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Abstract - Image segmentation in the presence of noise is a
challenging task. Performance of the methods which are ef-
ficient in noiseless images degrades in the presence of noise.
In this paper, we propose a novel fractional derivative-based
hybrid active contour for robust noisy image segmentation.
By incorporating a novel fractional derivative-based balloon
term and a fractional derivative-based edge term along with
a region scalable fitting function, we obtain a method which
provides good segmentation performance even in high noise
scenarios without any change in the method parameters. We
demonstrate that the proposed method outperforms the con-
ventional methods in the presence of Gaussian, speckle and
bipolar noises.

Keywords - active contour, fractional derivative, level set,
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I. INTRODUCTION

Image segmentation is an important step in the image pro-
cessing chain. In the segmentation process, distinct constituent
regions of an image are identified based on a chosen criterion.
The accuracy of higher level vision processes depends on the
quality of segmentation.

Over the years, several segmentation techniques have been
proposed in the literature. The active contour model initiated
by Kass et al. [1] is one of the chief segmentation techniques.
These active contour methods can achieve sub-pixel level ac-
curacy in segmentation. In an active contour model, an initial
contour is introduced which is then iteratively evolved to attach
to object boundary. The energy formulation captures the crite-
rion of segmentation in this case. A higher dimensional level
set [2] is generally used to represent the active contour where

the zeroth level set denotes the evolving contour. The aim of
the level set evolution is to obtain the actual object boundaries
as the zeroth level set. The inside and outside regions thereby
will be the positive and negative level sets respectively.

Active contour methods use a variety of energy concepts to
accurately segment the images. There are two chief types of ac-
tive contour models - edge-based models [3], [4], [5], [6] and
region-based models [7], [8], [9], [10], [11], [12]. In both these
types image statistics are used for effective segmentation. The
edge-based models use the image gradient response in an edge
detector to evolve the contour to the desired object boundaries.
These models are therefore sensitive to noise and may not be
efficient in scenarios where the gradient is weak. The region-
based models, on the other hand, endeavor to capture the region
description using statistics. The region-based models are effec-
tive even in scenarios, where the gradient information is unavail-
able [8]. The weakness of region-based active contour models is
that they tend to characterize the object using a statistical model,
which may not hold in every real world setting. Hence, research
into hybrid approaches is also available in the literature, which
combine global and local information for accurate segmentation
[13], [14].

In this work, we propose a new hybrid active contour method
for the segmentation of noisy images. For robust performance
in the presence of high noise, we use two fractional derivative-
based terms - a novel fractional derivative-based bidirectional
balloon term and an edge term - in the evolution criterion, along-
side the region scalable fitting term as in [11]. As demonstrated
in the following sections, the proposed hybrid model outper-
forms the individual constituents and provides a better segmen-
tation method in combination.
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II. BACKGROUND AND RELATED METHODS

A. Fractional Differentiation Preliminaries
Fractional derivatives, which are a generalization of integer

order derivatives, have been found to be superior in modelling
long memory effects. There are many definitions given for the
general order derivatives. In this work, we use the Grunwald-
Letnikov(G-L) definition owing to its series definition and ease
of implementation. We use the one dimensional G-L fractional
derivative definition to obtain the one-sided fractional image
derivatives on either side of the evolving active contour. Here
we give the definitions. Let θ(x, y) be the direction of gradi-
ent of the contour ϕ(x, y) computed at a location (x, y) in the
level set formulation. If I(x, y) denotes the image, α-th order
one-sided fractional derivatives can be computed as follows:

Dα
θ I(x, y) = h−α

N1∑
j=0

(−1)j
(
α

j

)
I(x+ τ1, y + τ2) (1)

and

Dα
θ+180I(x, y) = h−α

N2∑
j=0

(−1)j
(
α

j

)
I(x− τ1, y − τ2) (2)

where τ1 = jhcosθ and τ2 = jhsinθ. As can be seen from
the definitions, these fractional derivatives bring in additional
region information when compared to the integer order deriva-
tives, and when moulded as an edge-based energy, can assist in
efficient delineation of object boundaries.

B. Related Active Contour Models
The use of fractional derivatives in image segmentation is

mainly through the use in active contour framework. The data
fitting term and a length penalty term are a common feature of
region-based active contour models. The fractional derivative-
based improvement is through either of these terms or an edge
indicator function.

In [15], a two stage model is proposed. In the first, morpho-
logical gradient was used to extract the transition region and
in the second a fractional order edge indicator-based external
energy was used in the geometric active contour model. By
incorporating the fractional derivative-based term in the length
term, the noise influence was mitigated. In [16], a fractional-
order diffusion-based edge indicator is employed to counter the
effect of intensity inhomogeneity. The fuzzy signed pressure
force and fuzzy local fitting alongside the fractional derivative
term make the method robust and accurate. In [17], unlike the
regular gradient-based energy minimization, a fractional deriva-
tive of Mittag-Leffler-based energy minimization is employed.
The new technique maintains the high frequency content while
enhancing texture detail. This is applied on kidney MRI im-
age segmentation. In [18], the authors use fractional calculus
to overcome the shortcomings of the distance regularized level

set function. The fractional distance regularization term pe-
nalizes any deviation from the signed distance function. G-L
definition-based conjugate of fractional derivatives and the frac-
tional divergence term were derived. The method was demon-
strated to be performing better with weak images and intensity
inhomogeneity. In [19], local fractional derivative-based fitting
energy is defined to counter the effect of intensity inhomogene-
ity. Eight fractional derivative masks proposed by Tian et al.
were used for this purpose. In [20], the fractional order fitting
term is obtained by the frequency domain implementation. The
level set evolution was demonstrated to be robust and stable. In
[21], fractional order gradient magnitude is obtained in the first
step using frequency domain implementation. A difference of
this magnitude with the original image is computed and used
for local fitting energy term. A weighted combination of global
and local fitting terms with a length penalty drives the level
set evolution. The weight of global vs local fitting is decided
adaptively using the local contrast ratio of the gradient image.
The method was shown to effective in inhomogeneous image
segmentation.

Now we discuss in detail the methods which are related to
the proposed model. Firstly, we briefly present the Chan-Vese
model and then describe the region scalable fitting-based mod-
els.

1) Chan-Vese Active Contour Model:

The Chan-Vese model is based on the piece-wise constant
Mumford-Shah model. The image intensity is assumed to be
homogeneous. If I(x, y) : Ω −→ R denotes the original image,
the Chan-Vese fitting energy is given as:

ECV = λ1

∫
inside(C)

(I−c1)
2dxdy+λ2

∫
outside(C)

(I−c2)
2dxdy

(3)
Here, c1 and c2 represent the mean intensity values inside and
outside the evolving contour. Parameters λ1 and λ2 can be used
to balance the weight given to inside versus outside region. Us-
ing the level set formulation the overall energy becomes

ECV = λ1

∫
(I−c1)

2H(ϕ)dxdy+λ2

∫
(I−c2)

2(1−H(ϕ))dxdy

+ ν

∫
|∇H(ϕ)|dxdy (4)

Here the Heaviside function Hϵ(ϕ) which denotes the inte-
rior of the contour is given as:

Hϵ(ϕ) =
1

2
+

1

π
arctan(

ϕ

ϵ
)

The Dirac delta, δϵ, which is the derivative of Hϵ(ϕ)

δϵ(ϕ) =
ϵ

π(ϕ2 + ϵ2)

denotes the area around the evolving contour. The parameter ϵ
controls the spread of the function.
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Minimizing the Eqn. 4 w.r.t. c1 and c2 gives the following
expressions for their optimal values in the iterations:

c1 =

∫
I(x, y)H(ϕ)dxdy∫

H(ϕ)dxdy
(5)

c2 =

∫
I(x, y)(1−H(ϕ))dxdy∫

(1−H(ϕ))dxdy
(6)

These mean values c1 and c2 play an important role in the seg-
mentation procedure. However, if the homogeneity assumption,
inherent in the piece-wise constant model, does not hold, these
values may fail to represent the region and hence, may lead to
unsatisfactory segmentation.

2) Region Scalable Fitting Active Contour Model:

The region scalable fitting (RSF) model [11] attempts to
solve the inhomogeneity problem by using data fitting values,
which approximate the intensities in a limited region around the
contour pixel in consideration. The size of this region is con-
trolled by setting the appropriate scale parameter for the kernel
K used in the energy formulation. The RSF energy is given by
the following equation:

ERSF =

2∑
i=1

λi

∫
K(x−y)(I(y)−fi(x))

2Mi(ϕ)dy+ν|∇H(ϕ)|

The kernelK used in this formulation is a non-negative function
K : Rn −→ [0,+ inf) with the following properties:

1. K(−u) = K(u)

2. K(u) ≥ K(v), if |u| < |v| and lim|u|−→∞ K(u) = 0

3.
∫
K(x)dx = 1

K was chosen to be the Gaussian kernel.

Kσ(u) =
1

(
√
2π)σ

e
−|u|2

2σ2

The energy minimization leads to the evolution equation

∂ϕ

∂t
= −δϵ(ϕ)(λ1e1 − λ2e2) + νδϵ(ϕ)div(

∇ϕ

|∇ϕ|
)

+ µ(∇2ϕ− div(
∇ϕ

|∇ϕ|
)) (7)

where δϵ is the regularized Dirac delta function and e1, e2 are
given by

ei(x) =

∫
Kσ(y − x)|I(x)− fi(x)|2dy, i = 1, 2

Here f1 and f2 are the fitting terms which are as follows:

f1(x) =
Kσ(x) ∗ [Hϵ(ϕ)I(x)]

Kσ(x) ∗Hϵ(ϕ)
(8)

f2(x) =
Kσ(x) ∗ [(1−Hϵ(ϕ))I(x)]

Kσ(x) ∗ (1−Hϵ(ϕ))
(9)

Comparing Eqns. (5, 6) to Eqns. (8, 9), it is evident that the
region scalable fitting can be customized in size using the scale
parameter as opposed to the global fitting of data in the piece-
wise constant Chan-Vese model.

3) Adaptive Fractional Order Differentiation-based Active
Contour Model(AFACM):

In [27], Meng Li et al. proposed an active contour model
on the lines of RSF model which deals effectively with the
noise challenge in segmentation. The model has a fitting, length
penalty and level set regularization components. The evolution
equation of this model is as follows:

Case 1:

∂ϕ

∂t
= −δ(ϕ)[λ

∫
Ω

Kσ.(I −
f1 + f2

2
)dy

+ β

∫
Ω

Kσ.(D
νI − d1 + d2

2
)dy + γg.div(

∇ϕ

|∇ϕ|
)]

+ µ(∇2ϕ− div(
∇ϕ

|∇ϕ|
)) (10)

Case 2:

∂ϕ

∂t
= −δ(ϕ)[λ

∫
Ω

Kσ.(I −
f1 + f2

2
)dy

+ β

∫
Ω

(DνI − d1 + d2
2

)dy + γg.div(
∇ϕ

|∇ϕ|
)]

+ µ(∇2ϕ− div(
∇ϕ

|∇ϕ|
)) (11)

As can be seen from Eqn.10 and Eqn.11, the fitting term in
this model comprises of the region scalability term and the frac-
tional derivative-based terms. f1, f2 are computed in the same
way as in Eqn.8 and Eqn.9.

d1(x) =
Kσ(x) ∗ [Hϵ(ϕ)D

νI(x)]

Kσ(x) ∗Hϵ(ϕ)
(12)

d2(x) =
Kσ(x) ∗ [(1−Hϵ(ϕ))D

νI(x)]

Kσ(x) ∗ (1−Hϵ(ϕ))
(13)

The fractional derivative order here is obtained adaptively using
the following equation:

ν(x, y) =
|∇I(x, y)|

max
(x,y)∈Ω

|∇I(x, y)|
(14)

where |∇I(x, y)| =
√
((∇xI(x, y))2 + (∇yI(x, y))2)2.

The authors use the degraded Chan-Vese model to further
bring down the computational complexity and arrive at the evo-
lution equations. The authors compare the two cases obtained
and report that the Case-1, which has the Kσ convolution in-
volved, is having better performance. We use this Case 1 ex-
pression later on for our comparison. This model is claimed
to have got better noise insensitivity and accurate segmentation
capabilities.
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III. PROPOSED HYBRID METHOD

Now we discuss the formulation of the proposed active con-
tour model. We discuss the fractional derivative terms first and
then provide the evolution equation for the hybrid model.

A. Fractional Derivative-based Terms
Our active contour model is unique in the sense that the evo-

lution is based on the fractional derivative responses in the nor-
mal direction along the evolving contour. This gives robustness
in noisy scenarios and also in cases of objects with weak bound-
ary information. We utilize this property of fractional deriva-
tives by incorporating them into a bidirectional balloon term as
well as an edge term as discussed below.

1) Edge Term:

In [22], the authors had proposed an edge term for robust
noisy image segmentation. The authors had incorporated the
fractional derivative difference as weight into the length regu-
larization term of the active contour model. In the energy min-
imization iterations, this makes the evolving contour to actively
reach out and hold on effectively to the edges as it shrinks in
length. Since it is a length minimization term, it becomes nec-
essary that the initialization envelops the target object. This
model was shown to be robust to noise, however, the evolution in
this case was much slower than the state-of-the art region-based
terms.

The energy of this model is given as follows:

EEDGE(ϕ) =

∫
Ω

gδ(ϕ)|∇ϕ| (15)

where g(x, y) = −(λ1D
α
θ − λ2D

α
θ+180).

The function g is computed for each point on the evolving
contour and defined as the difference between theα-th fractional
derivative in the normal direction and the α-th order fractional
derivative in the opposite direction. The one-sided derivatives
are computed using the Eqns. (1, 2).

The idea behind the formulation is that the fractional deriva-
tive difference has better capability to capture edges than the in-
teger order derivative-based models which are inherently sensi-
tive to noise. And such a fractional derivative difference attains
its maximum value at the object boundary. Once this is incorpo-
rated into an evolution equation the active contour reaches out
to object boundary efficiently.

Taking the Euler-Lagrange of the energy mentioned above,
we have

∇EEDGE = (∇.(δgϕx
, δgϕy

)−gδϕ)|∇ϕ|+(gϕx
, gϕy

).∇(|∇ϕ|)+

∇(gδ).N⃗ + gκ (16)

with initial condition ϕ(x, y, 0) = ϕ0(x, y) on Ω.

2) Balloon Term:

From our understanding of the edge term, we devised a novel
bi-directional balloon term as:

∇ENBD = (−gδ(ϕ))|∇ϕ| (17)

where g(x, y) = −(λ1D
α
θ − λ2D

α
θ+180). This term entails a

normal velocity of magnitude equal to that of the value of g at
that contour pixel. The function g incorporated in a traditional
balloon term also adaptively directs the curve towards the object
boundary faster than the edge term.

B. Evolution Equation
Now we discuss the evolution equation of the proposed

model. We combine the terms corresponding to the region scal-
able data fitting term, the edge term and the balloon term. As
discussed above, the balloon and edge term combination evolves
the contour to a clear segmentation in presence of high noise.
The region scalability brings in a degree of inhomogeneity in-
variance. So, the proposed model is given as:

∂ϕ

∂t
=∇ERSF +∇EEDGE +∇ENBD

=(−δ(ϕ)(λ1e1 − λ2e2) + νδ(ϕ)div(
∇ϕ

|∇ϕ|
))

+ µ1((∇.(δgϕx
, δgϕy

)− gδϕ)|∇ϕ|+ (gϕx
, gϕy

).∇(|∇ϕ|)

+∇(gδ).N⃗ + gκ) + µ2(−gδ(ϕ)|∇ϕ|)
(18)

In the areas, where the intensity is flat, the response of the
fractional derivative-based balloon as well as edge energy terms
is reduced. Even though the length of the fractional derivatives
in both directions ensures that the contour evolution is sensitive
to object contours far away, it is still helpful if the evolution hap-
pens under a minimal constant length term alongside the data
fitting. Hence, in our equation we have used the length term to
speed up contour shrinkage in flat intensity areas.

Also as the algorithm iterations progress, the level set
evolves irregularly resulting in steep gradients evolving at some
points. As the level set deviates more from the distance func-
tion, the computational instability increases. We use the method
proposed by Sussman et al. [23] to reinitialize the level set back
to the distance function in between the iterations. In our algo-
rithm, we re-distance the level set after every iteration. Since
the iteration result is reinitialized to steady state of another evo-
lution process, this approach discourages contours evolving in
new places.

IV. NUMERICAL IMPLEMENTATION

The computations in region scalable fitting terms involve the
convolutions discussed in Eqn. 8 and Eqn. 9 which are handled
as mentioned in [11]. The hyperbolic terms in Eqn. 18 are im-
plemented using the entropy conserving methods. Central dif-
ference scheme is used for the rest of the terms.
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A. Initialization
Active contour methods are sensitive to initialization. Hence

various works in literature discuss the performance of their algo-
rithm with respect to a variety of initializations - initializations
that overlap with the object, initializations far from object, ini-
tial contours of varied shapes and sizes etc. Here we choose an
initialization as follows:

ϕ0(x, y) =

{
c0, if 5 ≤ x ≤ M and 5 ≤ y ≤ N

−c0, otherwise

Here ϕ0(x, y) is the initial level set function, x and y are image
co-ordinates, c0 is a positive constant value. This initialization
is independent of the prior knowledge of the object location.

B. Segmentation Evaluation Metrics
We use Sorenson-Dice and Jaccard coefficients to compare

the segmented region and the ground truth. Let P and G denote
the prediction and the ground truth respectively. Let |X| denote
the cardinality of the set X. Then the Sorenson-Dice coefficient
is obtained as:

Dice(P,G) =
2 ∗ |P ∩G|
|P |+ |G|

(19)

The Jaccard coefficient is obtained as follows:

Jaccard(P,G) =
|P ∩G|
|P ∪G|

(20)

In our experiments, the level set region demarcation obtained af-
ter convergence is taken as the prediction P . The ground truth
G is taken from the source image data sets.

We also compare the boundary detection accuracy under the
heavy noise scenario. The precision, recall and the F1 statisti-
cal measures are considered for this purpose. Precision denotes
the ratio between the number of correctly predicted boundary
points and the total number of predicted boundary points. Re-
call is the ratio between the number of ground truth boundary
points that are close within a threshold to the predicted bound-
ary and the total number of the ground truth boundary pixels.
In our case, we set the threshold of consideration to 2 pixels
keeping in view the boundary distortion due to the high noise
incorporated. Given the precision and recall, the F1 score of the
boundary is computed as follows:

F1(P,G) =
2 ∗ Precision(P,G) ∗Recall(P,G)

Precision(P,G) +Recall(P,G)
(21)

Our algorithm script is implemented in MATLAB and the func-
tions dice(P,G) and jaccard(P,G) and bfscore(P,G) provide the
segmentation accuracy metrics discussed above. The metrics
discussed above provide the evaluation of accuracy as a score in
the interval [0,1]. This is converted to a percentage and listed in
the tables for comparison.

C. Convergence Criterion
In our algorithm, the evolution is stopped when the area in-

side the curve is no longer changing appreciably as per a fixed
threshold. The area difference between segmentation results of
two consecutive iterations is estimated as follows in the level set
formulation:

∆Area = |Heaviside(ϕn > 0)−Heaviside(ϕn−1 > 0)|
(22)

When this ∆Area is less than 5 units, we stop the iterative pro-
cess.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Now we demonstrate the working of the proposed model on
images with challenging amounts of noise. We have chosen test
images from [25] and [24]. We compare the performance of our
method against that of the following state-of-the-art methods: a)
region scalable fitting (RSF) by Li et al. [11] b) locally statisti-
cal active contour model (LSACM) by Zhang et al. [26] and c)
an adaptive fractional order differentiation-based active contour
model (AFACM) by Meng Li et al. [27].

In each figure panel, the columns are ordered left to right as
follows: 1) image with ground truth marked 2) proposed method
3) RSF method 4) LSACM method 5) Adaptive fractional order
differentiation method. The rows are ordered top to bottom as
follows: 1) original image segmentation 2)image corrupted by
Gaussian noise of 0 mean and 0.01 variance 3) image corrupted
by Gaussian noise of 0 mean and 0.05 variance 4) image cor-
rupted by multiplicative speckle noise of 0.1 variance 5) image
corrupted by salt and pepper noise of density 0.1. MATLAB
command imnoise() is used for the above mentioned noise ad-
dition.

The row-column labels in the tables are self explanatory. For
a particular image, the default parameters used for a particular
method are mentioned in the respective experiment discussion.
Any change in these default parameters for a particular noise are
mentioned in the corresponding table in the last column.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 1: Segmentation on a pawn piece image with distracting edge content
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Pawn Image (Fig. 1a) Dice Jaccard Precision Recall BF1 Parameters
Proposed method (Fig.
1b)

0.9708 0.9433 0.9711 0.9824 0.9767

RSF (Fig. 1c) 0.9874 0.9752 1 1 1 σ = 15
LSACM (Fig. 1d) 0.9411 0.8888 0.7333 0.9588 0.8311 σ = 7
AFACM (Fig. 1e) 0.9443 0.8945 0.5945 1 0.7457 σ = 25

Gaussian Noise
(mean=0; var=0.01)
(Fig. 1f)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method (Fig.
1g)

0.9672 0.9365 0.9548 0.9824 0.9684

RSF (Fig. 1h) 0.9833 0.9671 1 1 1 σ = 15
LSACM (Fig. 1i) 0.9257 0.8618 0.6174 0.9412 0.7457 σ = 25
AFACM (Fig. 1j) 0.8510 0.7406 0.2919 0.9941 0.4513 σ = 25

Gaussian noise
(mean=0; var=0.05)
Fig. (1k)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method (Fig.
1l)

0.9566 0.9168 0.8842 0.9235 0.9034

RSF (Fig. 1m) 0.9699 0.9416 0.9286 0.9529 0.9406 σ = 15
LSACM (Fig. 1n) 0.9136 0.8410 0.5483 0.9059 0.6831 σ = 25
AFACM (Fig. 1o) 0.5513 0.3806 0.0809 0.9706 0.1493 σ = 25

Speckle noise (var=0.1)
Fig. (1p)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method (Fig.
1q)

0.9599 0.9230 0.8944 0.9353 0.9144

RSF (Fig. 1r) 0.9809 0.9625 0.9943 0.9941 0.9942 σ = 15
LSACM (Fig. 1s) 0.9616 0.9260 0.8756 0.9647 0.9180 σ = 25
AFACM (Fig. 1t) 0.4921 0.3263 0.0558 0.9118 0.1051 σ = 25

Salt and Pepper noise
(density=0.1) Fig. (1u)

Dice Jaccard Precision Recall BF1 Parameters

Proposed (Fig. 1v) 0.9624 0.9276 0.8705 0.9412 0.9044
RSF (Fig. 1w) 0.9815 0.9637 0.9471 0.9882 0.9672 σ = 15
LSACM (Fig. 1x) 0.7571 0.6091 0.1819 0.7882 0.2956 σ = 25
AFACM (Fig. 1y) 0.7953 0.6602 0.2021 0.9941 0.3358 σ = 25

Table 1: SEGMENTATION EVALUATION

In the first experiment, we evaluate the segmentation accu-
racy of the algorithms on the pawn image. As can be seen in Fig.
1a, this image has a lot of edge content in the background of a
pawn piece, which can act as distractor for an edge-predominant
method like ours. The default parameters are listed below:

Proposed method: λ1 = λ2 = 0.015,σ = 5, ν = 100,
µ1 = 0.1, µ2 = 0.15, α = 0.1, λ = 10, N1 = N2 = 100,
∆t = 0.01

RSF: λ1 = λ2 = 1, µ = 1,ν = 0.2 ∗ 255 ∗ 255, ∆t = 0.1
LSACM: µ = 0.1, ∆t = 1
AFACM:λ = 50,β = 1,µ = 0.1, ν = 0.0002 ∗ 255 ∗ 255,

∆t = 0.02

As evident from the visual comparison of the subfigures Fig.
1a-Fig. 1y in the panel Fig. 1, the performance of the proposed
algorithm is on par with the state-of-the-art methods. Even in
the presence of high noise, the proposed method is able to de-
lineate the pawn piece with clear segmentation, while some of
the other methods give rise to segmentation marred by artifacts.
The evaluation of the segmentation is tabulated in Table 1. The
scores listed therein confirm the segmentation accuracy close to
that of the best result in each case.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 2: Segmentation on a statue image with uneven illumination
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Statue Image(Fig. 2a) Dice Jaccard Precision Recall BF1 Parameters
Proposed method (Fig.
2b)

0.9959 0.9918 1 1 1

RSF (Fig. 2c) 0.9944 0.9888 1 1 1 σ = 15
LSACM (Fig. 2d) 0.9944 0.9889 1 1 1 σ = 17
AFACM (Fig. 2e) 0.9871 0.9746 0.8455 1 0.9163

Gaussian Noise
(mean=0; var=0.01)
(Fig. 2f)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.2g)

0.9933 0.9867 1 1 1

RSF(2h) 0.9922 0.9845 1 1 1 σ = 25
LSACM(2i) 0.9931 0.9863 0.9855 1 0.9927 σ = 25
AFACM(2j) 0.8569 0.7497 0.2188 1 0.3591

Gaussian noise
(mean=0; var=0.05)
(Fig.2k)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.2l)

0.9845 0.9696 0.9673 0.9807 0.9739

RSF (Fig. 2m) 0.9825 0.9656 0.9393 0.9614 0.9502 σ = 25
LSACM (Fig. 2n) 0.9741 0.9495 0.7923 0.9903 0.8803 σ = 25
AFACM (Fig. 2o) 0.6590 0.4915 0.0939 1 0.1717

Speckle noise (var=0.1)
Fig. 2p)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.2q)

0.9890 0.9782 1 1 1

RSF (Fig. 2r) 0.9885 0.9773 0.9905 0.9903 0.9904 σ = 25
LSACM (Fig. 2s) 0.9905 0.9811 0.9952 0.9952 0.9952 σ = 25
AFACM (Fig. 2t) 0.6205 0.4498 0.0801 1 0.1483

Salt and Pepper noise
(density=0.1) (Fig.2u)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method (Fig.
2v)

0.9883 0.9769 0.9430 1 0.9707

RSF (Fig. 2w) 0.9845 0.9695 0.9292 0.9855 0.9565 σ = 25
LSACM (Fig. 2x) 0.9043 0.8254 0.3187 0.9372 0.4757 σ = 25
AFACM (Fig. 2y) 0.8962 0.8120 0.2613 1 0.4144

Table 2: SEGMENTATION EVALUATION

In the second experiment, we test the algorithms’ perfor-
mance on the image of a statue against the background of sky
with wide variation in illumination. The uneven intensities all
over the background make the task of segmentation challenging.
The default parameters are listed below:

Proposed method: λ1 = λ2 = 0.01, σ = 5, ν = 100,
µ1 = 0.1, µ2 = 0.01, α = 0.1, λ = 10, N1 = N2 = 100,
∆t = 0.01

RSF: λ1 = λ2 = 1, µ = 1,ν = 0.2 ∗ 255 ∗ 255, ∆t = 0.1
LSACM: µ = 0.1, ∆t = 1

AFACM:λ = 50,β = 1,µ = 0.1, ν = 0.0002 ∗ 255 ∗ 255,
∆t = 0.02,σ = 25

In this case, we find that the proposed method gives a clean
segmentation, (Figs. 2b, 2g, 2l, 2q, and 2v)- slightly better than
state-of-the-art methods, which generally deal well with inten-
sity inhomogeneity. This can be attributed to the combination
of RSF kernel with the fractional derivative-based terms which
is effectively segmenting the target object in presence of illumi-
nation variance as well as high amounts of noise. The segmen-
tation evaluation scores are tabulated in Table 2.
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(u) (v) (w) (x) (y)

Figure 3: Segmentation on a towers image with spot illumination effect
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Towers image (Fig. 3a) Dice Jaccard Precision Recall BF1 Parameters
Proposed method
(Fig.3b)

0.9769 0.9548 0.9496 0.9479 0.9488

RSF (Fig. 3c) 0.9001 0.8184 0.7422 0.8958 0.8118 σ = 15
LSACM (Fig. 3d) 0.9022 0.8218 0.7319 0.9107 0.8115 σ = 10
AFACM (Fig. 3e) 0.8974 0.8183 0.6723 0.9057 0.7717

Gaussian Noise
(mean=0; var=0.01)
(Fig. 3f)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.3g)

0.9747 0.9506 0.9426 0.9504 0.9465

RSF (Fig. 3h) 0.8929 0.8066 0.6994 0.8610 0.7718 σ = 20
LSACM (Fig. 3i) 0.8950 0.8099 0.6814 0.8511 0.7568 σ = 25
AFACM (Fig. 3j) 0.8812 0.7876 0.3217 0.9156 0.4761

Gaussian noise
(mean=0; var=0.05)
(Fig. 3k)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.3l)

0.9678 0.9376 0.8589 0.8958 0.8769

RSF (Fig. 3m) 0.8801 0.7859 0.6328 0.8139 0.7120 σ = 25
LSACM (Fig. 3n) 0.8895 0.8009 0.5829 0.8213 0.6819 σ = 25
AFACM (Fig. 3o) 0.7852 0.6463 0.1637 0.9256 0.2782

Speckle noise (var=0.1)
Fig. 3p)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.3q)

0.9708 0.9432 0.9160 0.9181 0.9171

RSF (Fig. 3r) 0.8838 0.7918 0.6454 0.8189 0.7219 σ = 25
LSACM (Fig. 3s) 0.8924 0.8057 0.5779 0.7717 0.6609 σ = 25
AFACM (Fig. 3t) 0.7947 0.6594 0.2022 0.9727 0.3347

Salt and Pepper noise
(density=0.1) (Fig.3u)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.3v)

0.9680 0.9380 0.8568 0.9305 0.8922

RSF (Fig. 3w) 0.8910 0.8034 0.6896 0.8635 0.7668 σ = 25
LSACM (Fig. 3x) 0.9079 0.8314 0.6297 0.8734 0.7318 σ = 25
AFACM (Fig. 3y) 0.8481 0.7362 0.2665 0.9330 0.4146

Table 3: Segmentation Evaluation

In our next experiment, we test the efficacy of proposed al-
gorithm on an image of two towers. This image also has chal-
lenging spot illumination due to the presence of sun in the back-
ground sky. The spot intensity spiking has the effect of eroding
the boundary information of the tower. The presence of clouds
further complicates image segmentation. The default parame-
ters are listed below:

Proposed method: λ1 = λ2 = 0.015, σ = 5, ν = 100,
µ1 = 0.1, µ2 = 0.01, α = 0.3, λ = 10, N1 = N2 = 100,
∆t = 0.01

RSF: λ1 = λ2 = 1, µ = 1,ν = 0.2 ∗ 255 ∗ 255, ∆t = 0.1
LSACM: µ = 0.1, ∆t = 1

AFACM:λ = 50,β = 1,µ = 0.1, ν = 0.0002 ∗ 255 ∗ 255,
∆t = 0.02,σ = 25

In these challenging situations too, the proposed method is
able to segment the towers selectively and consistently across
the various noises added, as seen in the panel of images shown
in Fig. 3. We find that responses of other methods are either af-
fected by noise resulting in artifacts or digressed due the cloud
presence, resulting in incorrect segmentation in certain portions
of the image. The evaluation scores tabulated in Table 3 again
confirm the superior segmentation performance of the proposed
method in comparison with other methods.
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Figure 4: Segmentation on a frog image
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Frog image (Fig. 4a) Dice Jaccard Precision Recall BF1 Parameters
Proposed method
(Fig.4b)

0.9892 0.9786 0.9747 0.9755 0.9751

RSF (Fig. 4c) 0.9814 0.9635 0.9055 0.8865 0.8959 σ = 50,ν =
0.1 ∗ 255 ∗
255

LSACM (Fig. 4d) 0.9313 0.8715 0.5198 0.9632 0.6752
AFACM (Fig. 4e) 0.9097 0.8344 0.3293 0.9110 0.4837 λ = 25,σ =

50

Gaussian noise
(mean=0; var=0.01)
(Fig. 4f)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.4g)

0.9853 0.9710 0.9379 0.9540 0.9459

RSF (Fig. 4h) 0.9758 0.9527 0.8576 0.9049 0.8806 σ = 50,ν =
0.1 ∗ 255 ∗
255

LSACM (Fig. 4i) 0.9409 0.8884 0.4718 0.9448 0.6294
AFACM (Fig. 4j) 0.8503 0.7395 0.1884 0.9663 0.3153 λ = 25,σ =

50

Gaussian noise
(mean=0; var=0.05)
(Fig. 4k)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.4l)

0.9755 0.9521 0.8736 0.9325 0.9021

RSF (Fig. 4m) 0.9709 0.9435 0.8678 0.8006 0.8329 σ = 50
LSACM (Fig. 4n) 0.9162 0.8454 0.3644 0.9264 0.5230
AFACM (Fig. 4o) 0.6501 0.4816 0.0860 0.9969 0.1583 λ = 25,σ =

50

Speckle noise (var=0.1)
Fig. 4p)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.4q)

0.9615 0.9259 0.8333 0.8773 0.8548

RSF (Fig. 4r) 0.9687 0.9392 0.8448 0.7730 0.8073 σ = 55
LSACM (Fig. 4s) 0.9162 0.8453 0.4274 0.8865 0.5767
AFACM (Fig. 4t) 0.5740 0.4025 0.0661 0.9969 0.1239 λ = 50,σ =

25

Salt and pepper noise
(density=0.1) Fig.4u)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.4v)

0.9807 0.9621 0.8299 0.9724 0.8955

RSF (Fig. 4w) 0.9722 0.9459 0.8621 0.7883 0.8236 σ = 50
LSACM (Fig. 4x) 0.8651 0.7623 0.1897 0.9479 0.3162
AFACM (fig. 4y) 0.7922 0.6560 0.1539 0.9233 0.2639 λ = 50,σ =

25

Table 4: SEGMENTATION EVALUATION
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In the fourth experiment, we show the segmentation result
on the image showing a frog on glassware. In this case, the im-
age is rife with several patterns which may be incorrectly delin-
eated by the methods as the boundary of the frog’s body. Further
challenge is to find the body contour of the frog under various
noises. The default parameters are listed below:

Proposed method: λ1 = λ2 = 0.025, σ = 5, ν = 100,
µ1 = 0.1, µ2 = 0.1, α = 0.1, λ = 10, N1 = N2 = 100,
∆t = 0.01

RSF: λ1 = λ2 = 1, µ = 1,ν = 0.2 ∗ 255 ∗ 255, ∆t = 0.1

LSACM: σ = 25, µ = 0.1, ∆t = 1

AFACM:β = 1,µ = 0.1, ν = 0.0002 ∗ 255 ∗ 255,
∆t = 0.02,

Here too we find the proposed method is able to segment the
target effectively as shown in the image panel Fig. 4. The quan-
titative evaluation scores for this image are tabulated in Table
4.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 5: Segmentation on a key and a pen image
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(u) (v) (w) (x) (y)

Figure 5: Segmentation on a key and a pen image

In the last experiment, we show the segmentation evalua-
tion on an image having a pen and key. Seemingly simple, this
image has the key, the pen and the background - all having dif-
ferent intensitites. In presence of noise , the objects are not easy
to distinguish especially the boundary of the key. The default
parameters are listed below:

Proposed method: λ1 = λ2 = 0.015, σ = 5, ν = 100,
µ1 = 0.015, µ2 = 0.01, α = 0.3, λ = 10, N1 = N2 = 100,
∆t = 0.01

RSF: λ1 = λ2 = 1, µ = 1,ν = 0.1 ∗ 255 ∗ 255, ∆t = 0.1,
σ = 15

LSACM: µ = 0.1, ∆t = 1

AFACM:β = 1,µ = 0.1, ν = 0.0002 ∗ 255 ∗ 255,
∆t = 0.02, σ = 15

Here also we can observe that the proposed method is able
to segment the boundaries stably as seen in Fig. 5. The segmen-
tation evaluation scores for this image are tabulated in Table 5.

Key and a pen image
(Fig. 5a)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.5b)

0.9634 0.9294 0.9949 0.9027 0.9466

RSF (Fig. 5c) 0.9686 0.9391 1 0.9115 0.9537 σ = 10
LSACM (Fig. 5d) 0.8387 0.7222 0.4953 0.4469 0.4699 σ = 10
AFACM (Fig. 5e) 0.9645 0.9315 0.9196 0.9071 0.9133

Gaussian noise
(mean=0; var=0.01)
(Fig. 5f)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.5g)

0.9595 0.9221 0.9950 0.8982 0.9442

RSF (Fig. 5h) 0.9651 0.9326 0.9952 0.9115 0.9515
LSACM (Fig. 5i) 0.9074 0.8304 0.8852 0.7920 0.8360 σ = 10
AFACM (Fig. 5j) 0.6082 0.4370 0.1951 0.9115 0.3214

Gaussian noise
(mean=0; var=0.05)
(Fig. 5k)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.5l)

0.9283 0.8661 0.9269 0.8584 0.8914

RSF (Fig. 5m) 0.6688 0.5024 0.6405 0.8186 0.7187
LSACM (Fig. 5n) 0.8559 0.7481 0.6154 0.7743 0.6858 σ = 15
AFACM (Fig. 5o) 0.3381 0.2035 0.0895 0.9204 0.1631
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Speckle noise (var=0.1)
Fig. 5p)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.5q)

0.8965 0.8124 0.9034 0.7965 0.8466

RSF (Fig. 5r) 0.5755 0.4040 0.5733 0.7257 0.6406
LSACM (Fig. 5s) 0.8882 0.7990 0.8744 0.7920 0.8312 σ = 15
AFACM (Fig. 5t) 0.2878 0.1681 0.0678 0.8673 0.1258

Salt and pepper noise
(density=0.1) Fig.5u)

Dice Jaccard Precision Recall BF1 Parameters

Proposed method
(Fig.5v)

0.9333 0.8749 0.9079 0.8938 0.9008

RSF (Fig. 5w) 0.7346 0.5805 0.7095 0.6549 0.6811
LSACM (Fig. 5x) 0.6636 0.4966 0.2076 0.7566 0.3258 σ = 15
AFACM (fig. 5y) 0.5582 0.3871 0.2401 0.7124 0.3592

Table 5: SEGMENTATION EVALUATION

As can be seen from the parameters listing for all the meth-
ods, the proposed method parameters are the same for all tests
for a particular image - noiseless as well as noisy scenarios.
For other methods, the value of scale parameter has to be in-
creased often to cope with the noise. But in our case, we keep
the scale parameter fixed at σ = 5 in all experiments. In pro-
posed method, the set of parameter values (the coefficients for
rsf, balloon and edge terms) once selected for a particular im-
age, provide a top quality segmentation even if high noise were
to be added to the given image.

VI. CONCLUSION

This paper presents a novel combination of a fractional
derivative-based balloon term, a fractional derivative edge term
and region scalable fitting term for efficient segmentation. Im-
age border initialization has been used which makes the segmen-
tation independent of the prior knowledge of the object loca-
tion. It was also shown that in case of the proposed method, the
same set of method parameters that provide best segmentation
in noiseless scenario provide an equally good segmentation in
high noise scenarios. By testing on challenging natural images
in presence of high noise levels, the method has been demon-
strated to be efficient in delineating the object boundaries.
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