
International Journal of Engineering Trends and Technology Volume 70 Issue 1, 164-170, January, 2022
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V70I1P218 ©2022 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Enhancing Web Application Using Adaptive

Containerized Application Placement Based on

Clustering and Content Caching in The Cloud

Environment
Mohamed. I.El-Shenawy1, Hayam Mousa2, Khaled M. Amin3

1Information Technology Department Canadian International College New Cairo, Egypt

2,3 Faculty of Computers and Information Menoufia University Shibin El Kom, Egypt

moh.shenawy1983@gmail.com, hayam910@gmail.com, kh.amin.0.0@gmail.com

Abstract — Datacenter traffic increases from day to day

due to the massive increase of web applications hosted on

the Internet. Some tools are used in resource management

and capacity assessment in order to preserve a good

performance for these applications. The container is a new

trend for packaging and deploying micro-service-based

applications. It is widely used to improve performance and

achieve high user satisfaction. Autoscaling has become a
vital feature in such applications’ performance. This

article targets to improve the quality of service through

increasing resources utilization and reducing the number

of application container kills and recreation. These targets

can be achieved through dependency on the healthier

nodes that have adequate resources. Machine Learning

classification algorithms are used to predict healthy hosts.

Then, a clustering algorithm is used to cluster healthy

nodes into groups of containers workers' hosts based on

their CPU and RAM utilization. In addition, content

caching service has been integrated to improve application

performance. This service decreases the network traffic to
hosts nodes which subsequently decreases the required

resources to handle these requests. The results ensure that

the proposed model can achieve lower node failure with

33% of the default system. It also saves around 36% of

bandwidth.

Keywords — Cloud computing, containers, autoscaling,

virtualization, orchestration, machine learning.

I. INTRODUCTION

The world has aimed to get high performance and massive

demand for cloud service during the last years. Most of

these services are built over virtual environments such as

virtual machines and containers. Containers are a

lightweight alternative to virtual machines that have grown

in popularity among developers[1]. Containers save many

resources and provide the high performance needed

compared with virtual machines [2]. They use the host

operating system's kernel to isolate each container by

enclosing it with its required services. Therefore, the

techniques that use containers offer the best performance,
fast isolation, elastic deployment, and powerful resource

sharing. They have become widely used by organizations

to deploy their workloads on the cloud. As a result,

container orchestration platforms have arisen.

Orchestration is used to manage containerized applications'

deployment.

Container orchestration manages container lifecycles.

Containers lifecycle depends on the wise management for

many issues, including automatic scaling, automating

container deployment, management, networking, and
availability[3]. One of the most critical issues is automatic

scaling. The automatic scaling allows scaling up or down

the used resources based on CPU or memory consumption.

Automatic scaling ensures that the application is always

available and that sufficient resources are available to

prevent performance issues or outages.

Most of the web applications are built on cloud platforms.

The Quality of Service (QOS)requirements are often

varied and require various levels of support and services

[4]. Failure to meet the required level of QOScauses

downtimes and reduces the performance of the
applications. In addition, failure to do so leads to a loss of

revenue for service providers. Providers can offer on-

demand performance by rolling out more containers.

Moreover, characterization of load also helps predict

future resource requirements and allows for a more

efficient resource management plan.

Due to the existence of open-source workload traces,

research works have been conducted on this topic. The use

of prediction has helped prevent many emergencies and

has improved the control over various complex systems.

For such scenarios, using a prediction methodology can
help minimize the complexity and provide better overall

performance. A time series is a variable that has a value

that is computed at different times. A complex time series

can be very challenging to get the correct information out

of. Consequently, workload prediction based on machine

learning comes in.

This article aims to propose a comprehensive autoscaling

model to enhance containerized applications using

machine learning models. Also, it shows how that can

affect end-users and service providers. A content cashing

module has been integrated in order to achieve more

https://ijettjournal.org/archive/ijett-v70i1p218
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mohamed. I.El-Shenawy et al. / IJETT, 70(1), 164-170, 2022

165

satisfaction for end-users. This module increases the

response time and saves the bandwidth through string the

most accessible data in cash storage. Consequently, the

results show how content caching can affect service

delivery performance.

The main contributions of this article are:

1. It provides a classification model that predicts the

Kubernetes worker's healthy node. Therefore,

unhealthy nodes can be filtered out.

2. It adopts a machine learning clustering model to group

available healthy workers node into clusters based on

their hardware load.

3. It integrates a content cashing module within the

proposed model to improve performance.

4. It evaluates the proposed autoscaling model and shows

how content caching affects the performance of both
application and workers node hardware load.

The rest of the paper is organized as follows: Section Ⅱ

defines problem definition and briefly introduces the

related work. Then, the section Ⅲdiscusses the proposed

system. And, section Ⅳ presents evaluation and

experimental results. Finally, Section Ⅴ drives the

conclusions.

II. RELATED WORK

Over the past years, auto-scaling VMs and containers in

the cloud infrastructure have been widely recognized as an

exciting research topic in computer science. Different

research groups work on different aspects. Meanwhile,

cost-efficient resource management based on real-time

changes of workloads is critical for auto-scaling the VMs
and containers in cloud environments. It helps to achieve

the required levels of quality-of-service parameters (QoS)

[4]. Several related projects are highlighted here with their

approaches to treat this problem.

Moore et al. [5] provide elastic Docker scales up and

down. Both CPU and memory are assigned to each

container based on the application workload. Lin et al. [6]

develop an autoscaling system to monitor network traffic

requests and HTTP response time. This allows them to

identify application performance in the cloud. Sotiriadis et

al. [7] minimized performance degradation in cloud

computing by introducing a virtual machine scheduling

algorithm. They apply SVM to classify resource usage.

Chen et al. [8] proposed a system called CloudScope,

which is used in diagnosing performance interference
among co-resident VMs. CloudScope measures

performance interference using VM profiling information

obtained from the hypervisor layer and then reassigns VMs

to PMs in a way that interference is minimized. In Yousif

et al. [9], Google workload trace is used as a dataset in

which tasks are characterized and clustered based on the

resources' usage. Xu et al. [10] formulate a generic job

scheduling problem for parallel big data processing in

heterogeneous clusters and design a K-Means-based task

scheduling algorithm called KMTS. Matteo Nardelli et al.

[11] propose Adaptive Container Deployment (ACD), a

general containerized application deployment and

adaptation model expressed as an Integer Linear

Programming problem. All related work didn’t depend on

healthy nodes in their models, which will be proposed in

this article in addition to content caching and its effect on

system performance.

III. PROPOSED SYSTEM

The proposed model depicted in figure1 focuses only on

healthy nodes to get high-performance applications

without any hardware failure interruptions. The model
starts by capturing the system logs from different sources

for predicting healthy nodes. Then, it clusters these healthy

nodes into groups based on their loads. Before application

deployment, the model checks the application hardware

requirements, then based on this requirement, the

application is deployed to matched nodes group. The

complete scenario is depicted in Figure 1.

Fig.1 proposed prediction and clustering model

A. System architecture

Many container orchestration frameworks can deploy and

manage multi-tiered applications in a cluster. One of the

most famous ones of the containers framework is

Kubernetes [12]. Kubernetes is an open-source container-
management system that automates the deployment

process involving scaling and management of computer

applications. Google invented it. Cloud-Native Computing

Foundation now backs it up. Kubernetes integrates various

container tools and runs containers in a cluster with images

created with Docker, which is now deprecated in favor of

containers. The architecture of Kubernetes is divided as

follows:

 Control-plane is the central node that manages the

whole cluster, such as the workload, communication,

and states between nodes. It also manages job

scheduling such as starting, removing, and deploying
containers.

 The worker's nodes are host containers. The cluster

workers nodes run a container runtime such as Docker

and the services that handle the configuration and

communications of these containers.

 Kubeletis responsible for the node's operational state

and containers hosted in every node. It manages the

start, stops, and maintenance of application containers in

pods. It continuously checks the pod's state and re-

deploys if it is not in the desired state, i.e., failure.

Get workers

status logs

Predict host

status

Hosts

clustering

Application

requirement

s check

Cluster

matching for

application

requirements

Application

deployment

to matched

workers

group

Workers

group

Online

hosts

Mohamed. I.El-Shenawy et al. / IJETT, 70(1), 164-170, 2022

166

 Kube-proxy combines a load-balancer and a network

proxy in addition to networking operations. It routes

traffic to the containers based on incoming request port

number and IP address.

 Container runtime combines the running application
and related libraries and any other dependencies. The

containers are placed in pods. Containers are accessed

from the outside world by exposing the external IP

address.

Fig. 2. Kubernetes cluster and datacenter.

The proposed system will be adopted on the described
architecture in figure 2. The first stage in our proposal is

predicting healthy nodes

B. Host health Prediction model

Providers and customers always need the running systems

without any failures. The dependency on healthy nodes

ensures better performance and avoids failures as much as

possible. Healthy nodes have been defined through this

article as the nodes that may not fail during the upcoming

period with high probability. Host health depends on many

factors, such as hardware failure and overloaded resources,

which leads to instability in the performance of the node

and subsequently leads to system failure.
Machine learning can enhance system stability by

predicting host failures in advance so the system owners

can take the necessary action in advance to avoid system

failures. As a result, the assessment process avoids

unhealthy nodes and depends on health. Thus, better

performance can be achieved.

This article proposes a model to predict hosts' health status

from Kubernetes logs and monitoring systems. The model

filters out the predicted host that may fail. This allows

Kubernetes to avoid them during application container
deployment and depend only on healthy hosts.

The model uses a training dataset obtained from the

Prometheus monitoring system. It focuses on hardware

status and constantly alerts logs that are raised from node

exports installed on each node to check their status. The

dataset has multiple features exported from monitoring

systems like host disks failure, host unusual network

throughput, unusual disk read and write rate, host out of

disk space, host network receive and transmit errors and

Host out of memory alerts. These features are used to build

the prediction model. These features directly affect the
health of the node joined to the Kubernetes cluster.

The Kubernetes creates the required containerized

application for workers. As mentioned in the system

architecture, the control plan continuously checks the

status of workers' nodes. If the worker's node is not

available for any reason, the control plan sets the worker's

node health status as 'NotReady'.Based on Kubernetes pod

eviction timeout, the control plan waits 5 minutes to get

the host back online and ready. If the host does not get

back after that time, the Kubernetes automatically

terminate the process and evict the pod from the failed
node. Then, it recreates a new pod on another host with old

volumes. If the termination process stocks, the required

new pod creation also stucks.This leads to instability in the

system pod replicas. Depending on healthy nodes known

from the proposed prediction model through the

deployment phase makes the system overcome the

problem of NotReady nodes. Thus, it allows improving the

system performance.

Multiple machine learning models are exploited in this

context to predict the worker's host health state. These

models are evaluated in the evaluation sections. The

models include (SVM, LGBM, Random Forest, XG Boost)

C. Host Classification model

The Kubernetes cluster receives the application container

creation during deployment. This process is based on the
application replica. The controller automatically deploys

the container on available workers in the cluster. Taking

into consideration that each worker hasa different CPU,

RAM, and disk IO. This difference in hardware load

affects the application performance. Assigning the

container to the most suitable worker improves the

system’s performance. In this way, the workers with high

resource capabilities are used with containers of high

requirements. In addition, it minimizes the possible

redeployments due to worker failures to cope with the

application requirements.

The proposed Machine learning clustering model is

depicted in figure 1. It starts by predicting the health

workers' nodes, as illustrated. Then, it groups the worker's

nodes in clusters based on their workload. A machine
learning clustering algorithm is used for this purpose. The

dataset features that were used for building the clustering

model are based on multiple features. These features

include CPU cores, CPU usage percentage, memory usage

percentage, disk read throughput per second, disk write

throughput per seconds, network received throughput per

seconds, and network transmitted throughput per second.

Here, the proposed model focus on clustering the nodes

based on CPU usage percentage and memory usage

percentage. These two features are the major ones that can

give an indication of the worker's capabilities and

availability.

Mohamed. I.El-Shenawy et al. / IJETT, 70(1), 164-170, 2022

167

 Before the application is deployed, the application

hardware requirement is checked. The application

container is deployed to the worker node on the suitable

group that matches the application container’s required

resources[13].

The proposed model aims to affect positively and directly

the application performance. Each worker node in the

Kubernetes cluster gets a different application workload

according to its capabilities. The model is evaluated using
the K-means cluster algorithm. K-means is used because it

was one of the successful clustering algorithms [14,15,16].

D. Application content caching

The primary purpose of this research focuses on how to get
the containerized application to serve the end-user

efficiently and provide a high-performance application. By

examination, it is found that if caching service is used, it

will enhance the performance of running containers

application. Content caching means storing subsets of

requested data in high-speed storage layers, such that every

time the end-user access the application, the cached

content is loaded fast instead of every time call from the

application workers node. Caching is a technique that can

be applied to various layers of technology to reduce

latency for large-scale applications.
Content caching was proposed in different research in 5G

networks, wireless networks, and the cloud.

[17,18,19,20,21]. To the best of our knowledge, the effect

of integrating the content cashing service within

containerized applications has not been investigated up to

writing this article. The performance of this integration is

evaluated on the containerized application in the

evaluation section.

IV. PERFORMANCE EVALUATION

A. Evaluation environment settings

a) Test environment

The test was done on Huawei 1288H V5 server with specs

"28 CPUs x Intel(R) Xeon(R) Gold 5120 CPU @

2.20GHz, 512 GB RAM ", There was 20 virtual machine

host Kubernetes cluster. The Kubernetes cluster uses the

ubuntu 20.04 LTS Linux operating system. The mentoring

server is Prometheus version 2.25.0, Prometheus/alert

manager version 0.21.0, and node exporter version 1.1.1.

For metrics visualization, Grafana version 7.4.2 was used.

For security, the Huawei firewall, Cloudflare, was used.

b) Dataset

The dataset used in this paper is of our system resources

usage history for a month. It is collected every 5 minutes.

Data has been collected, and preprocessing carried on it.

The dataset has been divided into standard train and test as
70:30, respectively. Missing data was cleaned and scaled

to 15 minutes.

c) Evaluation metrics

The prediction model will be evaluated according to

accuracy as depicted in equations (2). The model was

tested to predict the Kubernetes workers node heath using

unseen test data.

𝐴𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2)

Where TP = True Positives, TN = True Negatives, FP =

False Positives, and FN = False Negatives

B. Evaluation results

In this Section, the proposed ML prediction models and

their results were evaluated. The test results are

summarized in Table 1.

Table 1: ML Perdition algorithms results for

predicting healthy nodes.

Model Accuracy

SVM 0.86

LGBM 0.95

Random forest 0.98

XG-Boost 0.99

Table 1 shows the test results. The best accuracy result was
0.99 using XG-Boost. There is no big difference between

models except for SVM. It gets an accuracy of 0.86. It has

poor performance compared to other models. Based on

these results, XG-Boost is used in the prediction model in

the rest of the experiments. After getting the results of the

healthy hosts from the prediction model, the results are

going to be fed into a clustering algorithm that groups

hosts based on their loads. K-Mean clustering model is

used. Table 2 shows each worker's node and its assignment

to related clusters. Workers' nodes are grouped into five

clusters as per table 2 and graph 3. The common

characteristics of the group are as follows:

 Cluster 1 for Idle CPU and low memory usage

Nodes.

 Cluster 2 for low CPU and high memory usage
Nodes

 Cluster 3 for Normal CPU and Normal Memory

usage Nodes

 Cluster 4 for semi-heavy CPU and moderate

memory usage Nodes

 Cluster 5 for heavy and overload nodes

Table 2: The results of clustering healthy nodes into

groups using k-mean with K=5

Cluster

Number

C1 C2 C3 C4 C5

Workers

Host

Name

Per

cluster

H2

H4

H9

H2

H7

H10

H4

H16

H19

H20

H3

H5

H8

H11

H17

H1

H6

H13

H15

H18

Mohamed. I.El-Shenawy et al. / IJETT, 70(1), 164-170, 2022

168

Fig. 3. Workers hosts and their assigns to clusters.

Before the requested application is deployed to containers,
the application container hardware requirements are

checked. This is done to assign the application to the most

suitable cluster. First, check the application resources

requirement from the application coding stage. Thus, the

application container with heavy hardware requirements is

assigned to cluster 1 or cluster2 based on available

resources per clusters workers' hosts. In contrast, a

medium application container is assigned to clusters 3 or 4

based on available resources per clusters workers hosts.

However, in case of weak demand, the application

container is assigned to cluster 5. The ML clustering

model runs on a scheduled based to check the worker's
node load and assign them to a suitable cluster. Each time

an application needs to be deployed, it is deployed based

on assignment rules stated earlier. The process of dividing

the application container's hardware requirements into

groups and assigning them to the suitable worker cluster

has achieved high performance. Application containers

differ in their requirements. Assigning the container to the

most suitable node allows to improve the system resource

utilization and to avoid failure nodes and stuck nodes

subsequently as much as possible. The number of deployed

containers, failed and stucked, are shown in Table 3 and
figure 4 for both proposed ML-based deployment and

Default models, Given 100 containers is deployed.

Table 3: Our model containers creation results vs.

defaults model.

Deployed

Containers

Failed

Containers

Failed

Nodes

Stucked

Containers

Default

System 100 9 15 15

Our

Model 100 6 3 3

By investigating table 3, the overall failed result of the

default model, which did not consider the healthy nodes,

was about 39 % of the running container. However, the

proposed prediction, which uses a healthy node during

deploying a containerized application, has failed results

about 12 %. Also, when deploying containers, as seen in

table 3, the number of failed containers during deployment

has decreased from 9 to 6. This is because the healthy node
is reflected in the deployment process. Since the hardware

is always ready for tasks deployment, these results indicate

that the proposed model enhances application stability and

performance from 91% to 94%, with an enhancement of

about 33% from the failed containers.

Then enhancements that the proposed model get because

when using the default system setting if for any reason a

workers node failed, the master node will wait for 5

minutes before start terminating the containers and start to

recreate it on another healthy node. If the master node

cannot terminate the container, the master node cannot

create it again and is stocked in the creation process.

However, with our model, ML is used to predict the

worker's node health status. Thus, containers are usually

assigned to healthy nodes. However, the faulted containers
occur because of a sudden failure in the network

connectivity and unplanned issues.

Fig. 4. Our model containers creation results.

In this part, we will show how content caching[22] affects

the performance of the containers system and how it

directly affects the consumed hardware resources to

respond to the end-user request. Figures 5 & 6 show the

data log of monitoring incoming traffic to our model for 7

days. The total number of visitors was 34,220 users. The

total requests against the model were 5,230,375 requests.
The total network traffic that incoming to containerized

applications system was 105GB. By using the content

caching service, it saved about 38GB from a total of

105GBof data served in the incoming bandwidth to the

containerized running applications. This bandwidth saving

directly affects the network connection and CPU and RAM

that responded to this request. This is reflected in saving

the bandwidth by about 36%.

4

6

4

2

5

0

1

2

3

4

5

6

7

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

W
o

rk
er

s
N

o
d

es

Workload ML Clusters

0
10
20
30
40
50
60
70
80
90

100
110

Default System Our Model

C
o

n
ta

in
er

s

Deployed Containers

Failed Containers during deployment

Failed nodes with Faulted Containers

Stucked Containers during recreation process

Mohamed. I.El-Shenawy et al. / IJETT, 70(1), 164-170, 2022

169

Fig. 5. Content caching bandwidth saving over 7 days.

Fig. 6. Content caching content breakdown and bandwidth saving.

V. CONCLUSION AND FUTURE WORK

The container has become the trend of the current

deployment of most applications. Many cloud vendors

widely use containers today. This technology has many

developments to meet the immediate need for elastic

resource provisioning using autoscaling methods. This

research provides a machine learning prediction model to

predict healthy Kubernetes worker nodes. The XG-boost

prediction model has an accuracy of 0.99 for predicting

healthy nodes. This model has decreased the eviction of

containers in case a worker's node fails. Then, a machine

learning clustering model is applied to group health

workers into clusters based on their resource load of CPU

and memory. It checks the container application resources

needed before deploying them into the Kubernetes cluster.

The application is deployed to the matched cluster group

based on the required resources. This model shows that it

builds an application with high performance where each

application gets its needed hardware which decreases the

migration process and its consequences. About 33% of

fault nodes have avoided being faulty because they suit the
application deployed. Also, content caching saved about

38 GB from all requested 105GB with 36%bandwidth

saving. This directly affects the incoming network

bandwidth to the containerized application, which saves

Mohamed. I.El-Shenawy et al. / IJETT, 70(1), 164-170, 2022

170

the required CPU and memory needed to serve other

requests. For future work, prioritizing the application

before deploying is one of the ideas that will be

investigated to enhance resources utilization.

REFERENCES
[1] Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito,

Exploring Container Virtualization in IoT Clouds, 2016 IEEE

International Conference on Smart Computing (SMARTCOMP),

(2016) 1-6.

[2] A. M. Potdar, N. D G, S. Kengond, and M. M. Mulla, Performance

evaluation of docker container and virtual machine, Procedia

Computer Science, 171 (2020) 1419–1428.

[3] E. Casalicchio, Container Orchestration: A survey, Systems

Modeling: Methodologies and Tools, (2018) 221–235.

[4] P. R. Desai. A survey of performance comparison between virtual

machines and containers. ijcseonline. Org, (2016).

[5] K.B. Laura R.Moore, T.Ellahi. A coordinated reactive and

predictive approach to cloud elasticity, The Fourth International

Conference on Cloud Computing, GRIDs, and Virtualization,

(2013).

[6] C.-C. Lin, J.-J. Wu, P. Liu, J.-A. Lin, and L.-C. Song, Automatic

Resource Scaling for web applications in the cloud, Grid and

Pervasive Computing, (2013) 81–90.

[7] S. Sotiriadis, N. Bessis, and R. Buyya, Self-managed virtual

machine scheduling in Cloud Systems, Information Sciences, 433-

434 (2018) 381–400.

[8] X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Franciosi, and

W. Knottenbelt, CloudScope: Diagnosing and Managing

Performance Interference in Multi-tenant Clouds. In: 2015 IEEE

23rd International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems, (2015).

[9] S. A. Yousif & A. Al-Dulaimy, Clustering Cloud Workload Traces

to Improve the Performance of Cloud Data Centers, In

Proceedings of the World Congress on Engineering Conference,

(2017).

[10] M. Xu, C.Q. Wu, A. Hou, Y. Wang, Intelligent scheduling for

parallel jobs in big data processing systems, 2019 International

Conference on Computing, Networking and Communications,

(2019) 22–28.

[11] M. Nardelli, V. Cardellini, and E. Casalicchio, Multi-level elastic

deployment of containerized applications in geo-distributed

environments, 2018 IEEE 6th International Conference on Future

Internet of Things and Cloud, (2018).

[12] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim,

Horizontal Pod Autoscaling in Kubernetes for Elastic Container

Orchestration, Sensors, (2020).

[13] Kubernetes. Managing Resources for Containers (2021). [online]

Available at:

https://kubernetes.io/docs/concepts/configuration/manage-

resources-containers/

[14] M. Zekri, S. E. Kafhali, N. Aboutabit, and Y. Saadi, DDoS attack

detection using machine learning techniques in cloud computing

environments, In:2017 3rd International Conference of Cloud

Computing Technologies and Applications CloudTech, (2017) 1-7.

[15] S. K. Sood, R. Sandhu, K. Singla, and V. Chang, IoT, big data and

HPC based smart flood management framework, Sustainable

Computing: Informatics and Systems, 20 (2018) 102-11.

[16] A. Yassine, S. Singh, M. S. Hossain, and G. Muhammad, IOT big

data analytics for smart homes with fog and cloud computing,

Future Generation Computer Systems, 91 (2019) 563–573.

[17] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung and M. Song,

Computation Offloading and Content Caching in Wireless

Blockchain Networks With Mobile Edge Computing, in IEEE

Transactions on Vehicular Technology, 67(11) (2018) 11008-

11021.

[18] J. Tang, T. Q. S. Quek, T. Chang and B. Shim, Systematic

Resource Allocation in Cloud RAN With Caching as a Service

Under Two Timescales, in IEEE Transactions on

Communications, 67 (2019) 7755-7770,.

[19] O. Ayoub, F. Musumeci, M. Tornatore, and A. Pattavina, Energy-

Efficient Video-On-Demand Content Caching and Distribution in

Metro Area Networks, in IEEE Transactions on Green

Communications and Networking, 3(1) (2019) 159-169.

[20] J. Song, M. Sheng, T. Q. S. Quek, C. Xu, and X. Wang, Learning-

Based Content Caching and Sharing for Wireless Networks, in

IEEE Transactions on Communications, 65(10) (2017) 4309-4324.

[21] T. Chen, B. Dong, Y. Chen, Y. Du, and S. Li, Multi-Objective

Learning for Efficient Content Caching for Mobile Edge

Networks, 2020 International Conference on Computing,

Networking and Communications (ICNC), (2020) 543-547.

[22] D. E. Jayanti, R. Umar, and I. Riadi, Implementation of Cloudflare

hosting for access speed on trading websites, SISFOTENIKA,

10(2) (2020) 227.

	I. INTRODUCTION
	II. RELATED WORK
	III. PROPOSED SYSTEM
	A. System architecture
	B. Host health Prediction model
	C. Host Classification model
	D. Application content caching

	IV. PERFORMANCE EVALUATION
	A. Evaluation environment settings
	a) Test environment
	b) Dataset
	c) Evaluation metrics

	B. Evaluation results

	V. CONCLUSION AND FUTURE WORK

