural network 

composed of multilayer perceptrons which is used in the 

supervised training of the feature dataset through the 

feedforward backpropagation algorithm. The CNN 

architecture has been explained in necessary and sufficient 

detail for the current work in Section VIII on 

Understanding Deep Neural Networks: Convolutional 

Type in [45]. 

 

The CNN can be visualized as a pipeline computation 

with the input 3-D tensors flowing through its various 

stages. Fig. 2 shows two of the popular CNNs, viz., the 

LeNet (on the left) and the AlexNet (on the right). The 

flow takes place from the bottom to the top. 

 

For LeNet, the pipeline flow is described as follows. 

The input is a 28 pixel x 28 pixel image. The first stage is 

the convolutional stage which comprises of 6 

convolutional filters of size 5 x 5 with a padding of 2. The 

second stage is the pooling or sub-sampling stage which 

comprises of non-overlapping average pooling windows of 

size 2 x 2 with a stride of 2. The third stage is once again a 

convolutional layer which comprises of 16 convolutional 

filters of size 5 x 5 with no padding. The fourth stage is 

similar to the second stage. The fifth, sixth and seventh 

stages constitute the input, hidden and output layers of a 

three-layer artificial neural network having 120, 84 and 10 

artificial neurons respectively. The pipeline flow of the 

AlexNet may be understood in similar terms. 

 

 
 

 

Fig.2: LeNet (left) and AlexNet (right) 

 

II. MATERIALS AND METHODS 

In the present work, a pipeline computation design and 

model of the CNN has been proposed. The performance of 

the pipelined CNN model has been analyzed using 

representative data obtained from different computational 

experiments. In this section, the pipeline computation 

model has been elucidated. The major advantage of 

conceptualizing the CNN as a high level computational 

pipeline of functional computational blocks is that it 

becomes possible to apply high performance techniques 

from the time tested pipeline parallel model. It then 

becomes possible to map the individual blocks or even 

entire pipelines on the multiple cores of one or more CPUs 

spread over the multiple compute nodes of a high 

performance computing cluster, for example. 

 

Pipelined Computations 

The concept of a software pipeline is of significance in 

this paper. The software pipeline is a generic and a higher 

level concept than the instruction pipelining model which 

is a familiar model from the field of computer architecture 

and processor design.  

 

In a software pipeline, a larger computational problem 

is divided into a series of ordered sequential tasks which 

can be completed one after the other. The output of the 

previous task becomes the input for the current task. The 

individual tasks are then executed as a distinct process or 

on separate processors. Fig. 3 illustrates a larger problem P 

which has been partitioned into a series of 5 ordered 

sequential tasks P0 through P4. 

 
Fig. 3:  Pipeline with 5 ordered, sequential tasks 

P0 through P4 

 

Pipeline Types 

A pipelined algorithm can be designed for a specific 

computational problem, with a resultant increase in the 

speed of execution and higher performance if one of 

the following conditions is satisfied: 

 

(a) Multiple instances of the entire problem are to be 

executed, or, 

 

(b) A sequence of data samples are to be processed 

through multiple independent computational 

operations, or, 

 

(c) If the information which is required to start the 

next process in the queue can be passed prior to 

the current process completing all its internal 

operations. 

 

The conditions in (a), (b), and (c) above lead to Type 1, 

Type 2 and Type 3 pipeline computations respectively. 

The timing or the space-time diagrams of the three types of 
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pipelines are highlighted in Figs. 4 – 7 with the Figs. 4 and 

5 being alternate representations of Type 1 pipeline model. 

 

 
Fig. 4: Type 1 Pipeline Space Time Diagram 

 

 
Fig. 5: Alternate Type 1 Pipeline Diagram 

 

 
 

Fig. 6: Type 2 Pipeline Diagram 

 

 
 

Fig. 7: Type 3 Pipeline Space-Time Diagram 

 

 

Computing Platform 

The ideal computing platform for pipelined 

computations is a multiprocessor system with the 

processors arranged in a line configuration as shown in Fig. 

8. 

 

 

 
 

Fig. 8: Computing platform for pipeline computing  

 

A group of pipeline stages can be assigned to each 

processor as illustrated in Fig. 9. 

 

 
 

Fig. 9: Mapping of groups of pipeline stages to   

                processors for pipelined computation 

 

The pipeline parallel programming technique as a high 

level parallel composition is discussed in [46]. 

Contemporary pipeline parallelism is discussed in [47]. 

The issues related to the construction of computational 

pipelines are discussed in [48]. Troubleshooting of failed 

computational pipelines is the matter of discussion in [49]. 

Pipeline scheduling has been discussed in [50]. An 

analytical model of pipeline parallelism is given in [51]. 

Pipeline parallelism for streaming data has been exposited 

in [52]. 

III. PIPELINE COMPUTATIONS IN 

CONVOLUTIONAL NEURAL NETWORKS 

The computations of the convolutional neural network 

can be modelled as a software pipeline. The CNN software 

pipeline can be separated into 5 distinct stages as 

mentioned in Table I. Each of these layers corresponds to a 

function.  

The “LOAD” stage is used for loading an image 

sample from the secondary storage, which is typically the 

hard disk, to the primary memory. The “CONV” stage 

performs the convolution operation on the loaded image 

sample. The “NLMAP” stage is the nonlinear mapping 

stage which performs a nonlinear mapping or transform on 

the convolved image. The “POOL” stage performs the 

pooling or the subsampling operation on the image 

obtained from the “CONV” and “NLMAP” stages. The 

“ANN” refers to the classifier stage which is a fully 

connected stage used for supervised training on the 

features from the “POOL” stage. 
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TABLE I 

The Five Stages of the CNN Software Pipeline 

 

Stage Code Input 

LOAD P0 Filename 

CONV P1 
Image file, Filter Size, 

Filter Nos., Padding 

NLMAP P2 Input from P1 

POOL P3 

Input from P2, 

Pooling Window Size, 

Stride 

ANN P4 
No. of Layers, MLPs in 

each layer 

 
A hypothetical CNN assumed to have a single stage 

each of P0 through P4 is modelled as a CNN structure. 

 

The pipeline structure of the hypothetical CNN can be 

modelled as shown in Fig. 10 below 

 

 
 

Fig.10: Pipeline structure of the CNN pipeline 

 

In the above figure, d0, d1, d2, etc. represent the image 

samples. The above model is a typical Type 2 pipeline 

wherein a sequence of data samples are to be processed 

through multiple independent computational operations. 

 

Alternately, it is possible to group or consolidate the 

stages P0 through P4 as a single instance of the complete 

problem as illustrated in Fig. 11. 

 

 
Fig.11:  Pipeline structure of the CNN pipeline with 

a single consolidated stage P 

 

In this alternate scenario, multiple instances of the 

entire problem are to be executed on individual data 

samples,  d0, d1, d2, etc. This alternate model is a typical 

Type 1 pipeline. 

 

The pipelined computation format affords considerable 

flexibility when modelling the CNN. The CNN can be 

modelled as a Type 1 or Type 2 pipeline. The stages can be 

merged to form a single consolidated stage. It is also 

possible to split a stage into two or more stages. 

 

A CNN can be considered to be a high level pipeline 

composition of the five stages mentioned in Table I above. 

The LeNet CNN of Fig. 2 (left) is revisited for an example 

of the composition described above. 

 

 
 

Fig. 12: LeNet (left) LeNet Pipeline (right) 

 

In order to analyse the CNN pipeline performance, the 

execution times of the five stages of the CNN pipeline are 

required as the input parameters and have been determined 

through computational experiments. Table II shows the 

experimentally determined times of the five stages of the 

CNN software pipeline. These are the average compute 

times for the processing of one data element, i.e., one input 

image sample through the CNN pipeline.   

 

TABLE II 

Input Parameters: Experimentally determined times of 

the stages of the CNN software pipeline 

 

S. 

No

. 

Stage 

Execution 

Time, T 

(s) 
Remarks 

1. P0 0.1 
HD image 1280 pixels 

x 720 pixels 

2. P1 46 

Convolutions of 

image with 100 3x3 

filters 

3. P2 19.9 

Nonlinear 

hypertangent 

activation function 

4. P3 24.1 
Average pooling 2x2 

window 

5. P4 29.84 

50 inputs, 100 hidden 

layer neurons, 10 

outputs, 10000 epochs 

 

The times seen in Table II are experimentally 

determined times of the different stages of a CNN software 

pipeline for a single HD image of 1280 pixels x 720 pixels. 

Same is graphically represented in Fig. 13. 
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Fig. 13:  Experimentally Determined Times of the  

stages of  the CNN software pipeline 

 

A real-world dataset from the domain of Materials Science 

has been taken up for analysis using the CNN. The primary 

motivation here was the design and analysis of a pipelined 

version of the CNN for application on this dataset. This 

dataset is the North Eastern University’s Steel Surface 

Defect Dataset. This dataset comprises of a total of 6 

classes. Each of these classes corresponds to one of six 

surface defects which are common in hot-rolled steel strips. 

These defects are the rolled-in scale (RS), patches (Pa), 

crazing (Cr), pitted surface (PS), inclusion (In) and 

scratches (Sc). Each class has 300 grayscale images. Size 

of each image in the dataset is 200 pixels x 200 pixels. 

Classification strategies applied on this dataset are 

discussed in [53-55]. 

 

Fig. 14 shows the master CNN pipeline architecture 

designed for the solution of this problem. The feature 

engineering part of the CNN has been considered here for 

this demonstration. The complete pipeline can be seen to 

be a composition of six different pipelines. For example, 

pipeline 1 comprises of loader1 followed by cnp11, cnp12, 

cnp13, cnp14 and flattening1.  

 

The convolutional, nonlinear mapping and pooling 

stages have been consolidated into a single “cnp” stage. 

An additional “flattening” stage can be seen. The flattening 

operation is used for mapping of the final pooled two-

dimensional matrices into one-dimensional vectors. These 

are the feature vectors which serve as the feature vector 

input to the “classifier” stage.  Four convolutional filter 

stages with 25, 25, 25 and 25 numbers of 11 x 11 filters 

have been considered. These filters can be observed to be 

common for all the six CNN pipelines. These 

convolutional filter perform the convolutional operation on 

each individual image of the CNN dataset. For the 

experiments, 100 images of each class were considered. 

 

The master CNN pipeline architecture for the NEU 

surface defect dataset is of a much higher level of 

sophistication than the simple pipeline of Fig. 10. The 

master pipeline is composed of six parallel pipelines. Each 

of the pipelines corresponds to one of the classes of the 

dataset. The six pipelines have been designed for 

performing the feature engineering computations on the 

input images corresponding to the six different classes of 

the dataset in parallel. This provides the basis for much 

higher performance as this approach combines pipeline 

parallelism with task parallelism on CNN computations. 

The net outcome is a multiplicative gain in speedup which 

can be theoretically seen to be the product of the speedups 

due to pipeline parallelism  and the speedup due to task 

parallelism. 

 

 
 

Fig. 14:  Master CNN pipeline architecture for NEU 

Dataset composed of six pipelines 

 

The representative times taken for the different stages of 

the master CNN Pipeline architecture for NEU Dataset is 

mentioned in Table III below 

 

TABLE III 

Input Parameters: Experimentally determined times of 

the stages of the master CNN pipeline 

 
Stage Execution Time, T in seconds 

LOAD 5.89 5.63 5.91 5.83 5.71 5.67 

CNP1 23.2 22.5 22.4 22.7 22.7 22.8 

CNP2 6.56 6.43 6.44 6.46 6.36 6.22 

CNP3 1.81 1.76 1.84 1.76 1.78 1.75 

CNP4 0.68 0.66 0.64 0.66 0.66 0.65 

FLAT 0.05 0.05 0.05 0.05 0.04 0.05 

 

The graphical representation of the experimentally 

determined representative times of the stages of the master 

CNN pipeline is graphically depicted in Fig. 15.  

 
 

Fig. 15:  Experimentally Determined Times of the  

stages of the CNN software pipeline 
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IV. RESULTS AND DISCUSSION 

In this section, the speedup in computation obtained 

through the high performance pipelined version of the 

CNN algorithm vis-a-vis the non-pipelined version is 

discussed. 

 

Speedup 

The speedup is defined as the ratio of the time taken by 

the non-pipelined version to the time taken by the 

pipelined version on a given problem. 

 

 

Pipeline with Equal Stage Execution Times:  
For a p-stage pipeline with m samples and equal time 

taken by the individual stages, the speedup can be derived 

as follows: 

 

 1


pm

mp
Speedup  

(1) 

 

Pipeline with Unequal Stage Execution Times: 

For a p-stage pipeline with m samples and unequal time 

taken by the individual stages, speedup can be derived as 

follows: 

 

p

p

i

p

i

m

m

Speedup












1

1

1  
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where τi is the time taken by stage Pi. 

 

From Table II and Fig. 13, it is clearly observed that 

the CNN pipeline involves stages with unequal times. 

 

For a problem with 10000 samples, which represents 

the size of typical datasets, the  relation between speedup 

and the number of equal pipeline stages is shown in Fig. 

16. 

 

 

 

 
 

Fig. 16:  Relationship between speedup and number 

of equal pipeline stages with 10k instances 

 

It can be seen that in this ideal scenario where the time 

taken by individual pipeline stages is the same, the 

speedup is nearly equal to the number of pipeline stages. 

The relationship is linear and scales excellently with the 

number of pipeline stages.  

 

This may lead to the conclusion that the non-pipelined 

algorithm should be decomposed into a large number of 

small pipeline stages for maximum performance. Such a 

conclusion would be premature and naïve, however. In the 

real world, the depth of a pipeline cannot be increased 

indefinitely. This is because the individual blocks or 

pipelines have to be mapped to different CPU cores during 

parallel execution. These blocks and pipelines are required 

to communicate the output as well as any intermediate data 

between each other. This may involve inter-core, inter-

CPU as well as inter-node communication. Presence of 

many such blocks would increase the communication 

leading to a point where the communication overheads 

start dominating computation and the performance starts 

deteriorating. 

 

 
 

Fig. 17: Relation between speedup and number of 

instances in a pipeline with 5 equal stages 

 

For a problem which has five equal pipeline stages, the 

relation between speedup and the number of instances is 

shown in Fig. 17. It can be seen that for a certain fixed 

number of equal stages in a pipeline which is five in this 

example, the  speedup approaches the number of equal 

pipeline stages with an increase in the number of instances, 

m. 

 

For a problem with 10000 samples and five unequal 

pipeline stages, e.g., 1, 1.5, 1.75, 2 and 2.2 time units, the 

speedup can be calculated to be 3.8. From this example 

and the formula for speedup in the case of unequal pipeline 

stages, it can be seen that the speedup and therefore the 

performance of the pipelined algorithm is higher if the 

different stages have as equal times as possible. The 

possiblity of aggregating small consecutive pipeline stages 

into a single pipeline stage and the partitioning of a larger 

stage into two or more smaller stages allows for some 

degree of flexibility in dealing with unequal pipeline stage 

times. 



Sunil Pandey et al. / IJETT, 69(6), 216-224, 2021 

 

222 

 

The data of Table II mentions the  experimentally 

determined times of the different stages of a CNN pipeline. 

This data is useful for the determination of the relative 

performance of the pipelined version of the CNN 

algorithm in relation to the non-pipelined version of the 

same. From the above data, the speedup is calculated as 

4.02.  

 

From the experimentally determined timing data given 

in Table III related to the master CNN pipeline architecture 

of Fig. 14, for North Eastern University’s surface defect 

dataset, the speedup of the six individual pipeline stages 

can be computed to be 3 approximately. From a look at the 

design of the master CNN pipeline architecture of Fig. 14, 

it is clear that the six pipelines which compose this 

architecture are identical in all respects including the 

stages, their number and arrangement, and the 

convolutional filters as well. It is therefore a reasonable 

expectation that the time taken for the execution of the 

individual stages or blocks and the pipelines would be 

identical.  This fact is borne out through the data revealed 

on experimentation.  

 

 
Fig. 18: Stage and Total Times of CNN Pipeline 

 

Two important observations can be made in this 

context. First is that the pipelines have been designed to be 

identical and therefore their execution times are nearly 

equal. Second is that the pipelines are completely 

independent of each other as can be seen from the stage or 

task reliance graph of Fig. 14. In view of the two reasons 

above, it is possible to achieve task parallelism in this 

master CNN pipeline. Task parallelism by mapping 

individual pipelines to different compute nodes can 

therfore lead to nearly six fold performance gain over the 

serial counterpart. This combined with the three fold 

performance gain from pipelined operations results in an 

18 times performance gain over the serial equivalent since 

the gains are multiplicative. 

 

Performance gain of 18 times is remarkable considering 

the fact that there is no other performance enhancing 

parameter which has been included in the discussion or 

analysis as yet. For instance, no parallelization of 

individual computational stages or blocks has been 

discussed on multicore CPUs except the indpendent 

mapping and execution of the blocks on individual CPU 

cores. Specialized and esoteric hardware accelerators like 

graphic processor units and tensor processing units, etc. 

are also entirely excluded from the current discussion. 

 

From the above analysis it is reasonably inferred that 

the pipelined convolutional type deep learning algorithm 

has a markedly higher perfornance than the conventional 

non-pipelined or monolithic CNN algorithm. If the design 

is for high performance then the pipelined CNN algorithm 

of Table II and Fig. 10 is a clear winner having a 

performance gain of up to four times when compared with 

the equivalent monolithic traditional CNN algorithm. This 

performance gain can be attributed solely to pipeline 

parallelism and is not dependent or influenced by any other 

factor. 

 

Further, in the context of the master pipeline CNN 

architecture designed for the NEU surface defects dataset, 

the performance gain due to pipeline parallelism is 

approximately 3. The performance gain due to task 

parallelism is approximately 6. These gains are 

multiplicative in nature and amplify each other to result in 

a net performance gain of 18 times over the equivalent 

monolithic serial non-pipelined CNN algorithm.  

 

An 18-fold increase in the performance through 

pipelined redesign of the convolutional neural network and 

task mapping is considerable given the fact that this 

performance gain is purely the result of pipelining the 

algorithm design, domain partitioning and mapping with 

no other performance enhancing parameter included in the 

analysis.  

V. CONCLUSIONS 

The concept of computational pipelines and the 

speedups resulting from pipeline implementations have 

been explained in sufficient detail. A high performance 

pipelined design of a deep learning algorithm of 

convolutional type has been proposed in the current work. 

The ideal from the perspective of maximum performance 

is to design the software pipeline using the principle of 

nearly equal pipeline stage times. In the limiting cases, the 

speedup tends to approach the number of pipeline stages 

which can be treated as the upper bound of the pipeline 

performance. While equally timed stages may be very 

desirable from the perspective of performance, they are 

seldom practicable considering the nature of most 

algorithms. Two examples of pipeline implementations of 

CNNs have been designed and analysed. A five stage CNN 

pipeline comprising of the instance or image loader, the 

convoluter, the nonlinear transformer, the pooler and the 

trainer stages has been elucidated. Another master CNN 

computational pipeline has been designed for a real-world 

problem of hot rolled steel strip surface defects 

classification. This CNN pipeline specifically for feature 

engineering consists of six identical and independent 
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pipelines. The CNN pipelines have been analyzed on the 

basis of data obtained from computational experiments by 

timing the CNN stages. Analysis shows that the pipelined 

CNN algorithm design in itself results in 4X better 

performance than its conventional non-pipelined 

monolithic counterpart for the configuration considered. In 

the context of the CNN designed for surface defects 

problem, the performance gain due to pipeline parallelism 

is approximately 3X while that due to task parallelism is 

approximately 6X which result in a net performance gain 

of 18X over the equivalent monolithic serial non-pipelined 

CNN algorithm. Speedups of the individual blocks on 

account of other reasons like code optimizations, block 

parallelization, hardware accelerators, etc. shall also result 

in a multiplicative effect on the overall speedup. 
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