
International Journal of Engineering Trends and Technology Volume 69 Issue 9, 203-211, September, 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I9P224 ©2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

FPGA Implementation Of VM-CSA Fir Filter

With Reduced Area And Delay Using Optimal

Designs

1Arunjyothi Eddla, 2Dr.VY.Jayasree Pappu

1Ph.D Scholar Dept. of ECE, GITAM Institute of Technology, Visakhapatnam, Andhra Pradesh, India

2Professor GITAM Institute of Technology, Visakhapatnam, Andhra Pradesh, India.

1aeddla@gitam.edu, 2jpappu@gitam.edu

Abstract - Because of its various properties, such as

Bounded-Input-Bounded-Output (BIBO) stability, phase

linearity, and ease of implementation, the Finite Impulse

Response (FIR) filter is widely employed in digital signal

processing applications. High-order filters, on the other
hand, need a large number of multipliers. As the number of

multipliers grows, the hardware complexity and power of

the FIR filter grows as well. In digital signal processing

applications, the design of the low area and low power

FIR filters is critical. To reduce hardware consumption, an

essential form of FIR filter called the Interpolated Spectral

Parameter Approximation (ISPA) filter is introduced in

this study. To reduce the number of logical components in

the ISPA filter, the Carry SKIP Adder (CSA) and Vedic

Multiplier (VM) are combined. Furthermore, raising the

ISPA filter's working frequency reduces the ISPA filter's

latency. The Parks-McClellan algorithm will be used to
create the coefficient. The ISPA filter, as well as the

optimum adder and multiplier, are implemented using

Modelsim 10.5 and Xilinx 14.4. The suggested ISPA filter's

performance is evaluated in terms of filter output, LUT,

flip flops, slices, power, and delay.

Keywords: Carry Look Ahead adder, Finite Impulse

Response, Interpolated Spectral Parameter

Approximation, Parks-McClellan, and Vedic Multiplier

I. INTRODUCTION

The Finite Impulse Response (FIR) filter is now widely

regarded as the most fundamental circuit utilized in DSP

hardware [1]. Because of their absolute stability and linear

phase characteristics, FIR digital filters are widely used in

mobile communication systems for channel equalization,

matched filtering, and pulse shaping [2]. Because these

circuits serve critical functions in today's DSPs, their speed
and power optimization are critical. In high-performance

DSP applications, there is a quality factor.

DSP applications often have a tradeoff between power

consumption and speed, necessitating the development of

low-power, high-speed digital filter circuits. FPGA is

becoming a popular platform for digital VLSI design [3],

[4]. This is owing to the FPGAs' great flexibility,

reusability, low power, moderate cost, ease of updating

(thanks to the use of hardware description languages

(HDL)), and feature expansion (as long as the FPGA is not

exhausted) features. A changeable structure is provided by

FPGAs, which consist of an array of adjustable logic

modules coupled with programmable routing resources
and surrounded by programmable input/output blocks [5].

It has given the FPGA-based design, and implementation

of a low-power FIR circuit that is similar to peer research

works for DSP applications, as well as their performance

evaluations based on resource use, delay, and power

concerns. Over a million comparable logic blocks (logic

gates and tens of thousands of flip-flops) are contained in

an FPGA [6], [7].

This implies that when a digital circuit contains hundreds

of gates, standard logic design approaches such as creating

logic diagrams are no longer viable.

Today's digital systems are created by writing software in

the form of hardware description languages (HDLs) [8].

Simulating VHDL design and synthesizing the design to

actual hardware are both done with computer-aided design

tools.

Although there has been previous work on designing FIR

circuits in the VLSI realm for DSP applications, the

FPGA-based design challenges have not been addressed

[9].

The work on FPGA-based FIR circuit design has mostly

concentrated on bespoke design and implementation, with

no comprehensive study of the various FIR circuits in

terms of FPGA design parameters such as resource usage,

latency, or power [10].

The following is a list of the research work's key

contributions:

• FIR filter design with less area efficiency

• The PM algorithm is used to generate the coefficient
values.

• The input data was produced using the $random function.

• Using an optimal adder and multiplier allows you to

create a

https://ijettjournal.org/archive/ijett-v69i9p224
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Arunjyothi Eddla & Dr.VY.Jayasree Pappu / IJETT, 69(9), 203-211, 2021

204

FIR filter that uses minimal hardware resources.

• Fractional delay is reduced.

This research study is organized as follows: Section 2

reviews a few current research publications on the topic
"FIRfilter." Section 3 provides a thorough discussion of

the suggested FIR filter technique. Section 4 describes the

experimental assessment of the suggested FIR filter

technique.

The current study work's conclusion is presented in

Section 5.

II. Literature Survey

The Distributed Arithmetic (DA)based Least Mean Square

(LMS) adaptive filter was created by Kalaiyarasi, D., and

Reddy, T.K. [11] to reduce the power and logic

components. The Carry Save Accumulator is used to
perform the accumulation and shifting operations (CSA).

Furthermore, the LMS was utilized as a weight update

block to determine FIR filter coefficients. In the DA,

Offset Binary Coding (OBC) was used to decrease the

ROM size. Then, thanks to the simultaneous operation of

filtration and weight updation, the throughput was

considerably enhanced. However, there are no pipeline or

parallel processing aspects in the DA-based LMS. As a

result, the filter's surface area expands.

J. Prasad, D.M. Geetha, and K. Srinivasan [12] showed

that the FIR filter might be used in conjunction with Arid-
dry pad sensors to improve medical imaging applications.

With the aid of pictures, sensors were utilized to get the

patient's brain signal in this study. The FIR filter was

created using an adder and a Wavepipelined Vedic

multiplier. To enhance the multiplier execution

parameters, the characteristic of abnormal state pipelining

was employed. To compensate for the Vedic multiplier's

combination delay, a delay was introduced between the

partial product adder and partial product generator. As a

result, the entire architecture's delay increases.

Diaz, C., Sanchez, G., Avalos, J.G., Sanchez, G., Sanchez,

J.C., and Perez, H. [13] created a parallel neural multiplier,
known as the Spiking Neural P (SN P) multiplier, utilizing

a small digital neuromorphic architecture.

The parallel neural multiplier was used to compute the FIR

filters at high processing rates. Because there were fewer

neurons, the neural SN P multiplier was employed to

consume less space. However, while processing the

higher-order FIR filter, the SN P systems have a long
latency.

The low complicated architectural design was proposed for

hearing aid applications by Sundar, P.P., Ranjith, D.,

Karthikeyan, T., Kumar, V.V., and Jeyakumar, B [14].

Using a DA-based FIR filter, the hearing aid was built

without multipliers. The high-order filters of high-speed

hearing aids were designed using shift-accumulate

operations and look-up tables. The low-complexity hearing

aid architecture was created using a multiplier-less

architecture with a single DA unit. However, a large

number of logical elements were utilized in this adaptive

filter design, including a weight increment block,
memoryless inner product block, compressor adder, and

sign-magnitude separator, and

The design of a narrow transition band FIR filter was

created for creating hardware efficient digital systems and

this FIR filter was used in the interpolated bandpass

filtering method, according to Roy, S. and Chandra A [15].

By taking into account the optimization problem, the

complexity of the FIR filter was decreased. Furthermore,

the decrease in complexity was achieved under a variety of

restrictions, including filter length and normalized peak

ripple magnitude threshold. The interpolated bandpass
technique-based FIR structure resulted in lower power

dissipation and lower hardware consumption. However,

the system's complexity was kept to a bare minimum.

Sub

Filter

L+1

Sub

Filter

L

Sub

Filter

2

Sub

Filter

1

Complementary Delays

A
d

d
er

Mask 1

+

+

+

Mask 2

+

Input

Select M

Select

add / sub

Filter Coefficient

(α)

ISPA Filter

Output

+

H
A

H
C

-

Fig 1. Architecture of ISPA filter

Arunjyothi Eddla & Dr.VY.Jayasree Pappu / IJETT, 69(9), 203-211, 2021

205

III. Problem statement

In this part, the current difficulties with the FIR filter are

discussed, as well as how the suggested approach

addresses these issues. The following are the issues that

the FIR filter has to deal with: The partial product adder
and partial product generator have an additional delay in

filter design [2], and the delay is exacerbated owing to the

processing of high order FIR [3]. The larger delay obtained

during the filtering process affects the frequency of the

FIR filter. Furthermore, the overall architecture consumes

more space due to the use of a large number of logical

components in the filter design [4]. The more advanced

logical elements

A. Solution

The ISPA filter's incorporation of an optimum adder and

multiplier helps to reduce the number of logical elements
such as LUTs, slices, and FF. As a result, while

constructing the ISPA filter, the area is reduced.

Furthermore, by lowering the size, the ISPA filter's speed

is enhanced, and the frequency is improved by reducing

the power used in logical components. As a result, the

ISPA filter minimizes the latency during the filtering

process.

IV. Proposed Method

An optimum adder and multiplier are presented in the

ISPA filter in this proposed system to decrease hardware

consumption. Furthermore, the ISPA filter's logical

components are reduced by incorporating the best adder

and multiplier. Poor stopband attenuation and larger
passband ripples are disadvantages of the Spectral

Parameter Approximation (SPA) filter. The suggested

ISPA filter

Overcomes the shortcomings of the spectral parameter

approximation filter, resulting in a narrow transition

bandwidth and a relatively large cut-off frequency. Fig 1

and 2 depict the architecture of the ISPA filter and the sub-

filter utilized in the ISPA, respectively.

The genuine random number generator generates the input

in Fig 1, and the coefficients of the filter are represented

by h in Fig 2. The Filter Design and Analysis (FDA) tool is

used to create the filter coefficients. The developed ISPA

filter delivers a constantly changing frequency cut in the

small frequency range with transition bandwidth. Fig 3

depicts the internal construction of the ISPA filter.

The following is a description of the proposed ISPA filter's

operation:

h

0

h

1

h

2

h

3

Z
-M

 Z
-M

 +/- + Z
-M

 +/-

Input

Select

M
Select add / sub

Fig 3. Overall block diagram of ISPA

filter

Fig 2. Architecture of Sub

filter

Address

Generator

Control

Circuit

RAM

ROM

PE using

optimal

multiplier

Reset
Clk

Reset

en

Input data

Co-efficient

Reg Y input

Accumulator

output

en rst

Optimal Adder

Arunjyothi Eddla & Dr.VY.Jayasree Pappu / IJETT, 69(9), 203-211, 2021

206

 First, the input data is collected and saved in the

Random Access Memory (RAM), as well as the FDA

tool's coefficient in the Read-Only Memory (ROM)

(ROM). The input data is produced at random using a
genuinely random number generator, and the

coefficient is calculated using MATLAB's FDA tool.

The Processing Element (PE) receives the input data

and coefficient value, and this PE executes the

multiplication operation between the first input
data and the first coefficient value at the first clock

cycle. Using the best multiplier results in a more

efficient multiplication operation.

 The PE's output (Y) is supplied as an input to the

accumulator, and this output is added to the

accumulator's starting value, i.e., 0+Y=Y. Following

that, the initial tap stores the sum value in the register.

In addition, to increase ISPA performance, an

optimum adder will be created.

 At the second clock cycle, the identical multiplication

and addition procedure is applied to the second input

data and second coefficient value. • The value from

the addition process is added to the value saved in the

register during the previous tap; the process is referred

to as 8 taps if it continues for 8 clock cycles. Once the

8 tap in the filter design is done, the filter output is

received.

A. Initial blocks and True Random Number Generator

The ISPA filter is an eight-tap filter that operates on the
clock and reset signals. A control circuit regulates both of

these signals. For every single tapping, the address of the

filter coefficient and 8-bit input data are generated by the

address generator. As a result, eight addresses for eight

filter coefficients and eight 8-bit input data are produced.

Making use of the $ random function True random number

generator is used to create 8-bit input data, which is then

stored in RAM memory. The produced input data is stored

in RAM, while the filter coefficients are stored in the

ROM register. Input data in the RAM and ROM are called

based on the address and passed as input for the next

process depending on the clock cycle.

B. Parks McClellan Algorithm

This method was proposed by James McClellan and

Thomas Parkin in 1972 and was initially written in Fortran

(Programming Language). The Parks McClellan technique

is recursive and employs an indirect approach to

determining filter coefficients. Filter coefficients are stored

in ROM in the ISPA architecture, and these filter

coefficients are determined using the Parks McClellan

method. The algorithm's main goal is to use Chebyshev

approximation to decrease errors in the past and stop
bands. Equiripple, Chebyshev, and Remez are some of the

other names for this method. The ParksMcClellan

algorithm is implemented in the following steps:

Step1 (Initialization): Make an educated estimate and

select the most extreme set of frequencies{ωi
(0)}.

Step 2 (Approximation of a Finite Set): Calculate the

Chebyshev approximation on the chosen present extrema

set and the min-max error value (δ(m)) on the present

extremal set.

Step3 (Interpolation): Perform polynomial interpolation

over the entire set of frequencies to compute the error

function E(ω).

Step4 (Extrema Search): Search for the local extrema of

|E(m)(ω)| over the set Ω.

Step5 (Extrema set update): Update the extrema set to

{ωi
(m+1)} by taking new frequencies if max(ωɛΩ)

|E(m)(ω)|>δ(m), where |E(m)(ω)| has its local maxima and

ensure that error alternates on the ordered set of

frequencies as in step 4 and 5. If the alteration theorem is
not satisfied, then return to step 2 and iterate.

Step6 (Parameter test):If the alteration theorem is

satisfied (max(ωɛΩ) |E(m)(ω)| ≤ δ(m)). Compute an inverse

discrete fourier transform using set {ωi
(0)} and

interpolation formula to obtain the filter coefficients.

C. Optimal Multiplier

In a Finite Impulse Response (FIR) filter, the multiplier is

an important processing element. In Digital Signal
Processing (DSP) applications, the FIR filter is critical. Its

performance is mostly determined by the multiplier block,

which must be built to execute quick multiplication while

still ensuring high efficiency and low power consumption.

In modern technology, multiplier architecture has been

built to meet the following requirements: fast speed, small

size, low power, and high throughput. There are many

other types of multiplier designs. However, the Vedic

multiplier is considered to be one of the quickest and

lowest-power multipliers that meets the aforementioned

criteria.

a) Vedic Multiplier
The essential design idea for the multiplication process is

shown in Fig 4 below. Consider a 2-bit multiplication
procedure, in which two 2-bit integers, A and B, are

multiplied to produce P in 4-bit.

P (product output) = A (multiplicand of n-bit) *

B(multiplier of n-bit)

Let, A= (11)2and B= (11)2

Fig 4. 2x2 multiplication based on Vedic mathematics.

1

1 1

1

Stage 1

1

1

1

Stage 2

Stage 3

1
1

1

1 0 0

Arunjyothi Eddla & Dr.VY.Jayasree Pappu / IJETT, 69(9), 203-211, 2021

207

output is P= (1001)2 = 910

The partial products are produced in the aforementioned

Vedic multiplication procedure using the steps below.

Step 1: Create the first partial product by ANDing the

LSB bits of A and B [(i.e.) A0.B0].

Step 2: After the first step, the one-bit position is moved,

much like in basic multiplication, and a second partial

product is produced by ANDing the diagonal bits [A0.B1]

and [A1.B0].

Step 3: After completing the second step, the one-bit

position is moved, and the MSB bits of A and B are
ANDed to produce the third partial product [(i.e.) A1.B1].

Finally, combine all of the partial products to achieve the

desired result. Similarly, a 4x4 multiplier is created using a

2x2 multiplier, and an 8x8 multiplier is created using a 4x4
multiplier. 8x8 Vedic multiplier architecture is used in the

proposed Interpolated Spectral Parameter Approximation

(ISPA) filter design. The block diagram of the 8x8 Vedic

multiplier is shown in Fig 5

1) 4x4 Vedic multiplier block and

2) Adder blocks are significant architectural features.

Mathematics. The output of each multiplier product is then

sent into the adder, which performs the addition operation.

The output p0[3:0] is immediately accepted as an 8x8

output (P[3:0]) in the fourth multiplier block, while the
remaining p0[7:4] is passed to the following adder block to

execute addition. To acquire the remaining output P[15:4],

the second stage's additional output is provided as input to

the following adder. For n-bit multiplication, this module

may be expanded. This architecture multiplies 8-bit input

from RAM and coefficients in ROM expressed in 8-bit to

generate an efficient product output Y based on this

procedure.

D. Carry skip Adder: Carry skip adder is also named as

carrying by-pass adder, and it consists of special circuitry

for improving the speed and reducing the carry

propagation delay.

The construction of an 8x8 Vedic multiplier necessitates
the use of four 4x4 Vedic multiplier blocks and three adder

blocks connected in cascade (i.e., the first stage output

becomes the input to the next stage). The 8-bit inputs A

and B are [a7,a6,a5,a4,a3,a2,a1,a0] and

[b7,b6,b5,b4,b3,b2,b1,b0], respectively. The 1st multiplier

block receives the first four bits from the MSB side of A

and B. The diagonal bits of A and B are then provided to

the 2nd multiplier (i.e., a[3:0] and b[7:4]), and a[7:4] and

b[3:0] are given as input to the 3rd multiplier block. 4-bits

from the LSB side of A and B are supplied as input to the

fourth multiplier block. The multiplication process is
performed by the Multiplier block using Vedic

In this adder, carry skip circuitry (special circuitry) is

implemented based on the carry skip mechanism. This

circuitry contains two main blocks, namely, AND block

and multiplexer block together defined as block propagate

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0
a7 a6 a5 a4 a3 a2 a1 a0
b7 b6 b5 b4 b3 b2 b1 b0

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

4x4 multiplier block 4x4 multiplier block 4x4 multiplier block 4x4 multiplier block

Adder Adder

Adder

b[7:4] a[7:4] b[7:4] a[3:0] b[3:0] a[7:4] b[3:0] a[3:0]

{p3[7:0],0000} {0000,p2[7:0]}
{0000,p0[7:4]}

p1[7:0] p0[7:0]

p0[3:0]

P[3:0]

P[15:04]

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

Fig 5. Architecture of 8x8 vedic

multiplier

Arunjyothi Eddla & Dr.VY.Jayasree Pappu / IJETT, 69(9), 203-211, 2021

208

block. The following Fig 6. shows the implementation of a

4-bit carry skip adder.

E. Carry skip mechanism
In the above Fig, 4-bit Ripple Carry Adder (RCA) with

carrying skip circuit is integrated to form the CSA circuit.

The 4-bit RCA contains 4 full adder blocks, and it

generates 4 propagate signals (P0, P1, P2, and P3) based on

the 2 inputs of each FA (A0, B0, A1, B1, A2, B2, and A3, B3)

which is mentioned in the below equation

 Pi = Ai XOR Bi

If Ai is not equal to Bi, then the propagate signals become

logic ‘1’ while if Ai is equal to Bi, then the propagate

signal becomes logic ‘0’. Then the propagate signal from

each of the FA blocks is given to the AND block, and in

the AND block, it performs basic AND operation and will

produce logic ‘1’ output if the entire Pi is logic ‘1’;

otherwise, it generates logic ‘0’ output. Further, after this,
AND calculated output is given to the Multiplexer block,

which acts as a data selector. Based on the given input, the

multiplexer selects the required value; if the input is logic

‘1’, the multiplexer selects the C0 as the output (i.e., Cout =

C0). It means that the carry is bypassed to the output

instead of propagating through all the blocks (i.e., carry is

skipped instead of propagating and directly given to the

output.). If the multiplexer input is logic ‘0’, then it selects

the carry from the last FA, which is being propagated from

the initial FA. Significantly, in this CSA circuit, the overall

delay produced by the carry propagation is reduced using

the carry skip mechanism and helps to improve the overall

speed of the addition operation. Using this addition

concept, the multiplied values in the FIR filter design get

added and produced the desired filter output. Initially,
during the first clock cycle, the multiplied values are added

with values in the accumulator (i.e., initially ‘zero’) and

get stored in the accumulator itself. For the next clock

cycle, using the same input data but with the next filter

coefficient, ‘h1’ multiplied values are produced, and this

value is being added with the value stored in the

accumulator during the previous clock cycle.

Similarly, the above-mentioned operations are recursively

repeated based on the clock signal for the same input data,

and for different filter coefficients, the results are

computed and tabulated.

V. Setup for Experiments

The suggested design was built utilizing a 500GB hard
drive and 4GB RAM running at 3.30 GHz. To validate the

timing diagram, the suggested technique was simulated in

Modelsim 10.5 software.

The code for each and every FPGA module was written in

the Verilog language. To assess FPGA performance and

create RTL schematics for each module, Xilinx 14.4 ISE

software is utilized. The Parks-McClellan technique is

used to generate the co-efficient using the MATLAB

r2015b program.

FULL

ADDER

FULL

ADDER

FULL

ADDER

FULL

ADDER

AND

GATE

c0

b0

a0

b1

a1

b2

a2

b3

a3

c1

c2

c3

c4

s0

p0

s1

p1

s2
p2

s3
p3

Cout 1

0

Fig 6. Block diagram of 4-bit Carry Skip

Adder.

Arunjyothi Eddla & Dr.VY.Jayasree Pappu / IJETT, 69(9), 203-211, 2021

209

A. Results and discussion

This section covers the experimental findings and

explanation of the Interpolated Spectral Parameter

Approximation (ISPA) filter.

Table1.Filter coefficients generated.

The Parks-McClellan method is used to create the filter

coefficients stored in the ROM. The Parks-McClellan

algorithm is coded with the aid of the term ‘firpm' in

MATLAB r2015b software to create the filter coefficients.

The frequency values fp (passband frequency) and fs

(frequency scale) are crucial in the firpm syntax (stopband
frequency). The code is run in MATLAB, and the output is

displayed in Fig 7.

Initially, fp=0.1 and fs=0.15 are set, and the code is run,

with firpm calling a different subroutine based on the

Parks-McClellan method to create the del result of 0.0241.

To make the del value easier to understand, it is rounded

off with the phrase x=round(255*del) to get x=6, which is

one of the filter coefficients. Similarly, by simply changing

the values of fs by 0.5, filter coefficients are generated,

which are reported in table 1 and stored in various ROM

memory.

Fig 7. MATLAB output of Parks-McClellan algorithm

B. Fractional delay

An important function in the filter is a fractional delay,

which delays the processed input signal a fractional of the

sampling time period. MATLAB code is written for

calculating fractional delay, and the result is shown in Fig

8.

Fig 8. Fractional delay output

The keyword ‘frac delay lpf' launches a separate function
that uses taps (ntaps), sampling (fs), and cut-off frequency

to determine the ‘b' value (fc). The ‘b' value is computed

for the necessary eight taps (6,8,10,13,18,25,34,47) and the

mean value for all the b

values is chosen to compute the fractional delay output

(frac del out=0.0057). Because the obtained delay value is

shorter than that of other filters, the processing of the input

signal is delayed by the smallest amount possible, which

has no effect on the pace of the operation and ensures high

throughput.

Table.2. Comparative results for fractional delay

Fractional

delay

CSF [19] GAF [20] Proposed

0.1327 0.5 0.0057

Tab.2 displays the fractional delay findings in comparison.

The fractional delay of the Chebyshev Sense Filter (CSF)

[19] is 0.1327, whereas the fractional delay of the Genetic

Algorithm Filter (GAF) [20] is 0.5. However, as compared

to traditional approaches, the suggested method has a

lower fractional delay (0.0057).

C. FPGA Performances
The suggested algorithm is implemented in Verilog and

simulated with Modelsim 10.5 software to generate the

output waveform displayed in Fig 9. In the waveform, co

fs value
x (filter

coefficient)

0.15 6

0.145 8

0.14 10

0.135 13

0.13 18

0.125 23

0.12 34

0.115 47

Arunjyothi Eddla & Dr.VY.Jayasree Pappu / IJETT, 69(9), 203-211, 2021

210

eff=8'd6 (filter coefficient) multiplied value y=16'd216 and

accumulator value Acc=16'd216 are acquired at the first

clock cycle for data out=8'd36 (8-bit input data from

RAM). Similarly, for data out=8'd129, the co eff=8'd8

multiplied value y=16'd1032 is acquired during the second
clock cycle. By multiplying the multiplied value with the

previously stored accumulator value, the accumulator

output Acc=16'd1248 is produced. Similarly, the values

are computed up to eight clock cycles, yielding

Acc=16'd10382 as the final filter output.

Fig 9. Simulation output waveform.

The waveform values measured are consistent with the
theoretical value, indicating that the design is functioning.

The simulated design is then synthesized on a variety of

FPGA platforms, with the results shown in the tables

below.

Table. 3 Hardware utilization of proposed FIR in

Virtex 5 FPGA

FPGA

performances

Total

resources

Occupied

resources

% of

utilizat

ion

Number of

sliceregisters
12480 35 1%

Flip Flops 12480 35 1%

Number of slice

LUTs
12480 159 1%

Number of used

as a logic
12480 151 1%

Slices 3120 62 1%

Bonded IOB 172 26 15%

Table. 4 Hardware utilization of proposed FIR in

Virtex 6 FPGA

FPGA

performances

Total

resources

Occupied

resources

% of

utilizat

ion

Number of slice

registers
93,120 50 1%

Flip Flops 93,120 43 1%

Number of slice

LUTs
46,560 127

1%

Number of used

as a logic
46,560 123

1%

Slices 11,640 50 1%

Bonded IOB 240 26 10%

Table. 5 Hardware utilization of proposed FIR in

Virtex 7 xc7vx330t FPGA

FPGA

performances

Total

resources

Occupied

resources

% of

utilizat

ion

Number of slice

registers
4,08,000 48 1%

Flip Flops 4,08,000 41 1%

Number of slice

LUTs
2,04,000 128

1%

Number of used

as a logic
2,04,000 124

1%

Slices 51,000 65 1%

Bonded IOB 600 26 4%

The hardware implementation of the suggested FIR filter

in several FPGA platforms such as the Virtex 5, Virtex 6,

and Virtex 7 xc7vx330t is shown in Tables 3, 4, and 5.

When compared to the other two FPGA platforms, the

Virtex 7 FPGA has the most resources (slice registers, FF,

LUT, slices, and IOB) available, yet the suggested

architecture uses just a small portion of those resources. As

a result, Virtex 7 is the best platform for synthesizing and

testing the ISPA design's capabilities.

D. Comparative analysis

This section describes the comparison of the proposed

ISPA architecture with the present architecture. Existing

techniques such as FIR filter with SNP multiplier [13], FIR

with Wave Pipelined Vedic multiplier (WPV) [12], and

FIR based on Vedic mathematics and RCA [14] are

compared to the ISPA architecture. Slices, LUTs, flip flips,

frequency, and power are all included in this comparison.

Tables 6, 7, and 8 illustrate the results of comparing the

proposed ISPA to several current techniques.

Table 6. Comparison of proposed architecture with

SNP for Kintex 7 device

Kintex 7

Parameters SNP[13] Proposed

Gates 8000 141

LUT 13000 149

Delay(ns) 500 4.93

Frequency(MHz) 2 202.7

Arunjyothi Eddla & Dr.VY.Jayasree Pappu / IJETT, 69(9), 203-211, 2021

211

Table 7. Comparison of proposed architecture with

FIR- wave pipelined multiplier for Artix 7 device

Artix 7

Parameters SNP [13] Proposed

Gates 8000 143

LUT 13000 152

Delay(ns) 500 6.32

Frequency(MHz) 2 150.08

Table 8. Comparison of proposed architecture with

FIR-Vedic multiplier and RCA for Virtex- 6 device

Virtex6

Parameters SNP [13] Proposed

Gates 8000 145

LUT 13000 156

Delay(ns) 500 5.85

Frequency(MHz) 2 170.9

This section describes the comparison of the proposed

ISPA architecture with the present architecture. Existing

techniques such as FIR filter with SNP multiplier [13], FIR

with Wave Pipelined Vedic multiplier (WPV) [12], and

FIR based on Vedic mathematics and RCA [14] are

compared to the ISPA architecture. Slices, LUTs, flip flips,
frequency, and power are all included in this comparison.

Tables 6, 7, and 8 illustrate the results of comparing the

proposed ISPA to several current techniques.

VI. Conclusion

A high-speed, low-area-delay Interpolated Spectral

Parameter Approximation (ISPA) FIR filter is suggested in

this work. The use of an optimum adder and multiplier in

this filter design minimizes hardware complexity while

increasing the speed of the ISPA filter by lowering the area

and frequency. As a result, the processing parts' latency

and power consumption are decreased throughout the
filtering process, resulting in improved filter performance.

The suggested architecture is simulated and synthesized in

FPGA platforms such as Virtex 5, Virtex 6, and Virtex 7

using MATLAB r2015b (for calculating filter

coefficients), Modelsim 10.5, and Xilinx 14.4, and the

simulation results The proposed ISPA FIR filter improves

performance while using the least amount of hardware

(LUT=128 (1%), FF=41 (1%), and IOB=26 (4%)). The

filter coefficients are successfully calculated using the

parks-McClellan method by regularly decreasing 0.5fs,

resulting in a fractional delay of roughly 0.0057ns. As a
result, the filter speed is faster than other existing

techniques. Different optimum algorithms will be

developed in the future to increase FPGA performance.

REFERENCES
[1] Park, Sang Yoon, and Pramod Kumar Meher., Efficient FPGA and

ASIC realizations of a DA-based reconfigurable FIR digital

filter., IEEE Transactions on Circuits and Systems II: Express

Briefs 61(7) (2014) 511-515.

[2] Thakur, Rakhi, and KavitaKhare., High-speed FPGA

implementation of FIR filter for DSP applications., International

Journal of Modeling and Optimization 3 (1) (2013) 92-94.

[3] Badave, S. M., and A. S. Bhalchandra., Multiplierless fir filter

implementation on fpga., International Journal of Information and

Electronics Engineering 2(2) (2012) 185.

[4] Ryou, Albert, and Jonathan Simon., Active cancellation of

acoustical resonances with an FPGA FIR filter., Review of

Scientific Instruments 88, no. 1 (2017): 013101.

[5] Bhattacharjee, Subhankar, SanjibSil, and AmlanChakrabarti.,

Evaluation of power-efficient FIR filter for FPGA based DSP

applications., Procedia Technology 10 (2013) 856-865.

[6] Lehto, Raija, TarjaTaurén, and Olli Vainio., Recursive FIR filter

structures on FPGA., Microprocessors and Microsystems 35(7)

(2011) 595-602.

[7] Singh, Gurpadam, and Neelam R. Prakash., FPGA Implementation

of Higher Order FIR Filter., International Journal of Electrical and

Computer Engineering 7(4) (2017) 1874.

[8] Keerthi, M., VasujadeviMidasala, and S. NagakishoreBhavanam.,

FPGA implementation of distributed arithmetic for fIR

filter., International Journal of Engineering Research and

Technology 1(9) (2012).

[9] Szadkowski, Zbigniew, D. Głas, C. Timmermans, and T. Wijnen.,

First results from the FPGA/NIOS adaptive FIR filter using linear

prediction implemented in the auger engineering radio array., IEEE

Transactions on Nuclear Science 62(3) (2015) 977-984.

[10] Pandey, Bishwajeet, Bhagwan Das, Amanpreet Kaur, Tanesh

Kumar, Abdul Moid Khan, DM Akbar Hussain, and Geetam Singh

Tomar., Performance evaluation of FIR filter after implementation

on different FPGA and SOC and its utilization in communication

and network., Wireless Personal Communications 95(2) (2017)

375-389.

[11] Kalaiyarasi, D. and Reddy, T.K., Design and implementation of

least mean square adaptive FIR filter using offset binary coding-

based distributed arithmetic. Microprocessors and microsystems,

71(2019) 102884.

[12] Prasad, J., Geetha, D.M. and Srinivasan, K., Experimental setup of

stretchable arid dry pad sensors for the signal acquisition fir filter

design using Vedic approach. Measurement, 141(2019) 209-216.

[13] Diaz, C., Sanchez, G., Avalos, J.G., Sanchez, G., Sanchez, J.C. and

Perez, H., Spike-based compact digital neuromorphic architecture

for efficient implementation of high order FIR filters.

Neurocomputing, 251(2017) 90-98.

[14] Sundar, P.P., Ranjith, D., Karthikeyan, T., Kumar, V.V., and

Jeyakumar, B., Low power area-efficient adaptive FIR filter for

hearing aids using distributed arithmetic architecture. International

Journal of Speech Technology, (2020) 1-10.

[15] Roy, S. and Chandra, A., On the Order Minimization of Interpolated

Bandpass Method Based Narrow Transition Band FIR Filter

Design. IEEE Transactions on Circuits and Systems I: Regular

Papers, 66(11) (2019) 4287-4295.

[16] Samyuktha, S and Chaitanya, D.L., VLSI design of efficient FIR

filters using Vedic Mathematics and Ripple Carry Adder, Material

today proceedings., (2020).

[17] Bharat Garg and Sujit Kumar Patel., Reconfigurable Carry Look-

Ahead Adder Trading Accuracy for Energy Efficiency, Journal of

Signal Processing Systems., (2020).

[18] SILVIU-IOAN FLIP., A Robust and Scalable Implementation of the

Parks-McClellan Algorithm for Designing FIR Filters, ACM

Transactions, (2016) 24.

[19] Blok, M., April. Farrow structure implementation of fractional delay

filter optimal in Chebyshev sense. In Photonics Applications in

Astronomy, Communications, Industry, and High-Energy Physics

Experiments., 6159(4) (2016) 61594. International Society for

Optics and Photonics.

[20] Singh, A., Dhillon, N., and Bains, S.S., FIR Filter Design With

Farrow Structure Using Genetic Algorithm.International Journal of

Computer & Organization Trends 3(9) (2013).

