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Abstract — Missing value in hydrological research is 

common, and there is a growing interest to recover 

missing streamflow data as accurate information is 

required for various purposes. Due to missing data 
limitations, this study aims to evaluate the performance of 

the RNN-based method compared to the non-RNN based 

imputation methods to predict recurrence in a streamflow 

dataset. In this study, daily streamflow datasets from 

Malaysia's Langat River Basins were used. Following that, 

the datasets were fed into the Multiple Linear Regression 

(MLR) model. The validation of the best estimation 

methods was performed based on the estimation error, 

using methods such as Nash-Sutcliffe Efficiency 

Coefficient (CE), Mean Absolute Percentage Error 

(MAPE), and Root Mean Squared Error (RMSE). The 
findings revealed that the RNN-based method coupled with 

MLR (BRNN-MLR) outperformed all the approaches 

examined for filling missing values in streamflow datasets, 

with the highest CE value and lowest MAPE and RMSE 

value regardless of any missing data conditions. 

 

Keywords — BRNN, imputation, MICE, Missing data, 

streamflow, MLR. 

I. INTRODUCTION 

Streamflow is considered one of the primary variables 

used to describe the hydrologic function of water bodies. It 

provides critical records for water resource management 

and climate change surveillance, either as a signal of prior 

hydrological variability or as a contributor to water's future 

behavior[1]–[3]. Numerous research and operational 

applications that are water resource management and 

planning, anticipating extreme floods or droughts, 

forecasting streamflow, and analyzing climate irregularity, 
necessitate reliable time-series data [4]. Streamflow 

research, on the other hand, is difficult due to missing data 

limitations, and it is common to get erroneous data of 

questionable quality and for short periods [5], [6]. 

Furthermore, complete information is not always available 

due to incomplete observations, missing data, or outliers, 

which have a significant impact on hydrological research 

work [7], [8]. 

Statistical models play an important role in hydrological 

research when forcing inputs and model parameters are 

required [9], [10]. Nonetheless, these statistical models 

used for tracking purposes in environmental studies are 
heavily reliant on automatic data acquisition systems that 

necessitate a large number of physical sensing devices [11] 

that are vulnerable to damage due to extreme 

environmental conditions, physical destruction, and battery 

drain [4]. In turn, this fails control stations, matchless 

measurements, or manual data entry procedures that can 

cause errors, inaccurate calibration processes and/ or data 

damage caused by malfunctioned storing machinery, 

extended hydrometric data construction, and organization 

besides increased gaps in a dataset [8], [12]–[15]. 

In general, missing value(s) in time-series data represent 
a loss of information, which can lead to incorrect summary 

data explanations or untrustworthy scientific analysis. As a 

result, reconstruction and missing data treatment should be 

prioritized during the data preparation procedure. However, 

the selection of missing data handling techniques is 

dependent on the missing data trend and mechanism [16], 

which affects the statistical output.  

There are three types of missing data: missing 

completely at random (MCAR), missing at random (MAR), 

and missing not at random (MNAR) [17]. The missing 

data mechanism is referred to as MCAR, and it is 

completely independent of the values of any variables in a 
dataset, whether they are missing or observed. Meanwhile, 

MAR is the root of missing data that is not associated with 

missing values but may be associated with observed values 

of other variables.MNAR observations are not missing at 

random, nor are MCAR or MAR.  Missing value in the 

streamflow study is determined as MCAR due to the 

existence of missingness in the streamflow data of an area 

not influenced by the data in that area or any other area.  

[18] described streamflow data imputation using the MAR 

assumption. According to [19], the MCAR and MAR 

imputation for time-series studies are nearly identical. 
Various infilling approaches for the missing value of the 

engineering database have been proposed and debated in 

the literature, ranging from the simple traditional statistical 

method to advanced techniques. Of all the available 

techniques, the mean imputation and deletion technique is 

https://ijettjournal.org/archive/ijett-v69i8p201
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the most commonly used technique to reconstruct the 

missing meteorological and hydrological data [5], [8], [15], 

[20], [21]. Recently, [22] presented six missing data 

imputations to reconstruct missing rainfall data: hot-deck, 

k-nearest neighbors (KNNI), weighted k-nearest-neighbors 
(WKNNI), multiple imputations (MI), linear regression 

(LR), and simple average method (SAM). It was 

concluded that KNNI, WKNNI, and hot-deck methods 

resulted in good missing data filling regardless of any 

percentage of missing data. In another research by [23], 

missing rainfall and temperature data were reconstructed 

using multiple imputations by chained equations (MICE) 

approaches due to its simplicity where normal data 

distribution was not assumed and data missing at random 

(MAR) was assumed. Earlier, [24] investigated several 

infilling methods in environmental pollution datasets, 

ranging from simple ones like mean imputation and last 
and next observation carried forward/backward to 

advanced MICE approaches. Besides that, a new single 

imputation method called the Site-Dependent Effect was 

introduced by the authors. Another imputation method 

recognized as the random forest method for water 

resources was recently reviewed by [25]. Despite various 

imputation methods that were introduced, the simple 

traditional method is still applied. [26] used multiple 

regression, the random forest method, and machine 

learning approaches to simulate monthly streamflow in 

five highland rivers that are highly seasonal, and they 
discovered that the random forest method was the best 

imputation method for their study.   

Many recent studies [27]–[31] have demonstrated 

improved prediction performance by using recurrence 

neural networks (RNN) approaches for classification or 

prediction models in hydrology and related fields. The 

recurrent components are coupled with the classification or 

regression component, which improves statistical analysis 

accuracysignificantly[32]. [31]introduced the Short-Term 

Long Memory (LSTM) network model for flood 

forecasting, which used daily discharge and rainfall as 

input data, and the model's predictive ability was claimed 
to be impressive. The finding is in line with the research 

by [27], who used RNN to forecast river flow. Previously, 

[29]employed RNN to simulate solid transport in sewer 

systems during storm events,[30]created a recurrent sigma-

P neural network model for Hong Kong rainfall 

forecasting. [28] claimed that RNN outperformed other 

ANN architectures for predicting watershed runoff. 

There has been no research on the reconstruction of 

missing streamflow data using effective RNN approaches 

to date. As a result, the goal of this study is to assess 

missing daily streamflow data using an RNN-based 
(bidirectional recurrence neural network (BRNN)) 

approach. The goal of this study is twofold: first, to 

reconstruct the missing flow data from the Langat River 

basin using RNN-based (BRNN) rather than non-RNN 

based methods such as arithmetic average (AA), hot-

deck(HD), multivariate imputation by chain equations 

(MICE), k-nearest neighbor (KNN) and random forest 

(RF). Second, the performance of imputation methods in 

conjunction with the Multiple Linear Regression (MLR) 

model will be evaluated in forecasting future daily 

streamflow values. This study's findings are expected to 

contribute to the discovery of the best and finest 

approaches for the data imputation method, which allows 

for the reconstruction of complete daily streamflow data 
sets. 

II. AREA OF STUDY 

This study was carried out at Langat basin (Fig. 1), 

which is located to the south of Selangor and north of 

Negeri Sembilan, specifically between the latitudes of 2° 

40’M 152” N to 3° 16’M 15” N and longitudes of 101° 

19’M 20” E to 102° 1’M 10” E with a range of 2,394.38 

km2. This river basin, Malaysia's most urbanized river 

basin, is thought to compensate for the benefits of spill-

over development from Klang Valley[33], [34]. It is an 

important raw water resource for drinking water and other 

activities such as recreation, industrial uses, fishing, and 
agriculture[35]. Over the last four decades, these water 

sources have served roughly half of Selangor's population, 

or approximately 1.2 million people within the basin, and 

have served as a source of hydropower and flood 

control[36]–[38]. The Langat basin was chosen as one of 

the major areas for economic growth in Selangor because 

it contains Kuala Lumpur International Airport, West Port 

at Klang, the Multimedia Super Corridor (MSC), and 

Putrajaya[39].In terms of hydrometeorology, the Langat 

basin is influenced by two types of monsoons, namely the 

northeast and southwest monsoons, which occur from 
November to March and May to September, respectively 

[40], [41]. 

 

 

Fig. 1. Map of the Langat River Basin. 

The Langat River Basin has four flow rate gauging 

stations: Dengkil and Kajang (Langat River), Kg. Rinching 

(Semenyih River), and Kg. Lui (Lui River). The 

characteristics of sub-basins associated with Langat Basin 

gauging stations are shown in Table 1.  
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TABLE 1. OVERVIEW OF THE LANGAT BASIN'S 

SUB-BASINS AND GAUGING STATIONS. 

Sub-Basin 
Hulu 

Langat 

Hulu 

Langat 
Semenyih Lui 

Station 

No. 
2816441 2917401 2918401 3118445 

Station 

name 

Langat 

River at 

Dengkil 

Langat 

River at 

Kajang 

Semenyih 

River at 

Kg. 

Rinching 

Lui River 

at Kg. Lui 

River Langat Langat Semenyih Lui 

Area 

(km2) 
1251.4 389.4 236.0 68.4 

Location 

in the 

basin  

Lower 

catchment 

Middle 

catchment 

Middle 

catchment 

Upper 

catchment 

Latitude 
02o 59’ 

34” 

02o 59’ 

40” 

 02o 54’ 

55” 

03o 10’ 

25” 

Longitude 
101o 47’ 

13” 

 101o 47’ 

10” 

101o 49’ 

25” 

101o 52’ 

20” 

 

The high-dimensional data used in this study were 

obtained from the Department of Irrigation and Drainage 
(DID), Ampang, Selangor, between 1978 and 2016. There 

were 12.4 percent missing values among the 56,980 data 

points. [42]defines moderate data as datasets with 10 to 25% 

missing values, whereas [43]asserts that if the percentage 

of missing data exceeds 10%, the statistical analysis will 

be skewed. To obtain an accurate outline of the streamflow 

patterns, a large number of time series observations were 

required [4]. Aside from that, since it is strongly related to 

sample size, the reliability of a frequency estimator of a 

long time series data is extremely useful in data analysis. 

III. RESEARCH METHODOLOGY 

This section is divided into two main subsections. 

Approaches for estimating missing data will be discussed 

in the first subsection. Meanwhile, assessing the 

performance of the methods used will be explained in the 

second subsection. 

A. Imputation Methods  

Both RNN- and non-RNN-based methods were 

compared in this study to determine which technique is 

best suited to impute missing values in streamflow data 

sets. For RNN-based methods, BRNN was introduced, 

while the non-RNN based imputation methods include: 

AA, HD, MICE, KNN, and RF. The datasets were then fed 

into the MLR model to determine the best methods for 

dealing with missing data when imputation values were 
combined with modeling. 

a) Bidirectional Recurrence Neural Network: RNN is a 

deep neural network architecture that uses feedback 

connections from its units to learn temporal patterns in 

sequential data. Mean imputation was used to initialize the 

missing values, and the values were updated using the 

feedback connection while the network was trained to 

learn the classification task. The missing values were 

modified in the previous iteration as a function of the 

missing input and the weighted sum of a set of recurrent 

links from the other units (hidden and missing) to the 

missing unit with a unit delay. The RNN approach used 
by[44]is depicted in Fig. 2. 

 

Fig. 2. The architecture of the recurrent networks. 

In RNN, the hidden layer imputation (Fig. 2) is also 

referred to as a recurrent layer and a regression layer. A 

recurrent neural network was used to achieve the recurrent 

component, and a fully connected network was used to 

achieve the regression component. A typical recurrent 

network can be represented as follows: 

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑈ℎ𝑥𝑡 + 𝑏ℎ) 
(1) 

where 𝜎  is the sigmoid function, 𝑊ℎ , 𝑈ℎ  and 𝑏ℎ  are 

parameters, and ℎ𝑡 Is the previous time-hidden step's state. 

In this research, since 𝑥𝑡 may contain missing values,  𝑥𝑡 

was not used as the direct input as in Eq.1. Instead, a 

complement input 𝑥𝑡
𝑐  derived from the algorithm when 𝑥𝑡 

is missing was used. Fig.3 and 4summarise and illustrate 
the RNN algorithm procedure for filling multivariate 

missing data. 

 

Fig. 3. The procedure of the RNN algorithm is 

suggested by [32]. 
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Fig. 4. The unidirectional imputation procedure of the 

RNN algorithm. 

For time-series 𝑋 = {𝑥1, 𝑥2, 𝑥3, … 𝑥10} , with missing 

values 𝑥5, 𝑥6and 𝑥7, predicted on the recurrent dynamics, 

at each time-step, an estimation of 𝑥𝑡  Can be obtained 

based on the previous stept - 1. The estimation error fort = 

1,2,3,4 can be calculated in the first four steps using the 

estimation loss function. However, since the true values 

were missing at t = 5,6,7, a delayed error for 𝑥𝑡=5,6,7 at the 

8th step can be obtained. Estimated missing value errors 
can be postponed until the next observation. In this case, 

the error of 𝑥5  can be postponed until 𝑥8  is observed. 

Because of the error delay, the model converges slowly 

and inefficiently, as well as resulting in a bias exploding 

problem [45], in which the model was fed incorrect values 

from the previous sequential prediction, causing rapid 

amplification of most of the hydrology components. 

Because of RNN's limitations, the BRNN, as shown in 

Fig. 5, was proposed as an improved version. The BRNN 

algorithm addresses the aforementioned issues by utilizing 

bidirectional recurrent dynamics for the given time series 
data. Each value in the time series dataset can be derived 

from the reverse direction by another fixed arbitrary 

function in addition to the forward direction. When using 

BRNN in the backward direction of the time series dataset, 

the estimation of 𝑥4inversely depends on the 𝑥5 𝑡𝑜 𝑥7.  As 

a result, the 5th step error is propagated not only to the 8th 

forward step (which is far from the current position) but 

also to the 4th backward step, which is closer. 

 

Fig. 5. The bidirectional imputation procedure of the 

RNN algorithm. 

Formally, the BRNN algorithm performs the RNN as 

shown in steps 1 through 5 of Fig. 5 in both forward and 

backward directions. An estimation sequence of 

{𝑥1, 𝑥2, … , 𝑥𝑇} and the loss sequence {ℓ1, ℓ2, … , ℓ𝑇} It can 

be derived for the forward direction. Similarly, another 

estimation sequence of {𝑥1
′ , 𝑥2

′ , … , 𝑥𝑇
′ }  and loss sequence 

{ℓ1
′ , ℓ2

′ , … , ℓ𝑇
′ } It can be obtained in the backward direction. 

The consistency loss was used to ensure that the forecast in 

any step was unchanging in both directions: 

ℓ𝑡
𝑐𝑜𝑛𝑠 = 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦(𝑥𝑡 , 𝑥𝑇

′ ) 
(2) 

Where the mean squared error was used as the discrepancy 

in this study. The total estimation loss was calculated by 

adding the forward ℓ𝑡 , the backward ℓ𝑡
′ And the 

consistency ℓ𝑡
𝑐𝑜𝑛𝑠  Losses. In the tth step, the mean of 𝑥𝑡 

and 𝑥𝑡
′Is the final estimate. 

b) Arithmetic Average Method (AA): The simplest way to 

reconstruct the missing value, according to[46], is to 

replace each missing value with the average of the 

observed values for the specific variable. The non-missing 

values were used to compute the variable's average, and 

the mean was used to reconstruct the missing value of the 

specific variable. In other words, for each missing value in 

the series 𝑋(𝑖), 𝑖 = 1,2, . . . , 𝑛  , the corresponding of the 

respective component is substituted. Eq. 3 was used to 
calculate the estimated missing value: 

�̂�𝑡 =  
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 (3) 

where �̂�𝑡 is the estimated value of the missing data at the t 

target station or date, 𝑥𝑖is the observed data (non-missing 

values) or the same date with different years, and n is the 

number of days or years.  

c) Hot-Deck Method (HD): This method entails replacing 

missing data with values from the existing dataset or 
matching covariates [47]. Any data that is similar to the 

observed data can be detected by the process. This study's 

methodology was based on the last observation carried 

forward (LOCF). This technique is typically used to fill in 

missing longitudinal data at a specific ‘visit' or at any 

given time for a specific entry [48]. The most recent 

obtainable value, i.e., from the most recent visit or time 

point, will be carried forward and used to replace the 

missing values. If multiple missing values occur in 

sequence, the monitoring may be used several times for 
infilling, and other values may not be used at all. 

d) Multivariate Imputation by Chain Equations 

(MICE):[49]created the MICE algorithm, which uses the 

Markov Chain Monte Carlo method, with the state space 

containing all imputed values. Since relevant procedures 

are commonly included in standard statistical software 

packages [21], recent advances in computational power 
have enabled multiple imputations. MICE anticipates data 

loss at random (MAR). It is assumed that the observed data 

determines the likelihood of a missing variable.MICE 

functions with multiple regression models and 

conditionally models each missing value based on the 

observed (non-missing) values. In other words, it 

constructs a series of regression (or other appropriate) 

models based on its 'method' parameter to provide multiple 
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values in place of one missing value [50]. Each missing 

variable is classified as a dependent variable in this case, 

while the remaining data in the record is classified as an 

independent variable. Fig.6 depicts the procedure. It 

consists of three steps: data imputation, data analysis, and 
data pooling. 

 
Fig. 6. MICE method mechanism. 

MICE predicts missing data-first by using existing data 

from other variables. The imputed dataset is then generated 

by replacing missing values with predicted values. 

Iteratively, it generates multiply imputed datasets. Each 

dataset is then analyzed using standard statistical analysis 
techniques, with multiple analysis results provided. 

The advantage of MICE is that the results are calculated 

after a few iterations, and in most cases, five iterations are 

sufficient [49], [51]. The MICE algorithm procedure for 

filling multivariate missing data is summarised as follows: 

 
Fig. 7. The procedure of the MICE algorithm is 

suggested by [49], [51]. 

To summarise, MICE uses a divide and conquer 

approach to impute missing values in a data set's variables, 

focusing on one variable at a time. When one variable is 

chosen as the focus, MICE predicts missingness in that 

variable using all of the other variables in the data set (or a 

carefully chosen subset of these variables). The prediction 

is based on a regression model, the shape of which is 
determined by the nature of the focus variable. 

e) K-nearest-neighbor imputation (KNN): KNN 

imputation is a machine learning technique that is also 

called distance function matching. It is a donor 

technique in which the donor is chosen by minimizing a 

fixed 'distance,' and their mean is used as an imputation 
estimate [47], [52]–[55]. KNN projections are based on 

the results of the k-neighbors closest to the missing 

value. This process computes a suitable distance 

measure, where the distance is determined by the 

auxiliary variables. The Euclidean Distance formula, as 
shown in Eq. 4, was used in this study. 

𝐷(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑘

𝑖=1

 (4) 

where 𝑥𝑖 and 𝑦𝑖 Are the query point and a case from the 

streamflow data sample, respectively. 

The value of k- must be determined before making 

predictions using the KNN approach. [56] reported that a 

large k- value is more precise and relatively stable as it 
reduces overall noise, but there is no assurance. [57], on 

the other hand, argued that the lower the k- value, the 

better the estimation of missing observations. Because the 

rule of thumb is that k equals the square root of the number 

of points in the training dataset [58], a maximum number 

of k- was specified in this study to be no greater than the 

square root of the training dataset size, which produces 

better results than 1NN, which is usually assigned to the 

class of its nearest neighbor.  

Predictions based on the KNN approach were made after 

the value of k- was chosen. The imputation process by the 

nearest neighbor for k-neighbors can be summarised as 
follows: 

Let’s say we have m observations on n covariates. 𝑋 =
𝑥𝑖𝑠  denotes the corresponding 𝑚 × 𝑛  matrix, where 

𝑥𝑖𝑠 represents the 𝑖𝑡ℎ  observation of the 𝑠𝑡ℎ  variable. Let 

𝑂 = 𝑜𝑖𝑠   represent the corresponding 𝑚 × 𝑛  dummy 

matrix, which has the following entries: 

𝑜𝑖𝑠 = {
1   𝑖𝑓 𝑥𝑖𝑠  𝑤𝑎𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
0     𝑓𝑜𝑟 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒

 (5) 

 

The 𝐿𝑞- metric for the data observed can be used to 

compute the distances between two observations 𝑥𝑖 and 

𝑥𝑗Which are represented in the data matrix by rows. The 

distance is then applied as: 

 

𝑑𝑞(𝑥𝑖 , 𝑥𝑗) = [𝑑𝑖𝑗 ∑ |𝑥𝑖𝑠 − 𝑥𝑗𝑠|
𝑞

1(𝑜𝑖𝑠 = 1)𝐼(𝑜𝑗𝑠

𝑛

𝑠=1

= 1)]
1/𝑞

 
(6) 

where 𝑑𝑖𝑗 = ∑ 1(𝑜𝑖𝑠 = 1)𝐼(𝑜𝑗𝑠 = 1)
𝑝
𝑠=1  Represent the 

number of valid components in the computation of 

distances. Since parallel views conceptualize distances, 

nearest neighbors were used. 

f) RandomForests (RF): Random forests is a machine 

learning method similar to bagging (bootstrap aggregation 
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of multiple regression trees) that incorporates 

randomization to decorrelate the trees [59]. It is an 

extension of classification and regression trees, predictive 

models that recursively subdivide the data based on the 

predictor variable values. A large number of trees are built 
using bootstrapped training samples. Each tree “votes,” 

and this vote is used to classify each variable based on the 

majority (mode) vote overall trees [60]. Bootstrap training 

samples are drawn from the original dataset n times with 

replacement. This will result in a new training set with the 

same number of observations as the original training set 

that is unique to each tree. Fig.8 depicts the random forest 

structure, which demonstrates the power of combining 

multiple decision trees into a single model. Demand 

predictors and cut-points in the predictors used to divide 

the sample in RF models. The cut-points divided the 

sample into larger, homogeneous subsamples. The 
dividing operation is reiterated on both subsamples,  

allowing a series of splits to form a binary tree [61]. For 

regression problems, each node in the tree has a splitting 

rule determined by minimizing the relative error (RE), 

which is equivalent to minimizing the sums-of-squares of 
the split: 

𝑅𝐸(𝑑) = ∑(𝑦𝑙 − �̅�𝐿)2 + ∑(𝑦𝑟 − �̅�𝑅)2

𝑅

𝑟=0

𝐿

𝑙=0

 (7) 

where 𝑦𝑙  and 𝑦𝑟  are the left and right partitions, 

respectively, with Land R observations of Y in each, and 

respective means �̅�𝐿 and �̅�𝑅. The decision rule dis a point 

in some estimator variable x that determines which 

branches go left and which go right. The partitioning rule 

that minimizes the RE is then used to derive the tree node. 

Fig.8 depicts a random forest (RF) framework. 

 
Fig. 8. Random forest structure 

A  random forest, according to [62], can handle 

mixed data types and, as a non-parametric method, is 

likely to produce non-linear (regression) and interactive 

effects. Assume that 𝑋 =  (𝑋1, 𝑋2, … , 𝑋𝑛)  is a  𝑚 × 𝑛 -
dimensional data matrix.The streamflow dataset in this 

study could be divided intwocataegories for arbitrary 

variables 𝑋𝑠 with missing values at entries, 𝑖𝑚𝑖𝑠
(𝑠)

⊆

{1, … , 𝑚}, : 𝑦𝑜𝑏𝑠
(𝑠)

denotes the observed values of the variable 

𝑋𝑠, while 𝑦𝑚𝑖𝑠
(𝑠)

 denotes the missing values of the variable 

𝑋𝑠. 

To begin, mean or other imputation methods are used 

to generate the first guess for the missing values in X. The 

variables 𝑋𝑠 , 𝑠 = 1, … , 𝑝 are then ordered by the number of 

missing values, starting with the smallest. Missing values 

are reconstructed for each variable𝑋𝑠 by first fitting an RF 

with a response𝑦𝑜𝑏𝑠
(𝑠)

and predictors 𝑥𝑜𝑏𝑠
(𝑠)

and then predicting 

missing values 𝑦𝑚𝑖𝑠
(𝑠)

 by applying the trained RF to 𝑦𝑚𝑖𝑠
(𝑠)

. 

The imputation process is repeated until a stopping 

criterion is met. 

g) Multiple Linear Regression (MLR): Following the 

replacement of all missing values with various techniques, 

the entire datasets are analyzed using MLR to determine 

the finest approaches for dealing with missing data in daily 

streamflow datasets. Regression analysis is a statistical 

technique that examines the relationship between at least 

two quantitative variables and their expected variables [63]. 

The MLR model is a popular statistical method in many 

disciplines, including hydrological data [64], [65]. The 
MLR model parameter is expressed as follows: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑘𝑋𝑖𝑘 + 𝜀𝑖(𝛽),     𝑖
= 1, … , 𝑁 

(8) 

where 𝑌𝑖  is the response variable’s value, 

𝛽0, 𝛽1, 𝛽2𝑎𝑛𝑑𝛽𝑘are unknown constants, 𝑋𝑦 is the predictor 

variable’s value, and 𝜀𝑖 Is the random error. 

 

B. Estimation Method Performance 

Four performance criteria were used in this study. To 

evaluate the imputation methods, the CE, RMSE, and 

MAPE were calculated. The error is calculated as the 

variation between the estimated and observed values. The 

CE is a well-known index used to weigh the predictive 

power of hydrological models. The most effective 

performance models aim for a CE value of one (1). The 
RMSE and MAPE, a standard statistical metric used to 

evaluate model performance in meteorology, air quality, 

and climate research studies, are also used in this study to 

assess model performance. The RMSE statistic, which is a 

measure of the difference between predicted and observed 

values, provides information on short-term efficiency. 

Another useful measure that is popular in model 

evaluations is the MAPE. MAPE is a measure of the 

average difference between predicted and observed values, 

and it can provide insight into the models' long-term 

performance. The lower the RMSE and MAPE values, the 
better the model's long-term performance. The following 
equations are used to compute these statistics: 

𝐶𝐸 = 1 −
∑ (𝑥𝑖 − 𝑥𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑖 − �̅�𝑖)
2𝑛

𝑖=1

 (9) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑥𝑖 − 𝑥𝑖|

𝑥𝑖

𝑛

𝑖=1

 (10) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑥𝑖)

2𝑛
𝑖=1

𝑛
 (11) 
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where 𝑥𝑖  is the observed streamflow data, 𝑥𝑖  Is the 

estimated value, n is the sample size, and kis the number of 

independent variables in the regression equation over daily 

Langat River Basin streamflow datasets. 

IV. RESULTS AND DISCUSSION 

As stated earlier in this paper, the purpose of this 

research is to determine which methods, between RNN and 

non-RNN, are considered to be the best imputation 

methods for recovering missing streamflow data. The 

models were first tested for all four sub-basins using data 
from 1978 to 2016. The results were then computed as a 

mean of the results of each imputation method. Each 

method's performance was evaluated using CE, RMSE, 

and MAPE. When the difference between the estimated 

and observed values is small, RMSE and MAPE will 

produce the smallest value. Meanwhile, CE values can 

range from -∞ to 1, with values greater than 0.5 considered 

acceptable. The technique with the highest CE value, as 

well as the lowest RMSE and MAPE value, will be 

selected as the best fit method. Table 2 provides the results 

of the overall performance of the methods in 

reconstruction data from 1978 to 2016. 
The results showed that the BRNN method produced 

the smallest RMSE with the highest CE. CE values, on the 

other hand, revealed that all imputation methods yield 

acceptable results, with values close to one. Based on 

Table 2, BRNN performed the best. Meanwhile, among the 

other methods, AA was the poorest imputation method for 

daily streamflow data in Malaysia's Langat River Basin, 

with the lowest CE and highest RMSE. Table 2 also 

revealed that the KNN imputation method has a lower 

RMSE and higher CE values than the other four methods, 

putting the model on par with BRNN. 

TABLE 2. RMSE AND CE VALUES FOR SIX 

IMPUTATION METHODS ON AVERAGE. 

Method RMSE CE 

AA 38.091 0.358 

HD 30.950 0.542 

BRNN 27.716 0.790 

MICE 28.588 0.670 

KNN 28.096 0.767 

RF 28.247 0.727 

         Notes: A better model is in bold. 

After the missing values have been filled in, the MLR 

model will be used to analyze the entire dataset in this 

study. When imputation values were combined with 

modeling, the MLR model was used to determine the best 

methods for dealing with missing data. MAPE and RMSE 

were used to assess the performance of imputation 
methods when combined with the MLR model.  

The RMSE and MAPE values for each statistical 

approach for imputing missing values of daily streamflow 

data in Malaysia's Langat River Basin coupled with an 

MLR model are shown in Table 3. As a result, when 

combined with a regression model, the final results showed 

that BRNN-MLR is the best statistical method for 

imputing missing values in daily streamflow data with the 

lowest RMSE and MAPE of 20.789 and 0.261, 

respectively when compared to other approaches. 

TABLE 3. THE RESULTS FOR MLR WHEN 

COMBINED WITH IMPUTATION METHODS. 

Method RMSE MAPE 

AA-MLR 31.024 0.601 

HD-MLR 39.451 0.953 

BRNN-MLR 20.789 0.261 

MICE-MLR 30.387 0.534 

KNN-MLR 23.784 0.397 

RF-MLR 29.937 0.454 
      Notes: A better model is in bold 

In conclusion, the BRNN-MLR method presented the 

best performance, whereas HD-MLR with the LOCF 

approach had the poorest among them. This could be due 

to the reason that the LOCF technique has no shift from 

one visit to the other, and this is sensible for MCAR data 

sets. On the other hand, although the AA method is known 

for its simplicity of methodology, the method does not 

make use of the primary correlation structure of the data 

and thus performed poorly.  This proved that a popular 

method does not necessarily mean the best method. 
Meanwhile, MICE which is often regarded as a 

conservative and safe approach to handle missing data, 

also underestimated the variance. MICE is based on a 

more complex algorithm, and its performance is related to 

the dataset size of the dataset. Performance of MICE is fast 

and efficient when small datasets were used while the 

performance decreases with large datasets and results in 

time-intensive analysis.  

RF, on the other hand, outperforms MICE, AA, and 

HD. However, as stated by [25], no algorithm is perfect, 

and thus RF should not be used to solve all types of 
problems. Regardless of its flexibility and interpretability, 

it is necessary to fully understand how RF works to set and 

cross-validate appropriate tuning parameters such as tree 

depth or split number [60]. With imbalanced data, the RF 

cannot extrapolate beyond the training range and cannot fit 

the model adequately. 

In comparison to the AA, HD, MICE, and RF methods, 

the KNN is a machine learning approach that performed 

slightly well but turned out to be time-intensive once 

applied to the large dataset.  This finding was in agreement 

with a recent finding that the KNN model's performance in 
monthly streamflow prediction was highly satisfying and 

capable of producing more accurate predictions  [66], [67]. 

In contrast, [68] claimed that advanced linear methods 

produced far superior results when compared to more 

traditional methods such as the KNN. The KNN algorithm 

will search the data for the k- closest neighbors to the new 

instance and set the predicted class label as the most 

common label among the k- closest neighboring points to 

predict the label of a new instance[69]. The algorithm must 

compute the distance and sort all of the training data at 

each prediction, which takes time if there are a large 
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number of training examples. Changing the k- the value 

may also result in a different predicted class label [70]. 

In contrast, all findings show that the proposed RNN 

technique outperforms the non-RNN approaches 

investigated. When compared to other methods, BRNN-
MLR had significantly lower RMSE and MAPE. The 

obvious reason for this is that the BRNN duplicates the 

RNN processing chain, allowing inputs to be processed 

both forward and backward in time. This enables a BRNN 

to consider future context, as well as BRNN, add a random 

error term in which the same value of independent 

variables without this term will result in the same response, 

which is not true in reality. Furthermore, when the error 

proportion is mirrored by the missing data proportion, the 

error derived from the BRNN technique is comparatively 

low when compared to that derived from the non-RNN 

techniques. These simulations demonstrate unequivocally 
that the BRNN technique is the most effective missing data 

imputation method for reconstructing missing streamflow 

data. 

Finally, for visual inspection, the observed and 

predicted values for all models were plotted. Fig.9 depicts 

the results of six imputation methods used to replace 7124 

missing daily streamflow data points in Malaysia's Langat 

River Basin. Fig.9 depicts how the imputed values of daily 

streamflow data from all six methods followed similar 

trends. All models, for example, reacted to streamflow 

events with similar magnitude peaks and times. 
Findings from this study showed that the RNN-based 

method significantly outperformed other approaches. With 

the lowest MAPE and RMSE and the highest CE value, the 

BRNN outperformed the other methods tested.  This shows 

the error derived from the BRNN technique was lower 

than that compared to the AA, HD, MICE, KNN, and RF 

techniques since the error rate was mirrored by the missing 

data rate. Furthermore, delayed gradients for missing 

values in both the forward and backward directions 

improve the accuracy of missing value imputation [32]. 

 

 
Fig.9. MICE, RF, KNN, HD, AA, and BRNN data 

imputation results for 7124 missing streamflow data. 

Conclusively, these simulations demonstrated that the 

BRNN technique coupled with MLR is the best suited 

missing data imputation method for reconstructing missing 
streamflow data. 

 

V. CONCLUSION 

Missing data is a common limitation in hydrological 

research and usually results in misinterpretation of 

statistical output and modeling approaches in hydrology. 

Therefore, there is a need for method performance 
evaluation to reduce the impact of missing data in 

hydrological research. Several techniques were suggested 

in the literature to manage missing data. However, a 

suitable approach to be used as the missing data trend and 

mechanism are still unclear. Due to convenience, 

researchers generally discard observations with missing 

data or substitute with a naive method such as the mean of 

all other observations and hot-deck (last/ next observation 

carry forward/ backward), although these methods have 

significant statistical shortcomings.   

More sophisticated approaches, such as the RNN-based 

method, the BRNN, have been shown to improve the 
accuracy of missing value imputation and reduce the 

statistical issues caused by naive imputation approaches. 

According to the findings of this study, the BRNN 

performed consistently regardless of the presence of 

missing values. When compared to the AA, HD, MICE, 

KNN, and RF methods, all three performance indicators 

agreed that the BRNN method is among the best, with a 

higher CE and lower MAPE and RMSE values. This 

finding indicated that the BRNN method had the smallest 

difference between the reference model and the prediction 

model with missing data imputation. Thus, the BRNN is 
recommended for processing missing streamflow data. In 

conclusion, the outcome of this study significantly 

contributes to the accurate infilling of missing data in 

streamflow data sets. 
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