
International Journal of Engineering Trends and Technology                                                Volume 69 Issue 7, 64-68, July, 2021 
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I7P209                                                    ©2021 Seventh Sense Research Group® 

 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

The Performance of Various Optimizers in 

Machine Learning  
Rajendra.P #1, Pusuluri V.N.H#2, Gunavardhana Naidu.T*3   

# Department of Mathematics, CMR Institute of Technology, Bengaluru, Karnataka, India. 
* Department of Physics, Aditya Institute of Technology and Management, Tekkali, Srikakulam, AP, India.   

1 rajendra.padidhapu@gmail.com, 2 hanuravi@yahoo.com, 3 tgpnaidu@gmail.com 

 

Abstract:  The primary goal of the optimizers is to speed 

up the training and helps to boost the efficiency of the 

models. Optimization methods are the engines underlying 

deep neural networks that enable them to learn from data. 

When faced with the training of a neural network, the 

decision of which optimizer to select seems to be shrouded 
in mystery, since in the general literature around 

optimizers require a lot of mathematical baggage. To 

define a practical criterion, the authors carried out a 

series of experiments to see the performance of different 

optimizers in canonical problems of machine learning. So 

we can choose an optimizer easily. 

 

Keywords:  Optimizers, Machine Learning, Neural 

Network, Gradient Descent, Adaptive methods. 

I. INTRODUCTION 

Deep learning is characterized by using large samples with 

the help of a single optimizing algorithm. Typical 

optimization algorithms adjust the parameters of all 

operations simultaneously and effectively evaluate the 

influence of each of the parameters of the neural network. 

The optimization algorithm (Optimizer) is one of the key 

aspects of training an artificial deep neural network. The 
loss function or the error function can be called the 

objective function of the optimization. The standard neural 

network [1] training objective   is given by: 

 

 
 

Where  is the loss function for each input , label  , 

and the predicted value ? 

The basic gradient iteration is given by 
 

        
 

Where  is the rate of learning, and is the standard 

gradient? The Gradient direction of   gives the 

greatest reduction in  . The assumption here is that the 

function  is continuous and differentiable. Our goal 

is to investigate the lowest point of the optimization 

function [2]. However, the actual direction to this valley is 

not known. We can only observe locally, and therefore the 
direction of the negative gradient is the best information. 

Taking a small step in that direction can only bring us 

closer to the minimum. Once we've taken the small step, 

we calculate the new gradient and move a small amount in 

that direction again until we reach the valley. So 

essentially, all the gradient descent does is following the 

direction of the steepest descent (negative gradient). The 

Parameter in the iterative update equation is called step 

size. We generally do not know the value of the optimal 
step size; then, we have to try different values. Standard 

practice is to test a bunch of values on a logarithmic scale 

and then use the best one. Different scenarios can occur [3], 

and the image below shows these scenarios for a 1D 

quadratic. If the value of the learning rate is too low, we 

will make steady progress towards the minimum. However, 

this may take longer than ideal. In general, it is very 

difficult to obtain a step size that takes us directly to the 

minimum. What we would ideally want is to have a step 

size slightly larger than optimal. In practice, this provides 

the fastest convergence. However, if we use too large a 
learning rate, iterations are moved further and further from 

the minimum, and the result is divergence. In practice, we 

would like to use a learning rate that is slightly lower than 

the divergent rate [4]. 

 

 
 

Fig 1: Backpropagation algorithm for neural network 

training [5]. 
 

 In essence, the goal of neural network training is to 

minimize the cost function by finding the appropriate 

weights for the edges of the network. The discovery of 
these weights is carried out using a numerical algorithm 

called backpropagation that can be summarized in Fig 1. 

II. OVERVIEW OF THE MAIN OPTIMIZERS 

The following are the optimizers that we have trained in 

each network and presented the results in this article. 

https://ijettjournal.org/archive/ijett-v69i7p209
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rajendra.P et al. / IJETT, 69(7), 64-68, 2021 
 

65 

A. Stochastic Gradient Descent (SGD): The calculation of 

the partial derivative of the cost function concerning each 

of the weights of the network for each observation is given 

the number of different weights and observations. 

Therefore, a first optimization consists of the introduction 
of a stochastic (random) behavior.  A. S. Nemirovsky & D. 

B. Yudin studied algorithms to optimize convex functions 

based on constraints [6]. The authors also studied the 

method efficiency in the minimization of convex problems. 

Nicolas Le Roux et al. [7] proposed a new SGD having a 

fast convergence rate that incorporates the previous 

gradient rate. Specifically for a neural network, stochastic 

estimation refers to the error gradient for a single data 

point (single instance). SGD does something as simple as 

limiting the derivative calculation to just one observation 

(per batch). There are some variations based on selecting 
several observations instead of one (mini-batch SGD). 

B. Adaptive Gradient Algorithm (AdaGrad): In the SGD 

formulation, each weight in the network is updated using 

an equation with the same learning rate (global γ). Instead, 

for adaptive methods, we accept a learning rate for each 

weight individually. For this purpose, the information 

obtained from the gradients of each weight is used. Eiji 

Mizutani and S.E. Dreyfus [8] analyzed the Hessian matrix 

H exploits neural networks “layered symmetry” and 

making Hessian evaluation for practical problems. The 

AdaGrad algorithm introduces a very interesting variation 

in the concept of training factor instead of considering a 
uniform value for all weights; a specific training factor is 

maintained for each of them. It would be impractical to 

calculate this value specifically so, starting from the initial 

training factor, AdaGrad scales and adapts it for each 

dimension for the accumulated gradient in each iteration. 

C. Adadelta: The Adadelta is a variation of AdaGrad in 

which instead of calculating the scaling of the training 

factor of each dimension taking into account the 

accumulated gradient from the beginning of the execution, 

it is restricted to a window of the fixed size of the last n 

gradients. The networks most used in practice have a 

different structure in different parts. For example, the first 
parts of a CNN [9] network can be very shallow 

convolutional layers on large images, and then in the 

network, we can have convolutions with a large number of 

channels on small images. The two operations are very 

different, so a learning rate that works well for the 

beginning of the network may not work well for the later 

sections of the network. This means that adaptive learning 

rates per layer can prove to be useful. 

D. Root Mean Square Propagation (RMSprop): The 

RMSProp is a similar algorithm. It also maintains a 

different training factor for each dimension, but in this 
case, the training factor is scaled by dividing it by the 

mean of the exponential decline of the square of the 

gradients. The central idea of Root Mean Square 

Propagation is to normalize the gradient with its mean 

value of the squares of square root. Yann N. Dauphin et al. 

[10] proposed a new saddle-free Newton method to 2nd 

order optimization to escape from saddle points. The 

authors applied this method for DNN and RNN, and the 

result gives numerical information for its optimization 

performance. The original method maintains a non-central 

second-order moment exponential moving average. The 

second-order moment is used to normalize all elements of 

the gradient, which means that each element of the 
gradient is divided by the square root of the estimated 

second-order moment. If the expected value of the grand is 

small, this process is similar to dividing the gradient by the 
standard deviation.   

E. Adaptive moment estimation (Adam): The Adam 

algorithm combines the benefits of AdaGrad and 

RMSProp. One training factor per parameter is maintained, 

and in addition to calculating RMSProp, each training 

factor is also affected by the mean momentum of the 

gradient. Deep learning allows very high computational 

models through numerous handling layers to learn 

portrayals of information with various degrees of reflection 
[11]. As has just been verified, the most recent algorithms 

such as Adam are built based on their predecessors; 

therefore, we can expect their performance to be superior. 

III. THE PROPOSED EXPERIMENTS 

It is difficult to have an intuitive vision of the behavior of 
each one of the optimizers; therefore, it is useful to 

visualize its performance in different cost functions. From 

a practical point of view, in a real environment, it is 

impossible to advance the taxonomy of the cost function. 

To give the study as much breadth as possible, we have 

selected the following four classic problems in the field of 

machine learning. In addition to representing different 

functional scopes, each one of them exposes specific and 

representative network architecture: 

 

Table 1: The proposed experiments. 

Type of the 

problem 

Network 

architecture 

Data set 

 

Simple 

Regression 

Multi-layer 

perceptron 

(MLP) 

Boston home 

prices 

Multiclass 

classifier 

2 Dimensional 

Convolutional 

Neural Network 

(2D – CNN) 

Fashion -

MNIST 

Binary 

classifier 

1 Dimensional 

Convolutional 

Neural Network 

(1D – CNN) with  

embeddings 

Sentiment 

analysis -

IMDB 

 

Forecasting 

of time 

series 

Long Short - 

Term  Memory 
(LSTM) of  

Recurrent Neural 

Network (RNN)  

Prediction of 

temperature 



Rajendra.P et al. / IJETT, 69(7), 64-68, 2021 
 

66 

The following optimizers are trained in each of the neural 

networks (all available in Keras). 

 

(i) Adadelta (ii) Adagrad  (iii) Adam  

(iv) Adamax (v)  Ftrl (vi) Nadam   
(vii) RMSprop  

(viii) SGD (without Nesterov and Momentum) 

 

Regarding the cost functions, we used MAE for the 

regressions and forecast, binary cross-entropy used for the 

binary classifier, and categorical cross-entropy used for the 

multiclass classifier. We kept the default values of the 

learning factor and the specific parameters of each 

optimizer (learning rate = 0.001). 

IV. THE RESULTS AND DISCUSSIONS 

The following are the results of the executions of the four 

different experiments.  
 

Experiment 1: We used the Boston housing price dataset 

[12] that contains the information on prices and features of 

blocks of houses in the city of Boston. The objective 

variable of this dataset is the average price of the houses in 

a block based on the characteristics of the said residential 

area. In general, we observed three types of behaviors in 

Simple Numerical Regression. 

(i) Adadelta does not converge,  

(ii) Adagrad and Ftrl converge in a sub-optimal 

linear way and  
(iii) The remaining algorithms end up finding a 

minimum and also present good generalization. 

 It is important to point out that SGD's behavior is quite 

irregular, with multiple “comings and goings” in the 

convergence process. In absolute terms, RMSProp has the 

best performance. 

 

 
 

Fig 2: Convergence of the different optimizers in a 

simple numerical regression. 

 

Experiment 2: In this section, we are implementing the 

2D-CNN in Keras. Since our dataset is the Fashion 

MNIST [13], it contains images of size (28X 28) of 1 color 

channel instead of (64X 64) with 3 color channels.  In 

Classifier (multi-class) of images, neither Adadelta nor Ftrl 

showed good behavior. The rest of the algorithms follow a 
similar error minimization pattern, each one at a different 

speed, increasing the number of epochs is probably all end 

up in a similar situation. Adam has the best overall 

performance and RMSProp the fastest convergence. 

 

 
 

 

 

 



Rajendra.P et al. / IJETT, 69(7), 64-68, 2021 
 

67 

 

 

Fig 3: Convergence of the different optimizers in the 

multiclass CNN classifier. 
 

Experiment 3: The data used in this project is the so-

called Data Set Review Movie (Movie Review Large 

Dataset), which is often referred to as the IMDB data 

set[14]. The IMDB dataset was having 50000 extremely 

polar movie reviews (either good or bad), of which we 

used 50% for training and 50% for testing. The problem is 

determining whether criticism or review of a movie has 

either positive or negative sentiment. The training of the 

CNN network presents a peculiar behavior in text 
classifiers (binary). We see how the overfitting 

phenomenon appears with almost all optimizers. Therefore 

we explored the training with more epochs, applying 

regularization or drop-outs. RMSProp has the best absolute 

value and Adam the most efficient convergence. 

 

 

 
Fig 4: Convergence of the different optimizers in a 

binary CNN classifier with Embeddings. 

 
Experiment 4: A time series is a collection of 

observations of a variable taken sequentially and ordered 

in time. The series can have annual, semi-annual, 

quarterly, monthly, etc., according to the periods in which 
the data that compose it is collected. Time series can be 

defined as a particular case of stochastic processes since a 

stochastic process is a sequence of random, ordered and 

chronologically equidistant variables referred to as 

observable characteristics at different times. In the 

forecasting of the time series scenario, we again observe 

three different convergence patterns. (i) Frtl and Nadam do 

not find the minimum (Ftrl is expected, given its particular 

applicability). (ii) Adagrad shows a suboptimal 

convergence, and (iii) the rest of the algorithm has similar 

behavior, with Adam and RMSProp being the ones with 

the best behavior. 
 

 



Rajendra.P et al. / IJETT, 69(7), 64-68, 2021 
 

68 

 
 

Fig 5:  Convergence of the different optimizers with 

RNN LSTM 
 

V. CONCLUSIONS 

    The Neural network optimizers usually use some type of 

GD algorithms to drive the backpropagation, frequently 

with a system that helps avoid getting stuck at a local 

minimum, for instance, optimizing the selected mini-jobs 

randomly, and applying moment corrections to the 

slope. Some GD algorithms adapt the rate of learning to 

the model parameters by look into the history of gradients 

[15]. In conclusion, we have observed in an empirical way 

how perhaps the Adam algorithm presents an adequate 

behavior in different problems; therefore, it can be a good 
point to start testing in our models. An extremely 

important factor (perhaps the most important hyper-

parameter) that we cannot ignore and that we have 

assumed constant is the training factor. In successive 

notes, we explored how, once an optimizer is selected, we 

can adjust its training factor and understand the trade-off 

between this factor, execution times, and convergence. 

 

 

 

 

 

REFERENCES  
[1] Rajendra, P., Subbarao, A., Ramu, G. et al., Prediction of     drug 

solubility on parallel computing architecture by support vector 

machines, Netw Model Anal Health Inform Bioinforma 7 (13) 

(2018).https://doi.org/10.1007/s13721-018-0174-0 

[2] Murthy N, Saravana R, Rajendra P., Critical comparison of 

northeast monsoon rainfall for different regions through analysis 

of means technique, Mausam, 69 (2018) 411–418 

[3] Narasimha Murthy, K.V., Saravana, R. & Rajendra, P., 

Unobserved component modeling for seasonal rainfall patterns in 

Rayalaseema region, India 1951–2015. Meteorol Atmos Phys 131 

(2019) 1387–1399. https://doi.org/10.1007/s00703-018-0645-y 

[4] Rao AS, Sainath S, Rajendra P, Ramu G., Mathematical modeling 

of hydromagnetic Casson non-Newtonian nanofluid convection 

slip flows from an isothermal sphere. Nonlinear Eng, 8(1) 645–

660. https://doi.org/10.1515/nleng-2018-0016 

[5] Kim, Sung Eun & Seo, Il.Artificial Neural Network ensemble 

modeling with conjunctive data clustering for water quality 

prediction in rivers, Journal of Hydro-environment Research, 

(2015). Doi: 9. 10.1016/j.jher.2014.09.006. 

[6] A. S. Nemirovsky and D. B. Yudin., Problem Complexity and 

Method Efficiency in Optimization, John Wiley & Sons,(1983).  

[7] N. L. Roux, M. Schmidt, and F. R. Bach., A stochastic gradient 

method with an exponential convergence rate for finite training 

sets, in Advances in Neural Information Processing Systems, 

(2012) 2663–2671. 

[8] Mizutani E, Dreyfus SE.. Second-order stagewise backpropagation 

for Hessian-matrix analyses and investigation of negative 

curvature, Neural Netw,         21(2-3) (2008) 193-203.Doi: 

10.1016/j.neunet.2007.12.038. 

[9] Defazio, A., Bach, F. R. & Lacoste-Julien, S., SAGA: A Fast 

Incremental Gradient Method With Support for Non-Strongly 

Convex Composite Objectives, In Z. Ghahramani, M. Welling, C. 

Cortes, N. D. Lawrence & K. Q. Weinberger (eds.), (2014)1646-

1654. NIPS.  

[10] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & 

Bengio, Y., Identifying and attacking the saddle point problem in 

high-dimensional non-convex optimization, Advances in Neural 

Information Processing Systems, (2014) 2933-2941. 

[11] LeCun, Y., Bengio, Y. & Hinton, G., Deep 

learning, Nature, 521(2015) 436–444. 

https://doi.org/10.1038/nature14539  

[12] Boston housing price dataset: https://www.kaggle.com/c/boston-

housing (Accessed on 24/03/2021) 

[13] Fashion MNIST dataset: https://www.kaggle.com/zalando-

research/fashionmnist (Accessed on 24/03/2021) 

[14] Sentiment analysis IMDB dataset:  https://datasets.imdbws.com 

(Accessed on 24/03/2021) 

[15] Rajendra, P., Brahmajirao, V., Modeling of dynamical systems 

through deep learning, Biophys Rev,12 (2020) 1311–

1320.https://doi.org/10.1007/s12551-020-00776-4 

 

 

 


