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Abstract - Presence of noise in the labels of large scale 

facial expression datasets has been a key challenge towards 

Facial Expression Recognition (FER) in the wild. During 

early learning stage, deep networks fit on clean data. Then, 
eventually, they start overfitting on noisy labels due to their 

memorization ability, which limits FER performance. This 

work proposes an effective training strategy in the presence 

of noisy labels, called as Consensual Collaborative Training 

(CCT) framework. CCT co-trains three networks jointly 

using a convex combination of supervision loss and 

consistency loss, without making any assumption about the 

noise distribution. A dynamic transition mechanism is used 

to move from supervision loss in early learning to 

consistency loss for consensus of predictions among 

networks in the later stage. Inference is done using a single 

network based on a simple knowledge distillation scheme. 
Effectiveness of the proposed framework is demonstrated on 

synthetic as well as real noisy FER datasets. In addition, a 

large test subset of around 5K images is annotated from the 

FEC dataset using crowd wisdom of 16 different annotators 

and reliable labels are inferred. CCT is also validated on it. 

State-of-the-art performance is reported on the benchmark 

FER datasets RAFDB (90.84%) FERPlus (89.99%) and 

AffectNet (66%).  

Keywords —  Collaborative training, Crowd-sourcing, 

Knowledge distillation, Facial expression recognition, Noisy 

annotation. 

I. INTRODUCTION  

Recognizing expressions in faces plays a vital role in 

communication and social interaction, analysing mental 

related illness like depression, measuring attentiveness in 

student-teacher interaction etc. Due to the resurgence of 

deep neural networks (DNNs) and the availability of large 

datasets, automatic facial expression recognition (FER) 

systems have received a lot of attention recently [1]. Such 

systems have plethora of applications including human-
computer interaction [2], intelligent tutoring [3] , automatic 

driver alert [4], mental health analysis [5] and computer 

animation [6]. 

Traditional works like [7]-[10] focused on training 

machines for FER through examples collected in a 

controlled (in-lab) environment. Examples of such in-lab 

datasets are CK+ [11]-[12] , Oulu-CASIA [13] and JAFFE 

[14]. These datasets are small in size, and annotations are 

readily available. However, machines trained on small in-lab 

datasets do not generalize well to real-world scenarios. 

Consequently, large datasets collected from real-world 

scenarios (called as in-the-wild datasets) like AffectNet [15], 

FERPlus [16] and RAFDB [17]-[18] have been made 
available. However, these datasets contain noisy annotations 

that are primarily caused by (i) crowd sourcing, (ii) 

ambiguity in expressions, (iii) poor quality of images due to 

variations in illumination, pose, occlusion, and low 

resolution and (iv) automatic annotations obtained by 

querying web using keywords [19]. Such noisy annotations 

can significantly affect the performance of DNNs [20]-[22]. 

Therefore, it is important to handle noisy annotations while 

training. 

Two approaches have been adopted by bulk of the 

methods to deal with noisy annotations. One is to correct the 

noisy labels by estimating the noise transition matrix [23]- 

[24]. The other is to identify the noisy labels and suppress 

their influence during training [25]-[26]. The former 

approach is generally underperforming since it is difficult to 

accurately estimate the noise transition matrix. The later 

identifies clean labels as ones with low loss during early part 
of the training, relying on the fact that DNNs fit clean labels 

first before overfitting on the noisy labels [20]. Since hard 

samples do not have low loss during early part of the 

training, they will get clubbed with noisy samples. This is 

detrimental to generalizability of the approach. Further, the 

later approach requires prior information about the noise 

distribution in the data, which is not available in the real-

world scenario. 

In this work, the problem of noisy annotations is 

approached differently. Three networks are co-trained 

jointly. Each network is facilitated to learn expressions in 

faces through a supervision loss. The influence of noisy 

labels on each network is suppressed by forcing each 

https://ijettjournal.org/archive/ijett-v69i7p231
https://www.internationaljournalssrg.org/
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network to be consistent with the other. This is achieved 

through a consistency loss. A dynamic transition scheme is 

used to gradually move from supervision loss to consistency 

loss during training. This facilitates influence of clean labels 

during early part of the training and prevent overfitting to 
noisy labels during later part of the training. CCT does not 

require noise distribution to be known in advance, and hence 

fits very well in real-world scenarios. CCT is presented in 

detail in section III. A simple knowledge distillation strategy 

is proposed for inference wherein a single network is 

distilled from the co-trained three networks and used for 

inference. In addition, as a contribution towards FER 

research community, a large test subset of around 5K images 

is annotated and released from the test set of FEC dataset 

[27] which is made available by google recently. The details 

are presented in section IV. In summary, our contributions 

are as follows: 

1. CCT framework for FER with noisy annotations 

without any assumption about noise distribution. 

2. A knowledge distillation scheme to distill a single 

network for inference from the co-trained three 

networks. 

3. Annotation of a large test subset of around 5K images 

from the FEC test dataset. 

4. Robustness of the proposed framework in the presence 

of synthetic label noise on RAFDB [17]- [18], FERPlus 

[16] and AffectNet [15] datasets. 

5. Robustness of the proposed method on real noisy 

datasets including AffectNet and our curated FEC. 

6. Newest state-of-the-art (SOTA) performance on 

standard FER datasets including RAFDB, FERPlus and 

AffectNet demonstrating CCT’s utility as a general 

purpose robust FER learning framework. 

II. RELATED WORK 

Handling noisy annotations in DNNs is challenging since 

DNNs tend to over fit them easily [20]. Many strategies 

have been proposed viz. small loss trick [25]-[26], [28], 

robust losses [29]-[30], label cleansing [31], weighting [32], 

meta-learning [33], ensemble learning [34], and others [35]-

[36]. Earlier approaches [23]-[24] correct labels by 

estimating the noise transition matrix. For example, [37] 

considers labels as probability distributions over the classes 
and iteratively corrects these distributions. However, 

obtaining an accurate noise transition matrix is not possible 

in real-world scenario. The current trend is to rely on low 

loss samples with or without co-training [25]-[26], [38]-[40] 

due to the fact that low loss samples are associated with 

clean labels [26]. These methods are also conservative in 

their later part of training since DNNs tend to memorize 

noisy labels [20]-[21] eventually. 

In [26], a teacher net guides the student net to choose 

samples with low loss, assuming it has access to a clean 

dataset, and subsequently learning from the dataset. A clean 

dataset may not be always available. In the absence of clean 

dataset, the method depends on a pre-defined curriculum, 

which is generally difficult to conceive for a DNN. The 

method suffers from self-accumulated error. Decoupling 

[38] attempts to overcome this by training two networks, 
each of which will independently update based on their low 

loss samples on whom the network predictions disagree with 

the other network’s predictions. Such low loss samples are 

likely to be associated with clean labels. However, since 

noise can span across the entire label set, the disagreement 

region predominantly contains noisy labels, and hence in 

such cases, the method becomes less effective. Coteaching 

[25] and Co-teaching+ [28] tackle this by updating each 

network based on small loss samples selected by the other 

network, thereby incorporating peer learning. The two ideas 

differ in the sense that Co-teaching+ adopts low loss sample 
selection based on disagreement to keep both the networks 

sufficiently diverged. Main limitation of the aforementioned 

methods is that they depend on accurate estimation of noise 

distribution in the data. 

Contrary to the disagreement principle followed in [38, 

28], JoCoR [39] selects low loss samples based on 
agreement between two networks, enforced by a joint loss. 

However, JoCoR requires noise rate to be known in 

advance. NCT [40] performs mutual training but does not 

rely on low loss samples explicitly. During training, along 

with self supervision, it forces one network to imitate the 

other. Also, to enforce complete training, it flips target labels 

randomly based on an adaptive target variability rate that it 

computes. Further, it does not require noise rate to be known 

in advance. Though a lot of methods are discussed above for 

handling noisy labels, a large number of them have been 

tested only on datasets like MNIST, CIFAR10 etc. Literature 

on handling noisy labels in FER is scarce. In [41], each 
sample is assigned multiple inconsistent human and machine 

predicted labels, and subsequently a network is trained to 

discover the true label. In [19], self-cure network (SCN) 

learns the importance of each sample using a self-attention 

module for loss re-weighting. Low weight samples are 

treated as noisy and also relabeled if predicted probability is 

above a certain threshold. Both these methods focus on 

correcting the noisy labels, which comes with uncertainty. 

.
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Fig. 1 CCT involves training three networks θ1; θ2 and θ3 jointly using a convex combination of supervision loss and 

consistency loss. Consensus is built by aligning the posterior distributions (shown as dotted red curves between p1, p2 

and p3) using consistency loss. Dynamic weighting factor (λ) that balances both the losses is described in Fig. 2 and Eq. 4 

III. PROPOSED CCT 

A. Overview 

The proposed CCT follows the principle of consensus 

based collaborative training called Co-Training [42]. It uses 

three networks to learn robust facial expression features in 

the presence of noisy annotations. Inspired by [39]-[40], 

[43], three networks with identical architecture, but different 

initializations, are trained jointly using a convex 

combination of supervision loss and consistency loss. 

Different initializations promote different learning paths for 

the networks, though they have same architecture. This 

subsequently reduces the overall error by averaging out 

individual errors due to the diversity of predictions and 

errors. In the initial phase of training, networks are trained 
using supervision loss. This ensures that clean data is 

effectively utilized during training since DNNs fit clean 

labels initially [20]-[21]. Further, to avoid eventual 

memorization of noisy labels by individual DNNs, 

gradually, as the training progresses, more focus is laid on 

consensus building using consistency loss between 

predictions of different networks. Building consensus 

between networks of different capabilities ensures that no 

network by itself can decide to overfit on noisy labels. 

Further, it also promotes hard instance learning during 

training because the networks are not restricted to update 
based on only low loss samples, and further that, as the 

training progresses, they must agree. The trade-off between 

supervision and consistency loss is dynamically balanced 

using a Gaussian like ramp-up function [40]. Further, the 

proposed CCT does not require noise distribution 

information, and it is also architecture independent. Fig. 1 

delineates the proposed CCT framework and Algorithm 1 

enumerates the pseudo-code for CCT training. Note that 

CCT is different from JoCoR [39] in that CCT does not need 

to know noise rate in advance, unlike JoCoR. In addition, 

unlike JoCoR, CCT dynamically balances between different 

losses. CCT also differs from NCT [40] wherein target 

variability is introduced to avoid memorization in later 

stages. CCT implicitly avoids memorization because it has 

three networks collaborating with each other through the 

consistency loss. It does not require target variability 

function. Also, supervision is independent in NCT while it is 

done jointly in CCT. Overall, CCT demonstrates superior 

performance on both synthetic and real noisy labels, as 

reported in section IV. 

B. Problem Formulation 

Given C expression categories, let D={(𝑥𝑖 , 𝑦𝑖)}1
𝑁 be the 

dataset of N training samples where 𝑥𝑖 is the ith input facial 

image with expression label 𝑦𝑖 ∈ {1,2, . . , 𝐶}. CCT is 

formulated as a consensual collaborative learning using three 

networks parametrized by {𝜃𝑗}
𝑗=1

3
. The learning is achieved 

by minimizing the loss L given by:   

L = (1 − λ) ∗ Lsup + λ ∗ Lcons                                          (1) 

where Lsup, Lcons and λ are described below. 

a) Supervision Loss 

Cross-entropy (CE) loss is used as supervision loss to 

minimize the error between predictions and labels. Let pj 

denote the prediction probability distribution of jth network. 

Then,  

Lsup = ∑ 𝐿𝐶𝐸
𝑗3

𝑗=1 (𝑝𝑗 , 𝑦)                    (2) 

where y is the groundtruth vector. 

b) Consistency Loss 

We use Kullback-Leibler divergence (DKL) to bring 

consensus among predictions of different networks by 

aligning their probability distributions. 
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Lcons =  ∑ ∑ DKL
(j)3

k=1
k≠j

3
j=1 (pk ∥ pj)      (3) 

c) Dynamic Balancing 

The dynamic trade-off factor between Lsup and Lcons is 

computed as in [40]. Specifically, 

𝜆 =  𝜆𝑚𝑎𝑥 ∗ 𝑒
−𝛽∗ (1− 

𝑒

𝑒𝑟
)2

                                (4) 

where β determines the shape of the Gaussian like ramp-

up function, λmax refers to maximum value of λ, e is the 

current epoch and er is epoch (ramp-up length) at which λ 

attains its maximum value (λmax). When λ is small, 

supervision loss dominates. As training progresses, e 

approaches er which pushes λ towards λmax, allowing 

consistency loss to take over. Fig. 2 displays the dynamic 
balancing curves for different β’s. Smaller than value of β, 

faster it transitions from supervision loss to consistency loss. 

In this work, β=0.65 is chosen based on [40].  

 
Fig. 2 Dynamic balancing curves for different values of β 

d)  Inference using Knowledge Distillation 

During testing, given an unlabeled facial image, average 

of predictions or majority voting from the three networks 

can be used to infer expression label. However, this would 

favor the argument that superior results are due to the 

ensembling effect of the three networks and not due to the 

effect of CCT framework as such. Further, this would also 

involve more parameters, and consequently more floating 
point operations during inference. In fact, it was observed in 

all our experiments that all the three networks perform 

equally well, and so arbitrarily any one of the networks can 

be used during inference. However, to formally have a 

model with 1/3rd of the training parameters during 

inference, a simple knowledge distillation [44] scheme is 

proposed as follows.  

Let the trained three networks model be the teacher 

network T. Let S be the student network that has the same 

architecture like any of the three networks in T. Obviously, 

S has 1/3rd of the parameters of T. Let 𝑝𝑗,𝑇 be the softened 

output of softmax of the jth network in T with its ith 

component as 𝑝𝑗,𝑇
𝑖 . The corresponding logits of the jth 

network are uj. Let 𝑝𝑆 
𝐻  and 𝑝𝑆 be the hard and softened 

output of softmax of the student network S , respectively. 

Their corresponding ith components are 𝑝𝑆 
𝑖,𝐻  and 𝑝𝑆

𝑖 . Let v 

be the logits of the student network S . Then      

𝑝𝑗,𝑇
𝑖 =

𝑒

𝑢𝑗
𝑖

𝑈
⁄

∑ 𝑒

𝑢𝑗
𝑘

𝑈
⁄

𝑁
𝑘=1

,   𝑝𝑆
𝑖 =

𝑒
𝑣𝑖

𝑈
⁄

∑ 𝑒
𝑣𝑘

𝑈
⁄𝑁

𝑘=1

,    𝑝𝑆
𝑖,𝐻 =

𝑒𝑣𝑖

∑ 𝑒𝑣𝑘𝑁
𝑘=1

   (5) 

where U is the temperature constant used to soften the 

softmax.  

We distill the knowledge from T to S by minimizing the 

following loss:  

 𝐿𝑘𝑑  = 0.5 ∗ ∑ 𝐿𝐶𝐸
3
𝑗=1 (𝑝𝑗,𝑇 , 𝑝𝑆) +  0.5 ∗  𝐿𝐶𝐸(𝑝𝑆

𝐻 , 𝑦)   (6) 

where LCE is the cross-entropy loss and y is the 

groundtruth vector. The first term in the above equation 

enforces the student network to mimic the classification 

behaviour of all the three networks in the teacher model T. 

The second term forces the predictions of the student 

network to be equal to the groundtruth values. 

 

C. Training Algorithm 

Algorithm 1: CCT training algorithm 

Input: Network f with parameters {𝜃1, 𝜃2, 𝜃3}, dataset (D) 

number of epochs (emax) maximum 𝜆 value ( 𝜆𝑚𝑎𝑥) learning 

rate (𝜂). 

Steps: 

1. Initialize θ1,  θ2 and θ3 randomly. 

2. for e = 1, 2,…, emax epochs do 

i. Sample a minibatch Dn from D 

ii. Compute pi = 𝑓(𝑥, 𝜃𝑖) ∀𝑥𝜖𝐷𝑛 ,(1 ≤ 𝑖 ≤  3 ) 

iii. Compute dynamic weighting factor 𝜆 using Eq. 

(4) 

iv. Compute joint loss L using Eqs. (1) (2) and (3) 

v. Update 𝜃 =  𝜃 − 𝜂∇𝐿   
Output: Return {𝜃1, 𝜃2, 𝜃3} 

IV. EXPERIEMENTS 

A. Datasets 

   In this section, first the benchmark datasets used for 

FER in-the-wild settings are described and then our 

annotated FEC test subset. 

a) In-the-wild FER Datasets 

AffectNet [15] is the largest facial expression dataset with 

1M images out of which 0.44M are manually annotated and 

remaining 0.46M images are automatically annotated for the 

presence of eight (neutral, happy, angry, sad, fear, surprise, 

disgust, contempt) facial expressions. Since some SOTA 

methods present results only for the first seven expressions 

(without contempt) while few others quote for all eight 

expressions,to compare against the other works, the former 
case is denoted by AffectNet-7 while the latter by AffectNet-

8. AffectNet-7 consists of 3500 images for validation 
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whereas AffectNet-8 has 4000 images. The automatically 

annotated subset is used for training under real noisy 

conditions and manually annotated subset for training with 

synthetic noise. RAFDB [17]-[18] contains 29762 facial 

images tagged with 
basic or compound expressions by 40 annotators. In this 

work, the subset with 7-basic emotions consisting of 12,271 

images for is used for training and 3068 images for testing.  

FERPlus [16], an extended version of FER2013, consists of 

28709 images for training, 3589 images for validation and 

3589 for testing with all 8-basic emotions. 

In this work, manually annotated test subsets of 

AffectNet, RAFDB and FERPlus are reffered as clean test 

subsets of AffectNet, RAFDB and FERPlus, respectively. 

b) Annotated FEC Test Subset for Expression Recognition 

Vemulapalli et al. [27] released a large scale facial 

expression comparison (FEC) dataset in-the-wild consisting 
of 500K triplets generated using 157K face images, along 

with annotations that specify which two expressions in each 

triplet are most similar than the others. FEC, while rich in its 

size and diversity, does not provide annotations for basic 

emotions for FER. A noisy training subset and a clean test 

subset are created from FEC. For noisy training set, around 

86K training images are considered and automatically 

annotated using SOTA algorithm SCN [19] for 8 basic 

emotions. Since the number of contempt expressions 

obtained are only 17, these are not considered. The rest of 

the images are referred as FEC training set. With regard to 
clean test subset, 5257 images are annotated as follows. 

Since expression is naturally perceived by public,  

crowdsourcing is used as a first step to get labels. Sixteen 

different annotators were involved. They labeled the images 

for one of the 8 basic emotions, and none of above if they 

could not identify the emotion. Motivated by [45]-[46], to 

arrive at final clean annotation, PM method [45]-[46] is used 

to infer true expression labels, which takes into account each 

annotator’s expertise. PM is an iterative method which 

jointly infers annotator’s expertise as well as the expression 

label. Let 𝑣𝑖
𝑎 represent the label of ith image by annotator ‘a’ 

with expertise ea. Let 𝑣𝑖
∗  represent its true label. PM method 

models each annotator’s expertise as a single value 

𝑒𝑎  𝜖 [0, ∞) where higher value means higher expertise. 

Initially, each annotator ‘a’ is assigned same expertise ea = 1. 

Then the following two steps are iterated until convergence: 

i) 𝑣𝑖
∗  = arg max

𝑣
∑ 𝑒𝑎

𝑎  . 𝕝𝑣=𝑣𝑖
𝑎 

ii) 𝑒𝑎  =  − log (
∑  𝕝

𝑣𝑖
∗≠𝑣𝑖

𝑎𝑖  .

max
𝑎

∑  𝕝𝑣𝑖
∗≠𝑣𝑖

𝑎𝑖
) 

Here, 𝕝{.} is the indicator function. 

Intuitively, step (i) does majority voting on labels from 

high expertise annotators (not all annotators) while step (ii) 

refines the annotators expertise based on step (i). By using 

this method, true expression labels are inferred for 5257 

images out of which 546 are discarded as they belonged to 

none of the above category. Remaining 4711 images will be 

referred as FEC test set. 

Meta data of FEC test set:  Precise locations of 

bounding boxes and expression labels along with URL of 

these images will be released at 

https://github.com/1980x/CCT. Also, gender and age groups 

(5 ranges) for these images are manually annoated. It 

consists of 48% females and 52% males. Age ranges are 

between 0-70 years. 

B. Implementation details 

   Face images are detected and aligned using MTCNN 

[47], and further resized to 224x224. The individual 

networks in CCT are ResNet-18 [48] pre-trained on MS-

Celeb-1M [49] dataset. Implementation is done in Pytorch. 

Batch size is set to 256. Optimizer used is Adam. Learning 

rate (lr) is initialized as 0.001 for base networks and 0.01 for 

the classification layer. Further, lr is decayed exponentially 

by a factor of 0.95 every epoch. Data augmentation includes 

random horizontal flipping, random erasing and color jitter. 

λmax is set to 0.9 and β to 0.65. Oversampling is used to 

tackle class imbalance based on [50]. Evaluation metric 

considered is overall accuracy. Inference is based on a 
simple knowledge distillation. Comparison is done with 

recent SOTA methods. Note that methods like decoupling 

[38], Coteaching [25], Coteaching+ [28], JoCoR [39] and 

NCT [40] also employ multiple networks while training to 

mitigate the influence of noisy labels. Our codes are 

available at https://github.com/1980x/CCT. 

C. Evaluation of CCT on synthetic noisy data 

 On RAFDB, FERPlus and AffectNet-8 datasets, 10%, 

20%, 30% and 40% labels are randomly changed for training 

images. CCT is compared with ResNet18 trained with CE 

loss (referred as standard) Coteaching [25], Coteaching+ 

[28], JoCoR [39], NCT [40] and SCN [19]. Author’s public 

implementations are used for JoCoR and SCN, and our 

implementation of NCT since NCT code is not publicly 
available. Results are presented in Table 1. CCT 

outperforms all the methods by a significant margin. 

Specifically, it has atleast over 2% gain on average in 

comparison to the second best performing method NCT. In 

fact, as noise rate raises to 40%, CCT gains 4.5% on average 

over NCT. 

D. Evaluation of CCT on real noisy data 

  Unlike specific synthetic noise, real-noisy FER datasets    

can include noise of any level and any type. CCT is trained 

using automatically labelled subset of AffectNet-7 and tested 

on AffectNet-7 validation set. A similar procedure is 

followed for FEC train and test sets. The performance of 

CCT is compared with methods mentioned in the previous 
section. CCT is also compared with the recent SOTA 

methods specifically proposed for FER including SCN [19], 

https://github.com/1980x/CCT
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RAN [50], GACNN [51] and OADN [52]. In this set of 

methods specifically proposed for FER, only SCN [19] 

handles noisy labels. Others do not explicitly handle noisy 

labels. OADN and GACNN methods are implemented by us 

while author’s public implementation is used for SCN and 
RAN. Results are shown in Table 2. CCT is superior to all 

the other methods. 

Table 1: Performance comparison (accuracy %) in 

presence of synthetic noise on FER datasets 

Noise 

level Method RAFDB FERPlus AffectNet-8 

10 

Standard 81.74 85.87 59.27 

Coteaching 80.18 86 58.93 

Coteaching+ 81.84 83.33 53.73 

JoCR 84.84 85.91 58.05 

NCT 87.42  87.28 59.70 

SCN 82.18 84.28 58.58 

CCT  89.47 89.29 61.47 

20 

Standard 79.60 84.02 58.12 

Coteaching 79.56 85.5 57 

Coteaching+ 81.12 76.44 49.55 

JoCR 82.79 83.71 57.28 

NCT 85.29 86.42  59.28 

SCN 80.01 83.17 57.25 

CCT 87.51 88.05 60.53 

30 

Standard 74.31 82.30 56.50 

Coteaching 75 83.48 54.22 

Coteaching+ 80.05 75.83 44.9 

JoCR 80.96 81.51 54.38 

NCT 82.66  83.93 56.23 

SCN 77.46 82.47 55.05 

CCT  86.44 87.28 57.65 

40 

Standard 70.30 80.36 54.65 

Coteaching 61.18 80.52 50.45 

Coteaching+ 80.05 75.83 44.9 

JoCR 80.96 81.51 54.38 

NCT 79.01  81.86 52.25 

CCT  84.22 86.13 55.58 

Table 2: Performance comparison (accuracy %) on real 

noisy datasets 

Method AffectNet-7 FEC 

Standard 53.85 53.93 

Coteaching 52.37 54.36 

Coteaching+ 55.08 56.63 

JoCR 55.00 54.59 

NCT 56.46 57.16 

RAN 56.43 53.51 

GACNN 52.43 53.13 

OADN 55.37 51.22 

SCN 56.03 52.96 

CCT 57.00 57.90 

 

The individual expression discrimination ability of CCT 

is also analysed on the real noisy data. The confusion 

matrices with respect to AffectNet-7 and FEC test sets are 

shown in Fig. 3. In both the cases, happiness is the easiest 

recognizable expression followed by neutral and surprise. 
Fear is highly confused with surprise in both the cases. 

Similarly, anger is significantly confused with neutral. 

While disgust is the most difficult expression to recognize in 

AffectNet-7, sadness is relatively difficult to recognize in the 

FEC test set. Note that the performance in the FEC test set is 

poor in comparison to performance on AffectNet-7 because 

FEC test set is significantly larger than AffectNet-7 test set 

(see section IV.A.2) and that the training set of AffectNet-7 

is much larger than FEC train set. This aspect (larger test 

size and relatively smaller training size than AffectNet 

which is the largest FER in-the-wild dataset) of our curated 

FEC set, we believe, makes our curated FEC set a 
challenging set and useful for the research community. 

Table 3: Performance comparison (accuracy %) against 

methods that deal with noisy labels on clean test subsets 

Method RAFDB FERPlus AffectNet-7 AffectNet-8 

Standard 85.07 87.63 63.54 59.72 

JoCoR 86.08 86.8 61.05 60.68 

NCT 88.2 88.3 64.91 62 

SCN 88.14 89.35 64.2 60.23 

CCT 90.84 89.99 66 62.65 

E. Evaluation of CCT on clean test subsets 

   The performance of CCT is compared on the clean test 

subsets of RAFDB, FERPlus and AffectNet datasets (the 

noisy version has been covered in Tables 1 and 2). First, it is 

compared with methods that deal with noisy labels in Table 

3. CCT shows around at least 2% gain over all the methods 

in all the databases. Next, CCT is also compared with other 

SOTA methods (that do not handle noisy labels) on the clean 

test subsets of RAFDB (see Table 4) FERPlus (see Table 5) 

and AffectNet (see Tables 6 and 7) datasets. CCT reports the 
newest SOTA performance on all the databases. Particularly, 

CCT stands out as the first method to breach the 90% mark 

on the RAFDB dataset, reporting 90.74% accuracy. This is 

almost 1% more than the next best performing OADN and at 

least 5.5% more than a recent method called GACNN. 

Similarly, in FERPlus, CCT has almost breached 90%. It has 

almost 5% advantage over GACNN and a slightly better 

performance than the current SOTA method on FERPlus, 

namely GCN. In AffectNet datasets, CCT again displays at 

least 1.5% to 2% performance gain over the next best 

performing method GCN. These newest SOTA results of 
CCT demonstrate the CCT’s utility as a general purpose 

robust FER learning framework. 

The confusion matrices of CCT approach with regard 

to clean test subsets of RAFDB, AffectNet-7 and FERPlus 

are shown in Fig. 4. As with real noisy case, happiness is 

the easiest recognizable expression across all the clean test 



Darshan Gera & S. Balasubramanian / IJETT, 69(7), 244-254, 2021 

 

250 

subsets, followed by neutral and surprise expressions. Fear 

is generally confused with surprise. Further, disgust is 

confused with anger in FERPlus and AffectNet-7 clean test 

subsets, and with sad expression in RAFDB. Disgust is a 

difficult expression to recognize across all clean subsets. 
However, in FERPlus, contempt is the most difficult 

expression, exhibiting high ambiguity with neutral. In 

general, CCT performs consistently in discriminating 

expressions in both real noisy and clean cases, and across 

all the datasets. This substantiates its consistent top 

performance on all the datasets. 

 

Fig. 3 Confusion plots for AffectNet-7 (left) and our annotated FEC test subset (right) 

Fig. 4 Confusion plots for clean test subsets 

Table 4: Comparison against recent SOTA methods that 

do not deal with noisy labels on clean test subset of 

RAFDB 

Method Year Accuracy (%) 

GACNN [51] 2018 85.07 

Covariance pooling [54] 2019 87.00 

IPA2LT [41] 2020 86.77 

RAN [50] 2020 86.9 

THIN [55] 2020 87.81 

Mahmoudi et al. [56] 2020 88.02 

Liu et al. [57] 2020 88.02 

GCN [58] 2020 89.41 

OADN [52] 2020 89.83 

CCT - 90.84 

   Table 5: Comparison against recent SOTA methods that 

do not deal with noisy labels on clean test subset of 

FERPlus (* denotes our implementation) 
 

 

Method Year Accuracy (%) 

 

GACNN [51] 2018 84.86* 

 Georgescu et al. [59] 2019 87.76 

 

RAN [50] 2020 89.26 

 

OADN [52] 2020 88.71* 

 

GCN [58] 2020 89.39 

 

ESR-9 [60] 2020 87.15 

 CCT - 89.99 
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Table 6: Comparison against recent SOTA methods that 

do not deal with noisy labels on clean test subset of 

AffectNet-7 (* denotes our implementation) 
 

Method Year Accuracy (%) 

Annotators Agreement [15] 2017 65.3 

Kollias et al.[61] 2018 60.0 

GACNN[51]  2018 58.78 

HERO[62] 2019 62.11 

Yongjian et al. [63] 2019 62.7 

FMPN[64] 2019 61.5 

RAN[50]  2020 61.71* 

Georgescu et al. [59] 2019 63.31 

IPA2LT [41]  2020 57.31 

OADN[52] 2020 64.06 

THIN[55] 2020 63.97 

GCN[58] 2020 64.46 

CCT - 66.0 

Table 7: Comparison against recent SOTA methods that 

do not deal with noisy labels on clean test subset of 

AffectNet-8 (* denotes our implementation) 
 

Method Year Accuracy (%) 

GACNN[51]  2018 55.05* 

Georgescu et al. [59] 2019 59.58 

RAN [50] 2020 59.50 

OADN [52] 2020 58.92* 

GCN [58] 2020 60.58 

ESR-9 [60] 2020 59.3 

CCT - 62.65 
 

Table 8: Evaluation with and without consistency loss 

using 1 - 4 networks in CCT (accuracy %) 
Dataset Noise Loss Number of networks 

    Lsup Lcon 1 2 3 4 

RAFDB 

0% 
    85.07 89.96 89.92 89.86 

    NA 90.09 90.84 89.86 

40% 
    70.3 80.7 80.31 82 

    NA 82.72 84.22 84.84 

FERPlus 

0% 
    87.63 89.16 89.45 89.58 

    NA 89.7 89.99 87.25 

40% 
    80.36 82.69 83.04 83.64 

    NA 85.08 86.13 86.16 

F. Further Analysis 

a) Impact of consistency loss 

The effect of consistency loss in CCT is evaluated in 

Table 8. In the presence of noise, consistency loss enhances 

performance by around 3 to 4%, clearly indicating that 

noisy labels have been handled much better with 

consistency loss than not having it. Without consistency 

loss, each network becomes independent with only 

associated supervision loss to guide them. This makes each 

network memorize noisy labels over training. During 

knowledge distillation, the memory is passed over to the 

student, thereby negatively impacting the generalizability of 
the network. Hence, consistency loss plays the crucial role 

to mitigate the influence of noise and enhance the 

performance. 

b) Number of networks  

Table 8 also shows the influence of number of networks 

that are collaboratively trained in CCT. It can be observed 
that model with 4 networks performs the best in the presence 

of noise. This is because of the region where the 4 networks 

come into consensus is relatively smaller, thereby avoiding 

noisier labels during training. However, with 4 networks, the 

number of parameters also significantly increases. Note that, 

in the presence of noise, the 3 networks model has almost 

similar performance to 4 networks model, and is definitely 

much better than the 2 networks model. Hence, keeping 

number of parameters in mind, the 3 networks model is 

preferred. 

c) Effect of temperature constant U 

The effect of temperature constant U in knowledge 

distillation for inference is also analysed. The plot is 

available in Fig. 5. The best performance is obtained for U = 

2. Making the target softer with high U brings down the 

performance.  Softer target, as proposed in [44], is likely to 

carry a lot of helpful information which cannot be encoded 
in a single hard target. However, since the three networks in 

the teacher model T are collaboratively trained with 

consistency loss, they contain relevant information, 

uninfluenced by the noisy annotations. Hence, minimal 

softening would suffice to pass on the information to the 

student network S. Higher values of U are likely to distort 

the information.  

 
Fig. 5 Influence of temperature constant in Knowledge 

distillation 

d) Summary of techniques used in CCT  

Table 9 compares the techniques used in CCT against 

other SOTA methods. CCT does not rely only on low loss 

samples. 
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Table 9 Comparison of proposed method with related approaches 

Method Decoupling Coteaching Coteaching+ JoCoR NCT CCT 

Small loss      

Cross update      

Disagreement      

Agreement      

Noise rate 

dependence 
     

Joint update      

Dynamic weighing      

This helps CCT not to miss out on hard instances, which 

is substantiated by the performance it has reported. Unlike 

[28] and [38], CCT banks on agreement principle wherein it 

forces consensus among predictions of all the three networks 
through the consistency loss. Supervision loss helps in the 

early part of the training to learn clean instances but CCT 

dynamically shifts to consistency loss in the later part of the 

training to suppress the influence of noisy instances. CCT 

does not require cross-updates as co-training provides the 

advantages of cross-updates. 

e) Visualization   

The salient regions focused upon by the distilled network 

for inference are also visualized. Grad-CAM [53] is used to 

obtain activation maps on the final layer of the trained 

student ResNet-18 model. The visualizations are shown in 

Fig. 6. Red color denotes higher saliency while blue color 

denotes lower saliency. It can be noted that, though there are 

occlusions like glasses, hat, hand etc., the model avoids 

them and focuses on non-occluded parts to infer the 

emotion. The model is also able to handle pose variations as 

depicted in the figure. Further, for the neutral expression, 
moderately salient pixels suffice to infer it. Anger can be 

subtle as in the first image in second row, or expressive as in 

the second image in the first row. In the former case, the 

model relies on the eye region to infer the emotion.  In the 

latter case, mouth region provides the cue.  

 

Fig. 6 Activation maps using GRAD-CAM on sample 

images from RAFDB and AffectNet datasets (predicted 

expressions are displayed below each image). Red color 

denotes higher saliency while blue color denotes lower 

saliency. Yellow color denotes moderate saliency. 

 

Other expressions bank on the central part of the face. 

Fear also has some dependence on the eye region. 

V. CONCLUSIONS 

In this work, a robust framework called CCT is proposed 

for effectively training a FER system with noisy annotations. 

CCT combated the noisy labels by co-training three 

networks. Supervision loss at early stage of training and 

gradual transition to consistency loss at latter part of training 

ensured that the noisy labels did not influence the training. 

Both the losses are balanced dynamically. Inference is done 
through a single network distilled from co-trained three 

networks. This work also presents an annotated test subset of 

data that will be released publicly which could further 

research in FER under noisy labels. Extensive experiments 

on three widely used FER datasets and the annotated test 

subset demonstrated the effectiveness of CCT. Infact, CCT 

reports newest SOTA results on the standard FER datasets. 

An extension to this work could focus on curing the noisy 

labels during training, wherever  possible. 
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