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Abstract - Because of its various properties, such as 

Bounded-Input-Bounded-Output (BIBO) stability, phase 

linearity, and ease of implementation, the Finite Impulse 

Response (FIR) filter is widely employed in digital signal 

processing applications. High-order filters, on the other 
hand, need a large number of multipliers. As the number of 

multipliers grows, the hardware complexity and power of 

the FIR filter grows as well. In digital signal processing 

applications, the design of the low area and low power 

FIR filters is critical. To reduce hardware consumption, an 

essential form of FIR filter called the Interpolated Spectral 

Parameter Approximation (ISPA) filter is introduced in 

this study. To reduce the number of logical components in 

the ISPA filter, the Carry SKIP Adder (CSA) and Vedic 

Multiplier (VM) are combined. Furthermore, raising the 

ISPA filter's working frequency reduces the ISPA filter's 

latency. The Parks-McClellan algorithm will be used to 
create the coefficient. The ISPA filter, as well as the 

optimum adder and multiplier, are implemented using 

Modelsim 10.5 and Xilinx 14.4. The suggested ISPA filter's 

performance is evaluated in terms of filter output, LUT, 

flip flops, slices, power, and delay. 

 

Keywords: Carry Look Ahead adder, Finite Impulse 

Response, Interpolated Spectral Parameter 

Approximation, Parks-McClellan, and Vedic Multiplier 

 
I. INTRODUCTION 

The Finite Impulse Response (FIR) filter is now widely 

regarded as the most fundamental circuit utilized in DSP 

hardware [1]. Because of their absolute stability and linear 

phase characteristics, FIR digital filters are widely used in 

mobile communication systems for channel equalization, 

matched filtering, and pulse shaping [2]. Because these 

circuits serve critical functions in today's DSPs, their speed 
and power optimization are critical. In high-performance 

DSP applications, there is a quality factor.  

 

DSP applications often have a tradeoff between power 

consumption and speed, necessitating the development of 

low-power, high-speed digital filter circuits. FPGA is 

becoming a popular platform for digital VLSI design [3], 

[4]. This is owing to the FPGAs' great flexibility, 

reusability, low power, moderate cost, ease of updating 

(thanks to the use of hardware description languages 

(HDL)), and feature expansion (as long as the FPGA is not 

exhausted) features. A changeable structure is provided by 

FPGAs, which consist of an array of adjustable logic 

modules coupled with programmable routing resources 
and surrounded by programmable input/output blocks [5]. 

It has given the FPGA-based design, and implementation 

of a low-power FIR circuit that is similar to peer research 

works for DSP applications, as well as their performance 

evaluations based on resource use, delay, and power 

concerns. Over a million comparable logic blocks (logic 

gates and tens of thousands of flip-flops) are contained in 

an FPGA [6], [7].  

 

This implies that when a digital circuit contains hundreds 

of gates, standard logic design approaches such as creating 

logic diagrams are no longer viable.  
 

Today's digital systems are created by writing software in 

the form of hardware description languages (HDLs) [8]. 

Simulating VHDL design and synthesizing the design to 

actual hardware are both done with computer-aided design 

tools.  

 

Although there has been previous work on designing FIR 

circuits in the VLSI realm for DSP applications, the 

FPGA-based design challenges have not been addressed 

[9].  
 

The work on FPGA-based FIR circuit design has mostly 

concentrated on bespoke design and implementation, with 

no comprehensive study of the various FIR circuits in 

terms of FPGA design parameters such as resource usage, 

latency, or power [10].  

 

The following is a list of the research work's key 

contributions: 

 

• FIR filter design with less area efficiency  

• The PM algorithm is used to generate the coefficient 
values. 

• The input data was produced using the $random function. 

• Using an optimal adder and multiplier allows you to 

create a  

https://ijettjournal.org/archive/ijett-v69i9p224
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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FIR filter that uses minimal hardware resources. 

• Fractional delay is reduced. 

 

This research study is organized as follows: Section 2 

reviews a few current research publications on the topic 
"FIRfilter." Section 3 provides a thorough discussion of 

the suggested FIR filter technique. Section 4 describes the 

experimental assessment of the suggested FIR filter 

technique.  

 

The current study work's conclusion is presented in 

Section 5. 

II. Literature Survey 

The Distributed Arithmetic (DA)based Least Mean Square 

(LMS) adaptive filter was created by Kalaiyarasi, D., and 

Reddy, T.K. [11] to reduce the power and logic 

components. The Carry Save Accumulator is used to 
perform the accumulation and shifting operations (CSA). 

Furthermore, the LMS was utilized as a weight update 

block to determine FIR filter coefficients. In the DA, 

Offset Binary Coding (OBC) was used to decrease the 

ROM size. Then, thanks to the simultaneous operation of 

filtration and weight updation, the throughput was 

considerably enhanced. However, there are no pipeline or 

parallel processing aspects in the DA-based LMS. As a 

result, the filter's surface area expands. 

J. Prasad, D.M. Geetha, and K. Srinivasan [12] showed 

that the FIR filter might be used in conjunction with Arid-
dry pad sensors to improve medical imaging applications. 

With the aid of pictures, sensors were utilized to get the 

patient's brain signal in this study. The FIR filter was 

created using an adder and a Wavepipelined Vedic 

multiplier. To enhance the multiplier execution 

parameters, the characteristic of abnormal state pipelining 

was employed. To compensate for the Vedic multiplier's 

combination delay, a delay was introduced between the 

partial product adder and partial product generator. As a 

result, the entire architecture's delay increases. 

Diaz, C., Sanchez, G., Avalos, J.G., Sanchez, G., Sanchez, 

J.C., and Perez, H. [13] created a parallel neural multiplier, 
known as the Spiking Neural P (SN P) multiplier, utilizing 

a small digital neuromorphic architecture.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

The parallel neural multiplier was used to compute the FIR 

filters at high processing rates. Because there were fewer 

neurons, the neural SN P multiplier was employed to 

consume less space. However, while processing the 

higher-order FIR filter, the SN P systems have a long 
latency. 

The low complicated architectural design was proposed for 

hearing aid applications by Sundar, P.P., Ranjith, D., 

Karthikeyan, T., Kumar, V.V., and Jeyakumar, B [14]. 

Using a DA-based FIR filter, the hearing aid was built 

without multipliers. The high-order filters of high-speed 

hearing aids were designed using shift-accumulate 

operations and look-up tables. The low-complexity hearing 

aid architecture was created using a multiplier-less 

architecture with a single DA unit. However, a large 

number of logical elements were utilized in this adaptive 

filter design, including a weight increment block, 
memoryless inner product block, compressor adder, and 

sign-magnitude separator, and 

The design of a narrow transition band FIR filter was 

created for creating hardware efficient digital systems and 

this FIR filter was used in the interpolated bandpass 

filtering method, according to Roy, S. and Chandra A [15]. 

By taking into account the optimization problem, the 

complexity of the FIR filter was decreased. Furthermore, 

the decrease in complexity was achieved under a variety of 

restrictions, including filter length and normalized peak 

ripple magnitude threshold. The interpolated bandpass 
technique-based FIR structure resulted in lower power 

dissipation and lower hardware consumption. However, 

the system's complexity was kept to a bare minimum. 
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Fig 1. Architecture of ISPA filter 
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III. Problem statement 

In this part, the current difficulties with the FIR filter are 

discussed, as well as how the suggested approach 

addresses these issues. The following are the issues that 

the FIR filter has to deal with: The partial product adder 
and partial product generator have an additional delay in 

filter design [2], and the delay is exacerbated owing to the 

processing of high order FIR [3]. The larger delay obtained 

during the filtering process affects the frequency of the 

FIR filter. Furthermore, the overall architecture consumes 

more space due to the use of a large number of logical 

components in the filter design [4]. The more advanced 

logical elements 

 

A. Solution 

The ISPA filter's incorporation of an optimum adder and 

multiplier helps to reduce the number of logical elements 
such as LUTs, slices, and FF. As a result, while 

constructing the ISPA filter, the area is reduced. 

Furthermore, by lowering the size, the ISPA filter's speed 

is enhanced, and the frequency is improved by reducing 

the power used in logical components. As a result, the 

ISPA filter minimizes the latency during the filtering 

process. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

IV. Proposed Method 

An optimum adder and multiplier are presented in the 

ISPA filter in this proposed system to decrease hardware 

consumption. Furthermore, the ISPA filter's logical 

components are reduced by incorporating the best adder 

and multiplier. Poor stopband attenuation and larger 
passband ripples are disadvantages of the Spectral 

Parameter Approximation (SPA) filter. The suggested 

ISPA filter 
 
Overcomes the shortcomings of the spectral parameter 

approximation filter, resulting in a narrow transition 

bandwidth and a relatively large cut-off frequency. Fig 1 

and 2 depict the architecture of the ISPA filter and the sub-

filter utilized in the ISPA, respectively. 

 

The genuine random number generator generates the input 

in Fig 1, and the coefficients of the filter are represented 

by h in Fig 2. The Filter Design and Analysis (FDA) tool is 

used to create the filter coefficients. The developed ISPA 

filter delivers a constantly changing frequency cut in the 

small frequency range with transition bandwidth. Fig 3 

depicts the internal construction of the ISPA filter. 

 

The following is a description of the proposed ISPA filter's 

operation: 
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  First, the input data is collected and saved in the 

Random Access Memory (RAM), as well as the FDA 

tool's coefficient in the Read-Only Memory (ROM) 

(ROM). The input data is produced at random using a 
genuinely random number generator, and the 

coefficient is calculated using MATLAB's FDA tool. 

The Processing Element (PE) receives the input data 

and coefficient value, and this PE executes the 

multiplication operation between the first input 
data and the first coefficient value at the first clock 

cycle. Using the best multiplier results in a more 

efficient multiplication operation. 

 

 The PE's output (Y) is supplied as an input to the 

accumulator, and this output is added to the 

accumulator's starting value, i.e., 0+Y=Y. Following 

that, the initial tap stores the sum value in the register. 

In addition, to increase ISPA performance, an 

optimum adder will be created. 

 

 At the second clock cycle, the identical multiplication 

and addition procedure is applied to the second input 

data and second coefficient value. • The value from 

the addition process is added to the value saved in the 

register during the previous tap; the process is referred 

to as 8 taps if it continues for 8 clock cycles. Once the 

8 tap in the filter design is done, the filter output is 

received.  

 

A. Initial blocks and True Random Number Generator 

The ISPA filter is an eight-tap filter that operates on the 
clock and reset signals. A control circuit regulates both of 

these signals. For every single tapping, the address of the 

filter coefficient and 8-bit input data are generated by the 

address generator. As a result, eight addresses for eight 

filter coefficients and eight 8-bit input data are produced. 

Making use of the $ random function True random number 

generator is used to create 8-bit input data, which is then 

stored in RAM memory. The produced input data is stored 

in RAM, while the filter coefficients are stored in the 

ROM register. Input data in the RAM and ROM are called 

based on the address and passed as input for the next 

process depending on the clock cycle.    

 

B. Parks McClellan Algorithm 

This method was proposed by James McClellan and 

Thomas Parkin in 1972 and was initially written in Fortran 

(Programming Language). The Parks McClellan technique 

is recursive and employs an indirect approach to 

determining filter coefficients. Filter coefficients are stored 

in ROM in the ISPA architecture, and these filter 

coefficients are determined using the Parks McClellan 

method. The algorithm's main goal is to use Chebyshev 

approximation to decrease errors in the past and stop 
bands. Equiripple, Chebyshev, and Remez are some of the 

other names for this method. The ParksMcClellan 

algorithm is implemented in the following steps: 

Step1 (Initialization): Make an educated estimate and 

select the most extreme set of frequencies{ωi
(0)}. 

 

Step 2 (Approximation of a Finite Set): Calculate the 

Chebyshev approximation on the chosen present extrema 

set and the min-max error value (δ(m))  on the present 

extremal set. 
 

Step3 (Interpolation): Perform polynomial interpolation 

over the entire set of frequencies to compute the error 

function E(ω). 
 

Step4 (Extrema Search): Search for the local extrema of 

|E(m)(ω)| over the set Ω. 
 

Step5 (Extrema set update): Update the extrema set to 

{ωi
(m+1)} by taking new frequencies if max(ωɛΩ) 

|E(m)(ω)|>δ(m), where |E(m)(ω)| has its local maxima and 

ensure that error alternates on the ordered set of 

frequencies as in step 4 and 5. If the alteration theorem is 
not satisfied, then return to step 2 and iterate.  
 

Step6 (Parameter test):If the alteration theorem is 

satisfied (max(ωɛΩ) |E(m)(ω)| ≤ δ(m)). Compute an inverse 

discrete fourier transform using set {ωi
(0)} and 

interpolation formula to obtain the filter coefficients.  
 

C. Optimal Multiplier 

In a Finite Impulse Response (FIR) filter, the multiplier is 

an important processing element. In Digital Signal 
Processing (DSP) applications, the FIR filter is critical. Its 

performance is mostly determined by the multiplier block, 

which must be built to execute quick multiplication while 

still ensuring high efficiency and low power consumption. 

In modern technology, multiplier architecture has been 

built to meet the following requirements: fast speed, small 

size, low power, and high throughput. There are many 

other types of multiplier designs. However, the Vedic 

multiplier is considered to be one of the quickest and 

lowest-power multipliers that meets the aforementioned 

criteria.  
 

a) Vedic Multiplier 
The essential design idea for the multiplication process is 

shown in Fig 4 below. Consider a 2-bit multiplication 
procedure, in which two 2-bit integers, A and B, are 

multiplied to produce P in 4-bit. 
 

P (product output) = A (multiplicand of n-bit) * 

B(multiplier of n-bit)  
 

Let, A= (11)2and B= (11)2 

 

 

 

 

 

 

Fig 4. 2x2 multiplication based on Vedic mathematics. 
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output is P= (1001)2 = 910 

The partial products are produced in the aforementioned 

Vedic multiplication procedure using the steps below. 

Step 1: Create the first partial product by ANDing the 

LSB bits of A and B [(i.e.) A0.B0]. 

 

Step 2: After the first step, the one-bit position is moved, 

much like in basic multiplication, and a second partial 

product is produced by ANDing the diagonal bits [A0.B1] 

and [A1.B0]. 

 

Step 3: After completing the second step, the one-bit 

position is moved, and the MSB bits of A and B are 
ANDed to produce the third partial product [(i.e.) A1.B1]. 

 

 

 

 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

Finally, combine all of the partial products to achieve the 

desired result. Similarly, a 4x4 multiplier is created using a 

2x2 multiplier, and an 8x8 multiplier is created using a 4x4 
multiplier. 8x8 Vedic multiplier architecture is used in the 

proposed Interpolated Spectral Parameter Approximation 

(ISPA) filter design. The block diagram of the 8x8 Vedic 

multiplier is shown in Fig 5 

 

1) 4x4 Vedic multiplier block and  

2) Adder blocks are significant architectural features. 

 

Mathematics. The output of each multiplier product is then 

sent into the adder, which performs the addition operation. 

The output p0[3:0] is immediately accepted as an 8x8 

output (P[3:0]) in the fourth multiplier block, while the 
remaining p0[7:4] is passed to the following adder block to 

execute addition. To acquire the remaining output P[15:4], 

the second stage's additional output is provided as input to 

the following adder. For n-bit multiplication, this module 

may be expanded. This architecture multiplies 8-bit input 

from RAM and coefficients in ROM expressed in 8-bit to 

generate an efficient product output Y based on this 

procedure. 

 

D. Carry skip Adder: Carry skip adder is also named as 

carrying by-pass adder, and it consists of special circuitry 

for improving the speed and reducing the carry 

propagation delay. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

The construction of an 8x8 Vedic multiplier necessitates 
the use of four 4x4 Vedic multiplier blocks and three adder 

blocks connected in cascade (i.e., the first stage output 

becomes the input to the next stage). The 8-bit inputs A 

and B are [a7,a6,a5,a4,a3,a2,a1,a0] and 

[b7,b6,b5,b4,b3,b2,b1,b0], respectively. The 1st multiplier 

block receives the first four bits from the MSB side of A 

and B. The diagonal bits of A and B are then provided to 

the 2nd multiplier (i.e., a[3:0] and b[7:4]), and a[7:4] and 

b[3:0] are given as input to the 3rd multiplier block. 4-bits 

from the LSB side of A and B are supplied as input to the 

fourth multiplier block. The multiplication process is 
performed by the Multiplier block using Vedic 

 

In this adder, carry skip circuitry (special circuitry) is 

implemented based on the carry skip mechanism. This 

circuitry contains two main blocks, namely, AND block 

and multiplexer block together defined as block propagate 

a7 a6 a5 a4  a3 a2 a1 a0 

b7 b6 b5 b4 b3 b2 b1 b0 
a7 a6 a5 a4  a3 a2 a1 a0  
b7 b6 b5 b4 b3 b2 b1 b0 

a7 a6 a5 a4  a3 a2 a1 a0 

b7 b6 b5 b4 b3 b2 b1 b0 

4x4 multiplier block 4x4 multiplier block 4x4 multiplier block 4x4 multiplier block 

Adder Adder 

Adder 

b[7:4] a[7:4] b[7:4] a[3:0] b[3:0] a[7:4] b[3:0] a[3:0] 

{p3[7:0],0000} {0000,p2[7:0]} 
{0000,p0[7:4]} 

p1[7:0] p0[7:0] 
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P[3:0] 
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Fig 5. Architecture of 8x8 vedic 

multiplier 
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block. The following Fig 6. shows the implementation of a 

4-bit carry skip adder.  

 

E. Carry skip mechanism  
In the above Fig, 4-bit Ripple Carry Adder (RCA) with 

carrying skip circuit is integrated to form the CSA circuit. 

The 4-bit RCA contains 4 full adder blocks, and it 

generates 4 propagate signals (P0, P1, P2, and P3) based on 

the 2 inputs of each FA (A0, B0, A1, B1, A2, B2, and A3, B3) 

which is mentioned in the below equation  

  Pi = Ai XOR Bi 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

If Ai is not equal to Bi, then the propagate signals become 

logic ‘1’ while if Ai is equal to Bi, then the propagate 

signal becomes logic ‘0’. Then the propagate signal from 

each of the FA blocks is given to the AND block, and in 

the AND block, it performs basic AND operation and will 

produce logic ‘1’ output if the entire Pi is logic ‘1’; 

otherwise, it generates logic ‘0’ output. Further, after this, 
AND calculated output is given to the Multiplexer block, 

which acts as a data selector. Based on the given input, the 

multiplexer selects the required value; if the input is logic 

‘1’, the multiplexer selects the C0 as the output (i.e., Cout = 

C0). It means that the carry is bypassed to the output 

instead of propagating through all the blocks (i.e., carry is 

skipped instead of propagating and directly given to the 

output.). If the multiplexer input is logic ‘0’, then it selects 

the carry from the last FA, which is being propagated from 

the initial FA. Significantly, in this CSA circuit, the overall 

delay produced by the carry propagation is reduced using 

the carry skip mechanism and helps to improve the overall 

speed of the addition operation. Using this addition 

concept, the multiplied values in the FIR filter design get 

added and produced the desired filter output. Initially, 
during the first clock cycle, the multiplied values are added 

with values in the accumulator (i.e., initially ‘zero’) and 

get stored in the accumulator itself. For the next clock 

cycle, using the same input data but with the next filter 

coefficient, ‘h1’ multiplied values are produced, and this 

value is being added with the value stored in the 

accumulator during the previous clock cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Similarly, the above-mentioned operations are recursively 

repeated based on the clock signal for the same input data, 

and for different filter coefficients, the results are 

computed and tabulated. 

 

V. Setup for Experiments 

The suggested design was built utilizing a 500GB hard 
drive and 4GB RAM running at 3.30 GHz. To validate the 

timing diagram, the suggested technique was simulated in 

Modelsim 10.5 software.  

The code for each and every FPGA module was written in 

the Verilog language. To assess FPGA performance and 

create RTL schematics for each module, Xilinx 14.4 ISE 

software is utilized. The Parks-McClellan technique is 

used to generate the co-efficient using the MATLAB 

r2015b program. 
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A. Results and discussion 
 

This section covers the experimental findings and 

explanation of the Interpolated Spectral Parameter 

Approximation (ISPA) filter. 
 

Table1.Filter coefficients generated. 

 

The Parks-McClellan method is used to create the filter 

coefficients stored in the ROM. The Parks-McClellan 

algorithm is coded with the aid of the term ‘firpm' in 

MATLAB r2015b software to create the filter coefficients. 

The frequency values fp (passband frequency) and fs 

(frequency scale) are crucial in the firpm syntax (stopband 
frequency). The code is run in MATLAB, and the output is 

displayed in Fig 7. 

 

Initially, fp=0.1 and fs=0.15 are set, and the code is run, 

with firpm calling a different subroutine based on the 

Parks-McClellan method to create the del result of 0.0241. 

To make the del value easier to understand, it is rounded 

off with the phrase x=round(255*del) to get x=6, which is 

one of the filter coefficients. Similarly, by simply changing  

the values of fs by 0.5, filter coefficients are generated, 

which are reported in table 1 and stored in various ROM 

memory. 

 

Fig 7. MATLAB output of Parks-McClellan algorithm 

B. Fractional delay 

An important function in the filter is a fractional delay, 

which delays the processed input signal a fractional of the 

sampling time period. MATLAB code is written for 

calculating fractional delay, and the result is shown in Fig 

8.  

 

Fig 8. Fractional delay output 

The keyword ‘frac delay lpf' launches a separate function 
that uses taps (ntaps), sampling (fs), and cut-off frequency 

to determine the ‘b' value (fc). The ‘b' value is computed 

for the necessary eight taps (6,8,10,13,18,25,34,47) and the 

mean value for all the b  

values is chosen to compute the fractional delay output 

(frac del out=0.0057). Because the obtained delay value is 

shorter than that of other filters, the processing of the input 

signal is delayed by the smallest amount possible, which 

has no effect on the pace of the operation and ensures high 

throughput. 

Table.2. Comparative results for fractional delay 
 

Fractional 

delay 

CSF [19] GAF [20] Proposed 

0.1327 0.5 0.0057 

  
Tab.2 displays the fractional delay findings in comparison. 

The fractional delay of the Chebyshev Sense Filter (CSF) 

[19] is 0.1327, whereas the fractional delay of the Genetic 

Algorithm Filter (GAF) [20] is 0.5. However, as compared 

to traditional approaches, the suggested method has a 

lower fractional delay (0.0057).   

C. FPGA Performances 
The suggested algorithm is implemented in Verilog and 

simulated with Modelsim 10.5 software to generate the 

output waveform displayed in Fig 9. In the waveform, co 

fs value 
x (filter 

coefficient) 

0.15 6 

0.145 8 

0.14 10 

0.135 13 

0.13 18 

0.125 23 

0.12 34 

0.115 47 
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eff=8'd6 (filter coefficient) multiplied value y=16'd216 and 

accumulator value Acc=16'd216 are acquired at the first 

clock cycle for data out=8'd36 (8-bit input data from 

RAM). Similarly, for data out=8'd129, the co eff=8'd8 

multiplied value y=16'd1032 is acquired during the second 
clock cycle. By multiplying the multiplied value with the 

previously stored accumulator value, the accumulator 

output Acc=16'd1248 is produced. Similarly, the values 

are computed up to eight clock cycles, yielding 

Acc=16'd10382 as the final filter output. 

 

Fig 9. Simulation output waveform. 

 

The waveform values measured are consistent with the 
theoretical value, indicating that the design is functioning. 

The simulated design is then synthesized on a variety of 

FPGA platforms, with the results shown in the tables 

below. 
 

Table. 3 Hardware utilization of proposed FIR in 

Virtex 5 FPGA 

FPGA 

performances 

Total 

resources 

Occupied 

resources 

% of 

utilizat

ion 

Number of 

sliceregisters 
12480 35 1% 

Flip Flops 12480 35 1% 

Number of slice 

LUTs 
12480 159 1% 

Number of used 

as a logic 
12480 151 1% 

Slices 3120 62 1% 

Bonded IOB 172 26 15% 

Table. 4 Hardware utilization of proposed FIR in 

Virtex 6 FPGA 

FPGA 

performances 

Total 

resources 

Occupied 

resources 

% of 

utilizat

ion 

Number of slice 

registers 
93,120 50 1% 

Flip Flops 93,120 43 1% 

Number of slice 

LUTs 
46,560 127 

1% 

Number of used 

as a logic 
46,560 123 

1% 

Slices 11,640 50 1% 

Bonded IOB 240 26 10% 

 

Table. 5 Hardware utilization of proposed FIR in 

Virtex 7 xc7vx330t FPGA 

FPGA 

performances 

Total 

resources 

Occupied 

resources 

% of 

utilizat

ion 

Number of slice 

registers 
4,08,000 48 1% 

Flip Flops 4,08,000 41 1% 

Number of slice 

LUTs 
2,04,000 128 

 

1% 

Number of used 

as a logic 
2,04,000 124 

 

1% 

Slices 51,000 65 1% 

Bonded IOB 600 26 4% 

 

The hardware implementation of the suggested FIR filter 

in several FPGA platforms such as the Virtex 5, Virtex 6, 

and Virtex 7 xc7vx330t is shown in Tables 3, 4, and 5. 

When compared to the other two FPGA platforms, the 

Virtex 7 FPGA has the most resources (slice registers, FF, 

LUT, slices, and IOB) available, yet the suggested 

architecture uses just a small portion of those resources. As 

a result, Virtex 7 is the best platform for synthesizing and 

testing the ISPA design's capabilities. 
 

D. Comparative analysis 

This section describes the comparison of the proposed 

ISPA architecture with the present architecture. Existing 

techniques such as FIR filter with SNP multiplier [13], FIR 

with Wave Pipelined Vedic multiplier (WPV) [12], and 

FIR based on Vedic mathematics and RCA [14] are 

compared to the ISPA architecture. Slices, LUTs, flip flips, 

frequency, and power are all included in this comparison. 

Tables 6, 7, and 8 illustrate the results of comparing the 

proposed ISPA to several current techniques. 
 

Table 6. Comparison of proposed architecture with 

SNP for Kintex 7 device 

Kintex 7 

Parameters SNP[13] Proposed 

Gates 8000 141 

LUT 13000 149 

Delay(ns) 500 4.93 

Frequency(MHz) 2 202.7 
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Table 7. Comparison of proposed architecture with 

FIR- wave pipelined multiplier for Artix 7 device 
 

Artix 7 

Parameters SNP [13] Proposed 

Gates 8000 143 

LUT 13000 152 

Delay(ns) 500 6.32 

Frequency(MHz) 2 150.08 
 

Table 8. Comparison of proposed architecture with 

FIR-Vedic multiplier and RCA for Virtex- 6 device 
 

Virtex6 

Parameters SNP [13] Proposed 

Gates 8000 145 

LUT 13000 156 

Delay(ns) 500 5.85 

Frequency(MHz) 2 170.9 
 

This section describes the comparison of the proposed 

ISPA architecture with the present architecture. Existing 

techniques such as FIR filter with SNP multiplier [13], FIR 

with Wave Pipelined Vedic multiplier (WPV) [12], and 

FIR based on Vedic mathematics and RCA [14] are 

compared to the ISPA architecture. Slices, LUTs, flip flips, 
frequency, and power are all included in this comparison. 

Tables 6, 7, and 8 illustrate the results of comparing the 

proposed ISPA to several current techniques. 

 

VI. Conclusion  

A high-speed, low-area-delay Interpolated Spectral 

Parameter Approximation (ISPA) FIR filter is suggested in 

this work. The use of an optimum adder and multiplier in 

this filter design minimizes hardware complexity while 

increasing the speed of the ISPA filter by lowering the area 

and frequency. As a result, the processing parts' latency 

and power consumption are decreased throughout the 
filtering process, resulting in improved filter performance. 

The suggested architecture is simulated and synthesized in 

FPGA platforms such as Virtex 5, Virtex 6, and Virtex 7 

using MATLAB r2015b (for calculating filter 

coefficients), Modelsim 10.5, and Xilinx 14.4, and the 

simulation results The proposed ISPA FIR filter improves 

performance while using the least amount of hardware 

(LUT=128 (1%), FF=41 (1%), and IOB=26 (4%)). The 

filter coefficients are successfully calculated using the 

parks-McClellan method by regularly decreasing 0.5fs, 

resulting in a fractional delay of roughly 0.0057ns. As a 
result, the filter speed is faster than other existing 

techniques. Different optimum algorithms will be 

developed in the future to increase FPGA performance.  
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