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Abstract - For brain signal enhancement several adaptive 

signal processing techniques are available. In clinical 

environments while doing electroencephalogram (EEG) 

records it encounter with several artifacts and it may affect 

brain activities. To get high resolution brain wave signals, 

new adaptive learning technique is proposed in health care 

monitoring applications. In this paper logarithmic 

normalized mean least square (LNLMS) algorithm is 
proposed then it is compared with conventional least mean 

square (LMS) algorithm. Input brain waves are 

contaminated with EMG and EMA artifacts, these artifacts 

are reduced by LNLMS algorithm. Further applied sign 

regressor, sign and sign sign variants to adaptive algorithm. 

Using these sign variants, computational complexity is also 

reduced. Among these three variants sign regressor based 

LNLMS (SR-LNLMS) algorithm is preferred because its low 

computational complexity and also it is best suited for health 

care monitoring applications. Experimental results show that 

proposed algorithm perform well by means of  signal to 

noise ratio, excess mean square error with values of 
17.6214dB and -34.5856dB respectively. 

 

Keywords — Adaptive algorithm, Brain waves, EEG, health 

care monitoring, noise canceller. 

I. INTRODUCTION 

Electroencephalogram (EEG) is the tool that records 

neurological activity used for clinical as well as research 

scenarios. Basically, it is used to observe the activities of 

brain through arranging the electrodes on the scalp.   EEG 

was generally used to observe the brain activity and brain 

pathology [1]–[3], since it is inexpensive, non-invasive, and 

appropriate for enduring observation. Any abnormalities in 

brain waves lead to several medical ill situations. Based on 

the reports of world health organization [4] any disorders in 
the brain wave subjected to majority of mortality. Hence, 

brain waves become an important tool for the diagnostic 

process. So, EEG signals with high resolution are essential in 

the clinical purposes. During the extraction process EEG 

signals are corrupted with many artifacts that degrade the 

resolution of the desired signal components. The neural 

response can be obtained by placing electrodes at several 

places on scalp. Due to the contamination of noise the 

response has low quality it is one of the reason of artifacts 

and also due to biological or technical issues signal 

evaluation is prone to artifacts. Biological artifacts are raised 

because of eyes blinking, head movement, contraction with 

muscles while talking, teeth clenching or because of cardiac 

actions. While technical artifacts are raised due to equipment 
problems it causes power line noises in the impedance of 

electronic circuits during the recording of signal values. For 

skin electrodes, artifacts can be eliminated before placing 

electrodes on scalp skin is cleaned or gel is also applied to 

contac with skin electrodes. Biological artifacts elimination 

is the essential task, because the desired EEG signal brain 

dynamics are combined with noises. Removal of artifacts is 

an important task in EEG signal to get desired information 

from brian functionalities 

 

The most important artifacts include 

ElectroMyoGram (EMG) and Electrode Motion Artifacts 
(EMA) [5]–[7]. The artifacts degrade the quality of signal, it 

masks tiny features of brain signal, it is very important in  

diagnosis process. To facilitate neurologist in diagnosis, 

process these artifacts should be removed. Extracting high 

resolution EEG signal from contaminated artefacts is 

significant task. Basic purpose of improvement in EEG 

signal is to get desired part of signal and also to represent 

EEG signal for easy and accurate evaluation. Due to random 

nature of artifacts, stationary coefficients are not predfered 

with filters. For efficient filtering the coefficients of the filter 

needs to updated automatically depends on noise components 
for development of adaptive noise cancellers. However, in 

the practical scenarios, biotelemetry-based health care 

monitoring play major role in medicare supervision, if  

patient is not regularly accessible for supervision of 

neurology expert. Adaptive filtering techniques have the 

ability to adjust coefficients depends on input signal. The 

EEG signal has a very non-stationary model. For the removal 

of artifacts in the EEG signals conventional filters are not 

preferable. Thus, adaptive FIR filtering techniques are 

suitable for this process. A number of adaptive filtering 
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techniques are implemented for the removal of artifacts from 

desired signals. Due to technological advancements in the 

analysis of brain waves a number of techniques such as brain 

computer interface (BCI), remote health care monitoring, 

source localization, machine learning, etc., pre-processing is 
also done for EEG signal so that greater resolution EEG 

signal components is obtained for exact diagnosis. Several 

BCI models are presented in [8]–[11].  

BCIs are implemented for allowing communication 

involving computers and human mind actions, with motor 

functions helped handicapped patients due to illness, but 

mental activities will not affect systems [12]. BCI selection 

models does not reflect on equipment costs, for particular 

applications spatial and temporal resolutions are considered. 

In hospital remote health care systems equipped with signal 

extraction system, BCI and controlling mechanism. Artifacts 

are eliminated by using BCI prior to the EEG signal 
processing. Several signal enhancement techniques for EEG 

signals are presented in [13]– [16] with non-adaptive and 

adaptive filtering techniques. A smaller amount 

computational complexity is required for healthcare 

monitoring system, particularly for the applications such as 

biotelemetry wireless system, stayed as an area of extensive 

research. Methods for low complexity in computations were 

presented using Least Mean Square (LMS) technique for 

enhancement of cardiac signal in [17]-[19]. By using sign-

based algorithms the computational complexity can be 

reduced, specifically, sign regressor (SR), sign error (S) and 
sign sign (SS) algorithms which becomes attractive in 

practice since it needs half as many multiply operations as 

LMS [20]. The hybrid variants of LMS combined with sign 

algorithms gives SRLMS, SLMS and SSLMS algorithms. 

 

In the processing of brain waves under crucial 

conditions, some EEG samples are turn out to be zero, due to 

poor excitation their coefficients vary considerably yields to 

weight drift problem. This can be solved by Logarithmic 

Normalized Mean Least Squares (LNMLS) Algorithm. In 

this technique, the weight drift problem can be overcome. 

With this technique enhancement of stability, improve effects 
for excitation; and reduces the unwanted effects such as 

bursting, stalling, etc. Performance of the algorithm with 

comprehensive analysis is specified in [21]-[24] an 

application of hybrid version of the logarithmic based 

algorithm is described in [25]. To improve the stability, 

convergence rate, filtering capability and to minimize the 

computational burden we constructed several hybrid versions 

of adaptive artifact eliminator (AAE) for the processing of 

EEG signal. To reduce the computation complexity, we 
combine LNMLS algorithm with three sign variants. That 

yields SR-LNMLS, S-LNMLS and SS-LNMLS algorithms. 

With these variants we developed several adaptive noise 

cancellers. The mathematical modelling of these cancellers is 

described in the following section. 

 

II. ADAPTIVE LEARNING METHODS FOR BRAIN 

WAVES USING LOGARTHMIC ADAPTIVE 

ALGORITHM 

LNMLS is a variety form of adaptive algorithm used for 

updating coefficients of adaptive filter. In the implementation 

of the LMS adaptive filter the key issue is step size selection. 
This LNMLS algorithm is taken as a unique application of 

LMS algorithm that takes variations in the signal level at the 

output of filter also implements a logarithmic normalized 

cost function that facilitates faster converging and stable 

adaptation. LNMLS technique overcomes LMS limitations 

further it improves the convergence speed and tracking 

ability. 

 

Mathematical Modelling 

w(n) is the weight vector with the elements mentioned in a 

row vector 

= [w(n) w(n − 1) … … . . w(n − T + 1)]𝑇  

Here vector ωo is considered with a linear function as 

                     𝑑(𝑛) = 𝜔𝑜
𝑇𝑥(𝑛) + 𝑛𝑡                          (1)                                   

Here x(n) is input signal, desired signal d(n)  and nt is noise.  

System vector is determined using adaptation process by 

reducing cost function. Generally to converge on the overall 

least amount error gradient descent techniques use convex 

and unimodal cost functions. For improved approximation of 

optimization error, a combination of LMS and LMF family 

of algorithms are used. 

𝛻𝑒∗(𝑛) = −𝑥∗(𝑛)                                                       (2) 

The Δw. F(e(n))is first gradient of (4), the step size 

parameter 𝜇 > 0 and the design parameter 𝛼 > 0. 
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Fig. 1 Schematic  diagram of brain analysis using adaptive learning methodology 

 

Now, the weight up-dation is specified by 

𝑤( 𝑛 + 1)
= 𝑤( 𝑛)

+ 𝜇. 𝑥( 𝑛)
𝜕𝑓(𝑒( 𝑛))

𝜕𝑒( 𝑛)
[

𝛼𝑓(𝑒( 𝑛))

1 + 𝛼𝑓(𝑒( 𝑛))
]                               (3) 

It is related to LMF error updating, whereas it 

resembles LMS for large error perturbations. This exhibits 

low MSE in steady state for the error statistics of fourth order 

for small perturbations and greater stability of least-squares 

algorithms. From the weight recursion equation of LMS, the 

time variable parameter µ(𝑛) such  that a posterior error, 

𝑒∗(𝑛) = 𝑑(𝑛) − 𝑤𝑇(𝑛 + 1) 𝑥(𝑛)                                (4) 

is reduced in terms of magnitude. The below expression 

marks in reducing [e*(n)]2 respect to µ(𝑛) that yields e*( n) 

to zero. 

µ(𝑛) =  
1

2 𝑥𝑇(𝑛 ) 𝑥( 𝑛)
                                          (5) 

Thus, the resultant expression is formulated as 

𝑤 (𝑛 + 1)            

= 𝑤 (𝑛) +  
1

2 𝑥𝑇(𝑛) 𝑥(𝑛)
 𝑒(𝑛)𝑥(𝑛)                                   (6 )    

The parameter µ′ is dimensionless for the LNMLS algorithm, 

whereas it has reverse power dimensions for the LMS. The 

LNMLS algorithm can be viewed as a LMS algorithm using 

time dependent step size parameter on logarithmic cost 
function. The LNMLS has the ability to resolve the gradient 

noise amplification problem also weight drift related to LMS 

filter. Numerical complications may raise in this situation 

and we should divide the ||x(n)||2 by a small value. The flow 

diagram of brain wave enhancement using LNMLS 

algorithm is shown in Figure 2.  

The LNMLS mathematical recursion  is given by 

𝑤(𝑛 + 1)  

= 𝑤(𝑛) + 𝜇(𝑛). 𝑥(𝑛)𝑒(𝑛) [
𝛼(𝑒(𝑛))

2

1 + 𝛼(𝑒(𝑛))
2]                  (7)       

Here µ(𝑛) =
µ′

𝜀+||𝒙(𝑛)||2 is the normalized step size parameter 

with 0 <µ<2.  

Parameter μ in the LMLS weight update equation is replaced 

with μ(n) that contributes to the LNMLS algorithm, the tap 

update recurssion is given by, 

 

𝒘(𝑛 + 1)
= 𝒘(𝑛)

+
µ′

||𝒙(𝑛)||2
  𝑥(n)e(n) [

α(𝑒(n))
2

1 + α(𝑒(n))
2]                                  (8)           

LNMLS algorithm is one of the variants of higher order 

adaptive filter. To reduce the computation burden we 

combine LNMLS with  simplifie algorithms. The 
combination of LNMLS with SRA, SA and SSA results in 

SR-LNMLS, S-LNMLS, and SS-LNMLS respectively. Their 

weight update expressions are given by, 

 

w (n + 1)
= w (n)

+
µ′

ε + ||x(n)||2
  Sign{x(n)}e(n) [

α(e(n))
2

1 + α(e(n))
2]            (9)         
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Fig. 2. Flow chart diagram for LNLMS based Brain Wave Enhancer 

 

w(n + 1)
= w(n)

+
µ′

ε + ||x (n)||2
  x (n) Sign {e (n) [

α(e(n))
2

1 + α(e(n))
2]}           (10) 

 

 

w(n + 1)
= w(n)

+
µ′

ε + ||x (n)||2
  Sign{x (n)} Sign {e(n) [

α(e (n))
2

1 + α(e(n))
2]}   (11) 

 

Out of these three SR-LNMLS algorithms exhibits good 

convergence performance and fine tracking capability due to 

its lower computational complexity. 

 

III. SIMULATION RESULTS 

The proposed techniques are examined with a 

several EEG components with various morphologies taken 

using Emotive acquisition system to show that the proposed 

adaptive noise cancellers are helpful in clinical scenarios. 

The system contains a total of 16 electrodes. The encrypted 

data from the headset is transmitted to the Windows-based 

device wirelessly. By using brain computer interface, brain 

signal are recorded. The samples are extracted from all 

channels with sampling rate of 128 samples / second. In our 

experiment, an EEG signal with 25,000 samples obtained 
from 41 years old male person is used. We measured SNRI 

and average EMSE of the proposed techniques and compared 

with conventional adaptive technique. Several adaptive noise 

cancellers are implemented with LMS, LNMLS, SR-

LNMLS, S-LNMLS and SS-LNMLS. The reference 

component used in our experiments are a randon noise 

component.  
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A. Electro Miogram (EMG) removal from EEG signals  

EEG component contaminated with elecro miogram is given 

as input the adaptive learning based noise canceller. A 

reference component is given for learning the algorithm such 

that the tap weights are trained to make the reference 
component some what correlated with the actual noise 

components present in input EEG signal. In Fig. 3 filtering 

results are shown. In Fig. 3 (a) is the input EEG signal 

conmtaminated with EMG artifact, from this figure it is clear 

that the amplitude of the signal is between 10 to -10, which 

indicates the present of high amplitude noise component. 

Fig. 3 (b) shows the enhanced signal with LMS based 

learning, in which the noise is eliminated littlebit, so that the 

amplitude of the EEG is appears as between 5 to -5. In Fig. 

3(c), the EEG component is filtered using LNMLS is in a 

better manner when compared to other techniques. This is 

evident from the filtered signal as well as from the SNRI and 
EMSE tables. Again, it is clear that the filtering due to SR-

LNMLS is just inferiour than LNMLS as shown in Fig. 3. In 

the Fig. 3 (e) and (f) due to clipping the error component, 

much residual component is present in the signal component.    

The noise free EEG signals after EMG removal are shown in 

Fig. 3. The SNRI performance found that LNLMS algorithm 

get 16.7203 dB, 13.9566 dB and for EMSE performance got 

-32.4710dB and -32.3986 they are shown Table 1 and Table 

2 with corrsposnding bar diagrams in Figure 5 and Figure 6.  

 
Fig. 3 Brainwave artifact elimination for EMG noise (a).  

EEG Siganl with EMG contamination, (b). artifact 

elimination using LMS learning, (c). artifact elimination 

using LNMLS learning, (d). artifact elimination using 

SR-LNMLS learning, (e). artifact elimination using S-

LNMLS learning (f). artifact elimination using SS-

LNMLS learning. 

B. Electrode Motion Artifacts (EMA) removal from EEG 

signals  

The EEG signal correpted with EMA componet is given as 

input signal in the experiemnts, a random signal is given as a 

reference component.  The filtering results are shown in Fig. 
4. In Fig. 4 (a) is the input EEG signal conmtaminated with 

EMG artifact, from this figure it is clear that the amplitude of 

the signal is between 10 to -10, which indicates the present 

of high amplitude noise component. Fig. 4 (b) shows the 

enhanced signal with LMS based learning, in which the noise 

is eliminated littlebit, so that the amplitude of the EEG is 

appears as between 5 to -5. In Fig. 4(c), the EEG component 

is filtered using LNMLS is in a better manner when 

compared to other techniques. This is evident from the 

filtered signal as well as from the SNRI and EMSE tables. 

Again, from Fig. 4 it is clear that the filtering due to SR-

LNMLS is just inferiour than LNMLS. In the Fig. 4 (e) and 
(f) due to clipping the error component, much residual 

component is present in the signal component. In Table 1 and 

Table 2 performance metrics SNRI and EMSE are shown 

respectively. In Figure 5 and Figure 6, SNRI performance 

and EMSE performance are shown.  

 
Fig. 4 Brainwave artifact elimination for EMA noise (a).  

EEG Siganl with EMA contamination, (b). artifact 

elimination using LMS learning, (c). artifact elimination 

using LNMLS learning, (d). artifact elimination using 

SR-LNMLS learning, (e). artifact elimination using S-

LNMLS learning (f). artifact elimination using SS-

LNMLS learning. 
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Table 1: SNRI (dB) for various algorithm for EEG signal enhancement 

 

Artifact 

Type 

 

Sample 

No. 

SNR 

(dBs) 

before   

SNR (dBs) after filtering  

LMS LNMLS SR-LNMLS S-LNMLS SS-LNMLS 

 

 

E 

 

M 

 

G 

I 2.5 10.861

9 

16.1412 17.5276 24.1994 23.9658 

II 2.5 11.446

4 

17.8754 18.4715 23.9748 22.3578 

III 2.5 10.348

2 

16.3523 17.8524 25.1854 23.4842 

IV 2.5 11.446

1 

17.6546 18.4832 23.7824 22.9756 

V 2.5 11.061

4 

15.5782 17.5821 24.2149 23.7065 

AVG  11.032

8 

16.7203 17.9833 24.2713 23.2979 

 

E 

 
M 

 

A 

I 2.5 9.5259 13.6743 17.4049 24.8743 23.8567 

II 2.5 11.758

1 

14.6709 18.5182 23.3957 22.9672 

III 2.5 9.8661 13.9658 17.6458 24.9317 23.8701 

IV 2.5 11.158

3 

14.1857 18.2639 23.9458 22.2547 

V 2.5 8.5083 13.2867 16.2742 24.5309 23.9631 

AVG  10.163

3 

13.9566 17.6214 24.3356 23.3823 

 

 
 

Fig. 5 Performance comparison of various logarithmic adaptive learning algorithms in brain wave enhancement 

experiments in terms of SNRI (dBs)
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Table 2: EMSE (dB) of various algorithm for EEG signal enhancement

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 6 Performance comparison of various logarithmic adaptive learning algorithms in brain wave enhancement 

experiments in terms of EMSE (dBs). 
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Artifact 

Type 

 

Sample 

No. 

EMSE (dBs) for various algorithms used in the development of ANCs 

LMS LNMLS SR-LNMLS S-LNMLS   SS-LNMLS 

 

 
E 

 

M 

 

G 

I -17.6452 -32.2635 -33.7851 -37.2846 -36.1265 

II -17.6863 -32.4137 -33.2458 -37.5275 -36.6328 

III -17.7126 -32.3796 -33.6245 -37.3596 -36.3017 

IV -17.6988 -32.6458 -33.5218 -37.4927 -36.1524 

V -17.7234 -32.6527 -33.6307 -37.5817 -36.2921 

AVG -17.6932 -32.4710 -33.5615 -37.4492 -36.3011 

 

E 

M 

G 
 

A 

I -17.7332 -32.3583 -34.4528 -38.2837 -37.5847 

II -17.8456 -32.2468 -34.4975 -38.4687 -37.6987 

III -17.7762 -32.6129 -34.6825 -38.6218 -37.4853 

IV -17.8128 -32.4957 -34.8426 -38.8675 -37.6348 

V -17.7984 -32.2793 -34.4528 -38.5438 -37.4587 

AVG -17.7932 -32.3986 -34.5856 -38.5571 -37.5724 
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IV. CONCLUSION 

From this work we have suggested some effective 

adaptive noise cancellers for the BCI scheme. Several 

modifications in weight recursion equation of adaptive filters 

are performed for improing performance of adaptive noise 
cancellers. In proposed methods, sign regressor based 

adaptive noise cancellers performs better than the remaining 

methods. The computation complexity in SR-LNMLS based 

adaptive noise cancellers is reduced with the usage of the 

signum function. For EMG and EMA noise types, signal to 

noise ratio and excess mean square error parameters are 

considered. Sign regressor based LNLMS algorithm SNR 

and EMSE values are 17.9833dB and -33.5615 dB, it is clear 

that it has better value when compared to LMS and LNLMS 

algorithms. Also from simulation results, observed that SR-

LNMLS based adaptive noise cancellers exhibits enhanced 

performance Hence these adaptive noise cancellers are useful 
in real time applications.  
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