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Abstract - The objective of this paper is to study and analyze 

the effects of change in radial clearance of ball bearing 

under balanced and unbalanced rotor conditions at different 

speeds and radial loads. In this paper, a rotor-bearing 

system is modelled, and its vibration responses are simulated 

for different operating conditions using COMSOL 

multiphysics software. Two-level full factorial design with 

four factors (24 full factorial design) is used for the design of 
simulation experiments, and the design is analyzed by using 

analysis of variance (ANOVA). Four factors, namely disk 

eccentricity (for balanced/unbalanced rotor), radial 

clearance, rotor speed and radial load, are used in this 

study. Root mean square velocities of time waveform in 

vertical and horizontal directions are considered as 

vibration response parameters. Minitab software is used to 

create the factorial designs, ANOVA tables, regression 

equations and various plots. Response surfaces obtained 

clearly depict the effects of radial clearance, disk 

eccentricity, rotor speed and radial load on vibration 
amplitude. The designed models are significant, with large 

R-square values (> 99 %). It is also observed that radial 

clearance has a remarkable effect and radial load has a 

negligible effect on vibration responses of the rotor-bearing 

system for the selected range. 

Keywords - Vibration signal analysis, full factorial design 

(FFD), COMSOL, radial clearance of bearing, unbalance. 

I. INTRODUCTION 
The vibration amplitude of the rotor-bearing system 

depends on the bearing operating conditions such as rotor 

speed, radial load, unbalance, misalignment, rotor parameters 

and bearing parameters. Rotor parameters include rotor 

length, diameter and material. Bearing parameters include 

the type of bearing, clearances, pitch diameter, ball diameter, 

number of balls, bearing material, bearing defects (localized 
or distributed), etc. Radial clearance is one of the important 

parameters of ball bearings. Radial clearance is the total 

radial relative movement between the inner and outer races 

of bearing. Radial clearance helps to compensate for the 

thermal expansion of bearing parts. Fig. 1 shows radial 

clearance of a single row deep groove ball bearing. The 

amount of radial clearance influences the load distribution in 

the bearing. The small amount of radial clearance increases 

excessive pressure on bearing races and rolling elements, 

which increases bearing wear and ultimately affects the 
bearing life [1]. But, an increase in radial clearance causes a 

rise in vibration amplitude. So, it is necessary to choose 

proper radial clearance of bearing [2]. Usually, radial 

clearance is an independent parameter. However, at very 

high speeds (above 21000 rpm), the centrifugal force acting 

on rolling elements increases the radial clearance [3], [4]. In 

this study, two-rotor speeds, 2800 rpm and 10200 rpm, are 

selected. As these speeds are less than 21000 rpm, the effect 

of centrifugal force on rolling elements is neglected, and 

therefore radial clearance is considered as an independent 

parameter. To avoid the occurrence of unwanted vibrations, 
which may arise due to the critical speed of the rotor, special 

care is taken while selecting rotor speeds and radial loads so 

as to keep the rotor speeds away from the critical speeds of 

the rotor.  

 

 

 

 

 

 

 

 

Fig. 1. Radial clearance in a single row deep groove ball 

bearing. 
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Unbalance is another main contributor to the vibrations in 

the rotating types of machinery, which develops synchronous 

amplitude of vibration. Unbalance is a dependent parameter 

that depends on the unbalanced mass, speed and eccentricity 

of unbalanced mass [5]. In this paper, two cases of balancing 
are considered; the first is the fully balanced rotor with zero 

eccentricity, and the other is an unbalanced rotor with a 1 

mm eccentricity of disk mass.  

There is various vibration signal analysis (VSA) 

techniques commonly used for the diagnosis of faults in the 

rotor-bearing systems, which include time domain, frequency 

domain and time-frequency domain analysis. Recently, Jain 

and Bhosle reviewed the applications of these techniques for 

rotating types of machinery [6] and bearings [7]. In this 

present study, time-domain analysis and frequency domain 

analysis techniques of VSA are used to study the dynamic 

behaviour of the rotor-bearing system. Root mean square 
(RMS) velocity obtained from time waveforms in vertical 

and horizontal directions are used as vibration response 

parameters. Frequency spectrums are used to study the 

vibration peaks generated at rotor speed frequencies and 

critical speed frequencies. 

In recent years, many researchers studied the effects of 

radial clearance and unbalanced rotor-bearing systems by 

developing mathematical models using Hertzian contact 

theory. Researchers developed non-linear mathematical 

models of rotor-bearing systems with different degrees of 

freedom (dof) models. They considered the nonlinearity of 
the rotor-bearing system due to clearance and unbalanced. 

Tiwari et al. [8], [9] studied the effect of radial clearance of 

ball bearing on balanced rotor [8] and on unbalanced rotor 

[9]. They showed that a change in internal clearance raises 

the peak response with an increase in speed. Harsha [10], 

[11] studied the effects of radial clearance and surface 

waviness for the balanced rotor. He showed that the 

instability and chaos in the system increase with speed. He 

also studied the effects of radial clearance and unbalanced 

rotor [12]. Changqing and Qingyu [13] studied the effect of 

radial clearance and surface waviness of ball bearing. They 

showed that clearance and radial load significantly affect the 
stability of the system. Upadhyay et al. [14] studied the effect 

of radial clearance, unbalanced force and rotor speed on 

bearing vibration. They stated that higher clearance produces 

more sub-harmonic components at the rotational frequency 

as compared with lesser clearance. Chen [15] studied the 

effects of unbalance, clearance and speed on bearing 

vibration response. Kappaganthu and Natraj [16] studied the 

effects of clearance, unbalance and stiffness on dynamic 

stability of the rotor-bearing system. They stated that 

clearance is an important source of nonlinearity which causes 

bifurcations and chaos. Nan G. et al. [17] analyzed the effect 
of speed, clearance and stiffness on the vibration response of 

the rotor-bearing system. Cheng et al. [18] studied the effects 

of radial clearance, rotor-stator rubbing, waviness, load, 

speed and local defects in bearings. Xu et al. [19] studied the 

effects of radial clearance and radial loads on vibration 

amplitude of rotor-bearing system. They found that vibration 

amplitude of ball bearing increases with increase in radial 

clearance and load. Jain and Bhosle [20] studied the effect of 

radial load on bearing vibration using time-domain statistical 
parameters. They stated that with the increase in radial load, 

the vibration amplitude initially decreases and then increases.  

Some researchers analyzed the effects of bearing structure 

geometry and operating conditions by using finite element 

analysis (FEA) Software. Kiral and Karagulle [21] studied 

the vibration response of the bearing structure in dynamic 

loading conditions using a finite element package IDEAS. 

They proposed a force model to simulate the effects of 

localized bearing defects and used time and frequency 

domain analyses for diagnostic purposes. They performed a 

similar analysis under the action of unbalanced forces [22]. 

Liu et al. [23] used the explicit dynamic FEA method to 
study the effects of defect shape, radial load and speed on 

vibration response. They stated that vibration response is 

greatly increased due to localized defects followed by shaft 

speed and load. Singh et al. [24] simulated and analyzed the 

effects of outer race defects (ORDs) in ball bearing using 

FEA software LS-DYNA. Tyagi and Panigrahi [25] 

modelled and simulated the effects of crack on the outer race 

of the ball bearing using FEA software ANSYS. Nabhan et 

al. [26] modelled and simulated the effects of ORDs using 

FEA software ABAQUS. Yang et al. [27] modelled and 

simulated the effects of inner and outer race defects using 

ABAQUS software. 

Some researchers used DOE and response surface 

methodology (RSM) to analyze and predict the dynamic 

responses of rotor-bearing systems under the influence of 

different geometric and operating conditions. Kankar et al. 

[28] mathematically modelled and simulated the effects of 

four factors, namely, radial clearance and surface waviness, 

on the inner race, outer race and ball. They used 24 full 

factorial designs (FFD) and RSM to analyze their effects on 

vibration response. They used displacement (in m) of a 

frequency spectrum in vertical and horizontal directions as a 

response variable. Patil et al. [29] used Box Behnken design 

and RSM to study the effect of defect size of ORD, inner 
race defect (IRD) and ball defect (BD), speed and load on 

vibration response of a ball bearing. They used kurtosis as a 

response variable and found that kurtosis is more sensitive to 

the defect size. Kankar et al. [30] studied the effects of speed 

and spalls on the inner race, outer race and ball. They used 

fractional factorial DOE (241) and RSM to analyze their 

effects on vibration response. They used acceleration (in 

gRMS) of a frequency spectrum in vertical and horizontal 

directions as a response variable. Kankar et al. [31] also 

incorporate the influence of cracked and un-cracked rotors in 

their later study. Jamadar and Vakharia [32] studied the 

effect of roller defect size, unbalance, radial load, axial load, 

radial clearance, speed, number of rollers and grease 
viscosity. They used Taguchi’s L27 design to reduce the 
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number of experiments and used acceleration (in m/s2) of the 

frequency spectrum as a response variable. Yucel and 

Saruhan [33] studied the effect of shaft speed, coupling type 

and disk location on the vibration response of the rotor-

bearing system. They used Taguchi’s L9 design and used 
velocity RMS (in m/s) of time waveform as a response 

variable. Boumahdi et al. [34] used 25 FFD to study the 

effect of speed, radial load, spall size, sensor position and 

frequency range on vibration amplitude. They used 

acceleration RMS (in m/s2) of time waveform as a response 

variable. Patil and Jadhav [35] used a dynamic model using 

Dimensional Analysis (DA) to predict the effects of radial 

clearance, unbalance and rotor speed of the rotor-bearing 

system. They used 23 FFD for analysis and used velocity 

amplitude (in mm/s) of the frequency spectrum as a response 

variable. Patra et al. [36] used a mathematical model to 

predict the effects of radial clearance, speed and load on the 
vibration amplitude of a cylindrical roller bearing. They used 

a mixed factorial design with 24 runs and used acceleration 

amplitude (in m/s2) of the frequency spectrum as a response 

variable. Singh and Harsha [37] used RSM for vibration 

response based fault dynamics of cylindrical roller bearing. 

They studied the effects of load, speed and defect size on 

vibration response. They observed that a small variation of 

speed significantly increases vibration amplitude, while a 

change in load has less impact on vibration amplitude. 

Mishra and Jalan [38] studied the effects of speed, load and 

type of defect (IRD, ORD and combination of BD and ORD) 
on ball bearing vibration. They used 33 FFD along with RSM 

for analysis and used acceleration amplitude (in m/s2) of time 

waveform in vertical and horizontal directions. Patil et al. 

[39] studied the effects of speed, load and misalignment 

(parallel and angular) on the vibration amplitude of a rotor-

bearing system. They used 33 FFD for both parallel and 

angular misalignment conditions. They used acceleration 

RMS (in m/s2) of time waveform as a response variable. 

They stated that change in load has less impact on vibration 

amplitude.  

The literature review revealed that most of the researchers 

used MATLAB software for mathematical modelling and 
simulation of combined effects of radial clearance and 

unbalance on vibration response of the rotor-bearing system. 

It is also seen that few researchers used finite element 

analysis (FEA) software for modelling and simulation of 

faults in bearings. In this literature, it is also observed that 

the effects on bearing vibration due to critical speeds are not 

taken into consideration. This inspires the authors to focus on 

the use of FEA software to study the effects of change in 

radial clearance of bearing, unbalance of rotor-bearing 

system, change in radial load and speed on vibration 

response of the rotor-bearing system by considering the 
critical speeds. In this paper, COMSOL multiphysics 5.6 

software is used for modelling and simulation of rotor-

bearing system vibration due to various factors, Matlab 

R2020b is used to calculate the vibration response parameter 

RMS velocity by processing the data, and Minitab 19 

statistical software is used for 24 full factorial DOE, 

ANOVA, regression modelling and response surface 

analysis. The methodology used for 24 FFD for vibration 

responses is shown in fig. 2. The results obtained provide 

theoretical support to understand the effects of various 

factors on the vibration of a rotor-bearing system in real 

situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 2. Methodology for 24 full factorial designs for 

vibration response 

II. ROTOR-BEARING SYSTEM DESIGN AND 

SIMULATION 

A. Rotor-bearing system design 

In order to study the effects of various factors on 

vibration responses of the rotor-bearing system, a rotor-
bearing system is modelled using COMSOL multiphysics 

software. This system has a flexible rotor with a rigid disk 

mounted at the centre. The rotor is simply supported on two 

single row deep groove ball bearings of number 6205 and is 

subjected to gravitational force. Ball-bearing 6205 has a wide 

range of applications in industrial machinery, automation, 

power tools, motorcycles, electric motors, etc. A schematic 

Select input variables (independent) and 

output variables (dependent) 
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variables and their range 
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design find number of runs and run order 

 

Perform simulation using COMSOL for all 
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identify the contributions of each factor and 
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diagram of the setup of the rotor-bearing system considered 

for the study is shown in Fig. 3. The details of the rotor-

bearing system parameters are shown in Table I.  

 

 
 

 

 

 

 

 

 

 

 

Fig. 3. Schematic diagram of the rotor-bearing system 

TABLE I 

DETAILS OF ROTOR-BEARING SYSTEM 

Rotor and Disk Details 

Rotor diameter (Dr) 25 mm 

Rotor length (Lr) 1000 mm 

Disk diameter (Dd) 200 mm 

Disk thickness (Td) 26.12 mm, 110.09 mm 

Disk eccentricity (Ed) 0, 1 mm 

Density of rotor and disk materials () 7850 kg/m3 

Young’s modulus (E) 200 GPa 

Poisson’s ratio ()  0.3 

Rotor and Disk weight (W) 100 N, 300 N 

Rotor speed (Nr) 2800 rpm, 10200 rpm 

Bearing Details 

Bearing model 
Deep groove ball bearing 
6205 

Nominal bore diameter (d) 25 mm 

Nominal outside diameter (D) 52 mm 

Ball diameter (Db) 7.94 mm 

Pitch diameter (Pd) 39.04 mm 

Outer race diameter (Do) 46.98 mm 

Inner race diameter (Di) 31.10 mm 

Outer race groove radius (ro) 4.208 mm 

Inner race groove radius (ri) 4.208 mm 

Number of balls (n) 9 

Contact angle () 00 

Young’s modulus of bearing material 
(E) 

200 GPa 

Poisson’s ratio of bearing material () 0.3 

Radial load on each bearing (Wr) 50 N, 150 N 

In this study, the beam rotor interface of COMSOL 

multiphysics software is used to simulate vibrations of the 

rotor-bearing system. This interface uses a 3D Timoshenko 

beam element and supports geometrically linear analysis. 

The beam rotor approximates the rotor as a 1-dimensional 
beam by representing the axis of the rotor as a line, and 

mounting components are set to be as a point condition. The 

elements in the beam rotor are based on Timoshenko theory 

having 6 dof (3 displacements and 3 rotational motions). In a 

beam rotor, the rotor is considered a flexible beam and the 

disk is considered rigid. Beam rotor interface allows only 

bending vibrations and suppresses the axial and torsional 

vibrations; hence it is less time consuming [40]. 

In this study, the bearing contact stiffness coefficients Kzz 

and Kyy in both directions (vertical Z and horizontal Y) are 

assumed to be linear (constant) and the same in both 

directions. Fig. 4 shows linear stiffness coefficient K 
obtained by using COMSOL software for 1 and 53 microns 

of radial clearances on 6205 balls bearing. It is seen that 

there is not much effect of change in radial clearance on 

stiffness coefficient of bearing. Stiffness coefficients are 

constant for a whole time duration of 0.2 seconds. These 

stiffness coefficient values depend on radial clearance, 

bearing geometry and bearing material; and not on load and 

speed. The analytically calculated value of linear stiffness 

coefficient K for 6205 ball-bearing using a method 

mentioned by Harris [41] is 7.819265042099  109 N/m. 

[Refer Appendix A for calculation of linear bearing stiffness 

coefficient K]. This calculated value of the stiffness 

coefficient is slightly different from the values obtained by 
using COMSOL software. This is because, in analytical 

calculations, radial clearance of bearing is not considered. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Linear bearing stiffness coefficient K for bearing 

6205 using COMSOL software 
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1428 rpm 

7709 rpm 

(b) 

B. Selection of range of input variables (factors) 

a) Disk eccentricity (Ed): To study the effect of unbalancing, 

two cases of the rotor are considered. In the first case, the 

rotor is fully balanced with zero eccentricity of masses, and 

in the other case, the rotor is unbalanced with 1 mm 

eccentricity of disk mass.  

b) Radial clearance (Cr): According to International 

Organization for Standardization (ISO) standard 5753, there 

are five classes of radial clearance of deep group ball 

bearings, namely C2, CN (Normal), C3, C4 and C5. For 

6205 deep groove ball bearing has 25 mm bore diameter, five 

classes of radial clearances are shown in Table II. In this 

paper, the lowest and highest values of radial clearances      

(1 m and 53 m) are selected for a study of their effects on 

bearing vibration.  

TABLE II 

RADIAL CLEARANCE RANGE OF 6205 BALL 

BEARING AS PER ISO 5753 

Bore 
diamete

r in mm 
Radial clearance in microns (m) 

(d) (C2) (CN) (C3) (C4) (C5) 

> < Min. 
Max

. 
Min. 

Max

. 
Min. 

Max

. 
Min. 

Max

. 
Min. 

Max

. 

24 30 1 11 5 20 13 28 23 41 30 53 
 

c) Radial load (Wr): In this study, radial loads acting on each 

bearing (Wr) are considered in two levels as 50 N and 150 N. 

[Refer Appendix B for calculation of radial loads on each 

bearing Wr]. 

d) Rotor speed (Nr): Critical speed of the rotor is a speed that 

corresponds to the natural resonant frequency of the rotor. It 
depends on rotor and disk geometry, their material properties 

and the kind of bearing support. At critical speeds, the rotor 

vibrates with high amplitude. Therefore, in order to avoid 

high vibration, the rotor should be avoided to run at critical 

speeds. Hence, in this study, first, the critical speeds of the 

rotor-bearing system are obtained by analytical method, by 

using Dyrobes simulator and COMSOL simulator. Table III 

shows the critical speeds obtained by using these methods for 

different radial loads. [Critical speeds of rotor obtained for 

the selected radial loads and radial clearances are given in 

appendix C]. It is seen that as there is not much difference in 
the values of stiffness coefficients (K) for different values of 

radial clearances (Cr), critical speeds are almost the same for 

different values of radial clearances. After finding the critical 

speeds for each load condition, the rotor speeds are selected 

as 2800 rpm and 10200 rpm. These speeds are away from the 

critical speeds of the rotor. Thus, unwanted vibrations due to 

critical speeds are avoided. Fig. 5 shows the mode shape 1 

and Campbell plot obtained from the Dyrobes simulator for a 

rotor-bearing system having radial clearance 1 micron and 

subjected to 50 N radial loads on each bearing. In this 

Campbell plot, the excitation line cuts the natural frequency 

curves at 1428 rpm and 7709 rpm, which represent the 

critical speeds of the rotor. Fig. 6 shows the Campbell plot 

obtained from the COMSOL simulator for the same case. In 

this Campbell plot, the excitation line cuts the natural 
frequency curves at 150 rad/s and 810 rad/s, which 

corresponds to critical speeds 1428 rpm and 7709 rpm, 

respectively. In both fig. 5 and fig. 6, the backward whirl 

curve of the first frequency curve is hidden below the 

forward whirl curve. The critical speeds obtained by the 

analytical method slightly differ from the critical speeds 

obtained by using Dyrobes and COMSOL simulators 

because, as an analytical method, the stiffness coefficients of 

the bearings are not considered. [Refer to Appendix D for 

calculation of critical speed of rotor by analytical method].  

TABLE III  

CRITICAL SPEEDS OBTAINED BY ANALYTICAL 

METHOD AND BY SIMULATORS 

Radial 

load (Wr) 

in 

Newton 

Critical speeds of a rotor in rpm (Hz) 

By Analytical 
Method 

By Dyrobes  
Simulator 

By 
COMSOL 

Simulator 

50 1385.16 

(23.09) 

--- 

1428 (23.8) 

7709 

(128.48) 

1428 (23.8) 

7709 

(128.48) 

150 
759.03 (12.65) 

--- 

766 (12.75) 

4096 

(68.27) 

766 (12.75) 

4096 (68.27) 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 5. (a) Mode shape 1 and (b) Campbell plot for a 

rotor-bearing system using Dyrobes simulator (For Cr = 1 

m and Wr = 50 N) 
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Fig. 6. Campbell plot for rotor-bearing system using 

COMSOL simulator (For Cr = 1 m and Wr = 50 N) 

C. Design of Experiments (DOE) with Two-level Full 

Factorial Design (FFD) 

Factorial designs are commonly used in experiments to 

study the joint effects of several input factors on the output 

response. Input variables (factors) are the independent 

variables, and output variable (response) is the dependent 

variable. Response surface is used to describe the surface, 

which represents the output variable when input variables 

vary within a specified range. In DOE, the factorial designs 

are broadly classified as full factorial design and fractional 
factorial design. In this paper, 2 levels of full factorial design 

with 4 factors (24) is used for the design of simulation 

experiments for a rotor-bearing system. The input factors 

considered for DOE are disk eccentricity (for balanced/ 

unbalanced rotor), radial clearance, rotor speed and radial 

load; and the output factors are the vibration amplitude RMS 

velocity in vertical and horizontal directions. Table IV shows 

DOE factors with coded and uncoded levels.  

TABLE IV 

DOE FACTORS FOR 24 FFD 

Factors Symbol Unit 
Coded  

Levels 

Uncoded  

Levels 

Disk eccentricity Ed mm 1 +1 0 1 

Radial clearance Cr m 1 +1 1 53 

Rotor speed Nr rpm 1 +1 2800 10200 

Radial load Wr N 1 +1 50 150 

D. Simulation using COMSOL multiphysics software 

To study and analyze the effects of change in radial 

clearance of ball bearing under balanced and unbalanced 
rotor conditions at different speeds and radial loads, the 

designed rotor-bearing system (as mentioned in session II-A) 

is simulated for vibration analysis using COMSOL 

multiphysics software. 

 In this simulation, a parametric sweep is performed for 

all combinations of 4 factors (disk eccentricity, radial 

clearance, rotor speed and radial load) which include 2 levels 

of each factor. Therefore, total runs are 24 = 16 runs. 

Parametric sweep is performed in the same order as shown in 
Table IV. The run order of experiments is given in Table V. 

For each run, time-dependent analysis is carried out for a 

time duration of 0.2 seconds with a time step of 0.0002 

seconds, i.e. with a 5000 Hz sampling rate. This sampling 

rate satisfies the condition of the Nyquist theorem, which 

states that the sampling rate should be more than or equal to 

twice the highest frequency component of the signal. In this 

study, the highest frequency is the rotor speed frequency 

(170 Hz) at a maximum speed of 10200 rpm.  Using 

COMSOL software, for each run, various graphs are 

obtained, such as orbit plots at left bearing and at the disk, 

time waveforms in vertical (Z) and horizontal (Y) directions 
which include displacement vs time, velocity vs time, 

acceleration vs time, and frequency spectrums in vertical and 

horizontal directions which include Fourier coefficient vs 

frequency. For further analysis, the obtained signal data of 

time waveforms (velocity vs time) are transferred to 

MATLAB software, and in MATLAB, various statistical 

parameters like Peak, Peak to Peak, RMS, Crest factor, 

Skewness, Kurtosis, etc. are obtained. Out of these 

parameters, RMS velocity (Vrms) of time waveforms in 

vertical and horizontal directions are considered as vibration 

responses for analysis. RMS is the square root of the mean of 
squares of a signal. It is the measure of the overall vibration 

level of the signal [42]. RMS is given by 

Root Mean Square (RMS) = 


N

i

ix
N

1

2)(
1

  (1) 

where xi = Instantaneous signal amplitude and N = No. of 

samples taken within the signal 

The obtained values of simulated vibration responses in 

vertical and horizontal directions in RMS Velocity (in mm/s) 

for 16 runs are shown in Table V. 

III. RESULTS AND DISCUSSION 

A. Orbit Plots, Time waveforms and Frequency Spectrums 

of Rotor-Bearing System 

Fig. 7 and fig. 8 shows orbit plots, time waveforms and 

frequency spectrums in a vertical direction at the left bearing 

for balanced and unbalanced rotors of the rotor-bearing 

system. 

From the orbit plot of a balanced rotor (Ed = 0), as shown 

in fig. 7 (a), it is observed that the centre of the rotor 

displaces in a downward direction due to the weight of rotor 

and disk (W) and starts vibrating below its initial position.  

But, in the case of the unbalanced rotor (Ed = 1 mm), as 

shown in fig. 8 (a), due to centrifugal force, the centre of the 

rotor starts rotating about its initial position. 
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TABLE V 

SIMULATION DESIGN MATRIX AND VIBRATION 

RESPONSES 

Run 

Order 

Uncoded factors Coded factors 
Vertical 

RMS 

Velocity 

Horizont
al 

RMS 
Velocity 

Ed Cr Nr Wr Ed Cr Nr Wr Vrms(V) Vrms(H) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

53 

53 

53 

53 

1 

1 

1 

1 

53 

53 

53 

53 

2800 

2800 

10200 
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From time waveforms of the balanced rotor (Ed = 0), as 

shown in fig. 7 (b) and (c), it is clearly seen that the peaks are 
found at intervals of 0.07836 seconds which corresponds to 

the critical speed frequency (fc) 12.76 Hz (i.e. 766 rpm).  Fig. 

7 (d) shows the frequency spectrum with a peak at fc. As 

there is no excitation frequency other than critical speed 

frequency present in the system, the critical speed frequency 

of rotor fc can be easily calculated from the time waveforms.  

 

Fig. 8 (b) and (c) shows the time waveforms for 

unbalanced rotors (Ed = 1 mm). From these figures, it is 

difficult to find the critical speed frequency present in the 

system, as unbalance of the rotor adds rotor rotational 
frequency fr and makes the system unstable, as shown in fig. 

8 (d). It is observed from the time waveforms are shown in 

fig. 7 and 8 that the vibration amplitude (velocity in mm/s) 

increases with the presence of unbalance in the system. 

 

From frequency spectrums of the balanced rotor (Ed = 

0), it is observed that no peaks are found at rotor rotational 

frequency fr for any value of Cr, Nr and Wr. For Cr = 1 m, 

there are no significant amplitude peaks found at any speed 

Nr and at any load Wr (refer fig. 9 (a) and (b)). For Cr = 53 

m, at higher values of load Wr, peaks are found at critical 

speed frequency fc and not at rotor rotational frequency fr 

(refer fig. 9 (c) and (d)). Frequency peak amplitude changes 

slightly with Wr but absolutely not with Nr.  

 

From frequency spectrums of unbalanced rotors (Ed = 1 

mm), it is observed that peaks are found at rotor rotational 

frequency fr for all values of Cr, Nr and Wr. For Cr = 1 m, 

peaks are clearly seen at rotor rotational frequency fr and 

critical speed frequency fc for all values of rotor speed Nr and 

radial load Wr (refer fig. 10 (a) and (b)).  For Cr = 53 m, 

vibration amplitude increases, and it becomes difficult to find 

the rotor rotational frequency and critical speed frequency in 

frequency spectrums (refer fig. 10 (c)). From the frequency 

spectrums, it is observed that an unbalanced rotor becomes 

more unstable with an increase in clearance, speed and load. 

For unbalanced rotors, at low clearance, the only dominant 

frequencies are the synchronous frequencies at fc and fr, and 
with the increase in clearance, the non-synchronous 

frequencies increase. 

B. Analysis of Vibration Response in Vertical Direction 

using ANOVA and Various Plots 

To investigate the effects of various factors on vibration 

response of the rotor-bearing system in the vertical direction, 

first using ANOVA, factorial regression models are 

developed for the vibration responses obtained through two-

level FFD, and then various plots are used for the analysis of 

the vibration responses.  

 

a) ANOVA for Full Model  
A summarized ANOVA table for the full model of 

vibration response in the vertical (Z) direction is given in 

Table VI, which shows the effect estimates, sums of squares, 

and the percentage contribution of each term and their 

interactions. Percentage contribution of each term shows that 

vibration amplitude is greatly affected by radial clearance 

(18.79 %) followed by disk eccentricity (18.42 %) and rotor 

speed (12.51 %). The radial load has a negligible effect on 

vibration amplitude. 
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TABLE VI 

EFFECT ESTIMATE SUMMARY FOR FULL MODEL 

Model 

Terms 
Effect Estimates Sum of Squares 

Percent 

Contribution 

Ed (A) 
Cr (B) 

Nr (C) 
Wr (D) 
Ed*Cr 
Ed*Nr 
Ed*Wr 
Cr*Nr 
Cr*Wr 
Nr*Wr 

Ed*Cr*Nr 

Ed*Cr*Wr 
Ed*Nr*Wr 
Cr*Nr*Wr 

Ed*Cr*Nr*Wr 

48.91 
49.4 

40.31 
0.8711 

45.72 
40.26 

0.894 
37.53 

0.8424 
0.4864 

37.48 

0.9235 
0.5523 
0.494 
0.5581 

9570.59 
9761.02 

6498.09 
3.04 

8360.88 
6482.85 

3.20 
5634.00 

2.84 
0.95 

5619.44 

3.41 
1.20 
1.00 
1.20 

18.42 

18.79 

12.51 
0.01 

16.10 
12.48 
0.01 

10.85 
0.01 
0.00 

10.82 

0.01 
0.00 
0.00 
0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 7. (a) orbit plot, (b) time waveform (Displacement in Z direction vs. time), (c) time waveform (Velocity in Z 

direction vs. time), and (d) frequency spectrum (Fourier coefficient in Z direction vs. frequency) at left bearing for 

balanced rotor with Ed = 0 mm, Cr = 53 m, Nr = 10200 rpm, Wr = 150 N. 
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fc = 12.76 Hz 
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Fig. 8. (a) orbit plot, (b) time waveform (Displacement in Z direction vs. time), (c) time waveform (Velocity in Z 

direction vs. time), and (d) frequency spectrum (Fourier coefficient in Z direction vs. frequency) at left bearing for 

unbalanced rotor with   Ed = 1 mm, Cr = 53 m, Nr = 10200 rpm, Wr = 150 N. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 9. Frequency spectrums in vertical direction at left bearing for balanced rotor and (a) for Cr = 1 m, Nr = 2800 

rpm, Wr = 50 N, (b) for Cr = 1 m, Nr = 10200 rpm, Wr = 150 N, (c) for Cr = 53 m, Nr = 2800 rpm, Wr = 150 N and (d) 

for Cr = 53 m, Nr = 10200 rpm, Wr = 150 N 
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fc = 23.8 Hz 
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Fig. 10. Frequency spectrums in vertical direction at left bearing for unbalanced rotor and (a) for Cr = 1 m, Nr = 2800 

rpm, Wr = 50 N, (b) for Cr = 1 m, Nr = 10200 rpm, Wr = 150 N, (c) for Cr = 53 m, Nr = 2800 rpm, Wr = 50 N and (d) for 

Cr = 53 m, Nr = 10200 rpm, Wr = 150 N 
 

 

b) Pareto Chart and Normal Probability Plot for Full Model   

The Pareto chart and normal probability plot of all effects of the full model for 95% confidence level are shown in fig. 11 

(a) and (b). In the Pareto chart, significant terms are above the limiting line, and in a normal plot, significant points are away 

from the reference line as shown. Both the figures show that the terms disk eccentricity (A), radial clearance (B), rotor speed 

(C) and their interactions AB, AC, BC and ABC are significant, while term radial load (D) and its interactions AD, BD, CD, 
ABD, ACD, BCD and ABCD are not significant.  
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A, B, C, D are the coded terms 

(a) 
 Not significant,  Significant 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Pareto chart and normal probability plot of all 

effects 

c) ANOVA Table for Final Model   
Pareto chart and normal probability plot show that radial 

load Wr (D) and its interactions are not significant and hence 

omitted from the final model. Table VII shows the ANOVA 

table for the final model (reduced) for response RMS 

velocity (Vrms) of time waveform in the vertical direction. 

Large model F-value of 3517.57 and small model P-value of 

zero indicate that the model is highly significant. P-values of 

main terms Ed, Cr and Nr, are less than 0.05 and are zero, 

which indicate that these terms are highly significant. Among 

two way interactions, Ed*Cr, Ed*Nr and Cr*Nr are highly 

significant, and among three-way interactions, Ed*Cr*Nr is 

highly significant. The closest value of “R-squared” (0.9997) 

to 1 and the existence of a good agreement between 
“Predicated R-squared” (0.9987) with "Adj R-squared" 

(0.9994) indicates that the model is highly significant.  

 

TABLE VII  

ANOVA TABLE FOR VIBRATION RESPONSE IN 

VERTICAL DIRECTION 

Source dof Adj SS Adj MS F-Value P-Value 

Model 7 51926.9 7418.12 3517.57 0 

Ed 1 9570.6 9570.59 4538.24 0 

Cr 1 9761.0 9761.02 4628.54 0 

Nr 1 6498.1 6498.09 3081.31 0 

Ed*Cr 1 8360.9 8360.88 3964.61 0 

Ed*Nr 1 6482.9 6482.85 3074.08 0 

Cr*Nr 1 5634 5634 2671.57 0 

Ed*Cr*Nr 1 5619.4 5619.44 2664.66 0 

Error 8 16.9 2.11   

Total 15 51943.7    

d) Regression Equation for Vibration Response in Vertical 

Direction  

Regression equation for vibration response in vertical 

direction in coded terms is  

Vrms(V) = 26.611 + 24.457 Ed + 24.699 Cr + 20.153 Nr 

+ 22.859 Ed*Cr + 20.129 Ed*Nr + 18.765 Cr*Nr 

+ 18.741 Ed*Cr*Nr 

Regression equation for vibration response in vertical 

direction in uncoded terms is  

Vrms(V) = 0.2453  0.9078 Ed + 0.0691 Cr – 4.21210–7 Nr 

 0.7741 Ed*Cr + 3.60810–4 Ed*Nr + 2.523410–7 Cr*Nr 

+ 3.89610–4 Ed*Cr*Nr 

e) Performance Prediction   

The performance prediction of vibration amplitude in the 

vertical direction for the final model is shown in the 

predicted versus actual plot (fig. 12 (a)) and in responses 

versus observation order graph (fig. 12 (b)). The actual and 

predicted response values are very close to each other and 
thus verify the fitness of the polynomial for the response.  

f) Main Effect Plots and Interaction Plots 

The main effect plot shows the mean response values at 

each level of input variables. The interaction plot shows the 

mean response values of two variables at all levels. It helps 

to understand the behaviour of one variable with respect to 
another variable. Fig. 13 and fig. 14 show main effect plots 

and interaction plots for vibration response in the vertical 

direction (RMS velocity in mm/s) for the final model.  

From the main effect plots, it is clear that disk 

eccentricity (Ed), radial clearance (Cr) and rotor speed (Nr) 

has a significant positive effect on vibration response. Cr has 

a greater effect, followed by Ed and Nr. However, radial load 

(Wr) has a negligible effect (slightly negative) on vibration 

response.  
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 (b)  (a) 

From the interaction plots, it is clear that significant terms 

for the vibration response are the interaction between Ed and 

Cr, Ed and Nr and Cr and Nr. However, there is no interaction 

seen between Ed and Wr, Cr and Wr, and Nr and Wr. Their 

interaction lines are absolutely parallel to each other. 

 

 

 

 

 

 

 

 

 

Fig. 12 Predicted vs actual plot and response vs order plot for vibration response 

 
 

 

 

 

 

 

 

Fig. 13 Main effect plots for vibration response in the vertical direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Interaction plots for vibration response in the vertical direction 
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g) Response Surface Plots  

Response surface plot is a 3D plot, which shows the 

relationship between the response variable and two input 

variables for the selected range. Fig. 15 shows response 

surface plots for vibration response in the vertical direction 

(RMS velocity in mm/s) for two-way interactions of 

significant factors. Surface plots for interaction between Cr 

and Ed, Nr and Cr, and Nr and Ed shows that vibration 

response increases with an increase in values of all these 

terms (Cr, Ed and Nr) and vibration amplitude is at the 

highest level when each term reaches their maximum value.  

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 15 Response surface plots for vibration response in the vertical direction 

 

1) Effect of disk eccentricity (Ed) on vibration amplitude: 

From the main effect plot (fig. 13), it is observed that for 

an increase in disk eccentricity from 0 to 1 mm, i.e. for the 

unbalanced rotor, the mean vibration amplitude increases 

from 2.15 mm/s to 51.06 mm/s, i.e. vibration amplitude 

increases significantly with increase in disk eccentricity 

(unbalance). 

From interaction plots and surface plots of Ed and Cr   

(fig. 14), it is observed that at the lowest level of radial 

clearance (Cr = 1 m), vibration amplitude increases slightly 

with an increase in disk eccentricity Ed. At Cr = 1 m, for 

increase in Ed from 0 to 1 mm, vibration amplitude increases 

slightly from 0.31 mm/s to 3.5 mm/s. But, at the highest level 

of radial clearance (Cr = 53 m), vibration amplitude 

increases significantly with an increase in disk eccentricity 

Ed. At Cr = 53 m, for increase in Ed from 0 to 1 mm, 

vibration amplitude increases from 3.99 mm/s to 98.63 mm/s.  

From interaction plots and surface plots of Ed and Nr   

(fig. 14), it is observed that at the lowest level of rotor speed 

(Nr = 2800 rpm), vibration amplitude increases slightly with 

an increase in disk eccentricity Ed. At Nr = 2800 rpm, for 

increase in Ed from 0 to 1 mm, vibration amplitude increases 

from 2.12 mm/s to 10.78 mm/s. But, at the highest level of 

rotor speed (Nr = 10200 rpm), vibration amplitude increases 

significantly with an increase in disk eccentricity Ed. At Nr = 
10200 rpm, for increase in Ed from 0 to 1 mm, vibration 

amplitude increases from 2.17 mm/s to 91.35 mm/s.  

2) Effect of radial clearance (Cr) on vibration amplitude: 

From the main effect plot (fig. 13), it is observed that for 

an increase in radial clearance from 1 to 53 m, the mean 

vibration amplitude increases from 1.91 mm/s to 51.31 
mm/s, i.e. vibration amplitude increases significantly with an 

increase in radial clearance. 

From interaction plots and surface plots of Cr and Ed   

(fig. 14), it is observed that at the lowest level of disk 

eccentricity (Ed = 0), i.e. for the balanced rotor, the vibration 

amplitude increases slightly with the increase in radial 

clearance Cr. At Ed = 0, for increase in radial clearance from 

0 to 53 m, vibration amplitude increases from 0.31 mm/s to 

3.99 mm/s. While at the highest level of disk eccentricity (Ed 

= 1 mm), i.e. for the unbalanced rotor, the vibration 

amplitude increases significantly with the increase in radial 

clearance Cr. At Ed = 1 mm, for increase in radial clearance 

from 1 to 53 m, vibration amplitude increases from 3.5 

mm/s to 98.63 mm/s.  

From interaction plots and surface plots of Cr and Nr   
(fig. 14), it is observed that at the lowest level of rotor speed 

(Nr = 2800 rpm), vibration amplitude increases slightly with 

an increase in radial clearance Cr. At Nr = 2800 rpm, for 

increase in Cr from 1 to 53 m, vibration amplitude increases 

from 0.52 mm/s to 12.39 mm/s. But, at the highest level of 

rotor speed (Nr = 10200 rpm), vibration amplitude increases 

significantly with an increase in radial clearance Cr. At Nr = 

10200 rpm, for increase in Cr from 1 to 53 m, vibration 

amplitude increases from 3.29 mm/s to 90.23 mm/s.  

3) Effect of rotor speed (Nr) on vibration amplitude: 

From the main effect plot (fig. 13), it is observed that for 

an increase in rotor speed from 2800 to 10200 rpm, the mean 

vibration amplitude increases from 6.46 mm/s to 46.76 
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mm/s, i.e. vibration amplitude increases significantly with an 

increase in rotor speed. 

From interaction plots and surface plots of Nr and Ed    

(fig. 14), it is observed that at the lowest level of disk 

eccentricity (Ed = 0), i.e. for the balanced rotor, vibration 
amplitude increases negligibly with an increase in rotor 

speed (Nr). At Ed = 0, for increase in rotor speed from 2800 

to 10200 rpm, vibration amplitude increases slightly from 

2.12 mm/s to 2.17 mm/s (negligible rise). While at the 

highest level of disk eccentricity (Ed = 1 mm), i.e. for the 

unbalanced rotor, the vibration amplitude increases 

significantly with the increase in rotor speed Nr. At Ed = 1 

mm, for increase in rotor speed from 2800 to 10200 rpm, 

vibration amplitude increases from 10.78 mm/s to 91.35 

mm/s.  

From interaction plots and surface plots of Nr and Cr    

(fig. 14), it is observed that at the lowest level of radial 

clearance (Cr = 1 m), vibration amplitude increases slightly 

with an increase in rotor speed Nr. At Cr = 1 m, for increase 

in Nr from 2800 to 10200 rpm, vibration amplitude increases 

slightly from 0.52 mm/s to 3.3 mm/s. But, at the highest 

level of radial clearance (Cr = 53 m), vibration amplitude 

increases significantly with an increase in radial speed Nr. At 

Cr = 53 m, for increase in Nr from 2800 to 10200 rpm, 

vibration amplitude increases from 12.39 mm/s to 90.22 

mm/s.  

h) Contour plots :  

The contour plot is a 2D plot, which shows the 

relationship between the response variable and two input 

variables for the selected range. Using contour plots, the 

response amplitude for the specific combination of two input 

variables in the given range can be determined.  

Fig. 16 shows contour plots for vibration response in the 

vertical direction (RMS velocity in mm/s) for all significant 
interactions of factors. Contour plots for interaction between 

Cr and Ed, Nr and Cr, and Nr and Ed shows that vibration 

response increases with an increase in values of all these 

terms (Cr, Ed and Nr) and vibration amplitude is at the 

highest level when each term reaches their maximum value. 

  

 

 

 

 

 

 

 

 

 

 
 

Fig. 16 Contour plots for vibration response in the vertical direction 

 

C. Analysis of Vibration Response in Horizontal Direction 

using ANOVA  

a) ANOVA Table for Final Model  

Table VIII shows the ANOVA table for the final model 

(reduced) for response RMS velocity (Vrms) of time 

waveform in the horizontal direction. Large model F-value of 

738.67 and small model P-value of zero indicate that the 

model is highly significant. P-values of main terms Ed, Cr 

and Nr, are less than 0.05 and are zero, which indicate that 

these terms are highly significant. Among two way 

interactions, Ed*Cr, Ed*Nr and Cr*Nr are highly significant, 

and among three-way interactions, Ed*Cr*Nr is highly 

significant. The closest value of “R-squared” (0.9985) to 1 

and the existence of a good agreement between “Predicated 
R-squared” (0.9938) with "Adj R-squared" (0.9971) indicates 

that the model is highly significant. 

 

 

TABLE VIII  

ANOVA TABLE FOR VIBRATION RESPONSE IN 

HORIZONTAL DIRECTION 

Source dof Adj SS Adj MS F-Value P-Value 

Model 7 76039.8 10862.8 738.67 0 

Ed 1 14189 14189 964.85 0 

Cr 1 14300.7 14300.7 972.44 0 

Nr 1 9939 9939 675.85 0 

Ed*Cr 1 11261.3 11261.3 765.76 0 

Ed*Nr 1 10215.7 10215.7 694.67 0 

Cr*Nr 1 7932.9 7932.9 539.43 0 

Ed*Cr*Nr 1 8201.1 8201.1 557.67 0 

Error 8 117.6 14.7   

Total 15 76157.4    
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b) Regression Equation for Vibration Response in 

Horizontal Direction  

Regression equation for vibration response in horizontal 

direction in coded terms is  

Vrms(H) = 33.244 + 29.779 Ed + 29.896 Cr + 24.924 Nr 
+ 26.530 Ed*Cr + 25.268 Ed*Nr + 22.267 Cr*Nr 

+ 22.640 Ed*Cr*Nr 

Regression equation for vibration response in horizontal 

direction in uncoded terms is  

Vrms(H) = –0.11 – 1.72 Ed + 0.155 Cr + 1.210–5 Nr –

 1.019 Ed*Cr + 9.510–4 Ed*Nr – 410–6 Cr*Nr  

+ 4.7110–4 Ed*Cr*Nr 

 

c) Main effect plots, Interaction plots, Response surface 

plots and contour plots 

Fig. 17 to fig. 20 shows main effect plots, interaction 

plots, response surface plots and contour plots for vibration 

response in the horizontal direction (RMS velocity in mm/s) 

for the final model. All these plots for vibration response in 

the horizontal direction look similar to the plots for vibration 

response in the vertical direction. In main effect plots, the 

mean vibration amplitudes at higher levels of significant 

factors Ed, Cr and Nr are 63.02 mm/s, 63.14 mm/s and 58.16 

mm/s, respectively. In interaction plots and response surface 
plots, the higher mean vibration amplitudes for interactions 

between Ed and Cr, Ed and Nr, and Cr and Nr are 119.45 

mm/s, 113.21mm/s and 110.33 mm/s, respectively. It is 

observed that at higher levels of significant factors Ed, Cr and 

Nr, the vibration amplitudes for horizontal vibration 

responses are higher than that of vertical vibration responses. 

 

 

 

 

 

 

 

 

 

Fig. 17 Main effect plots for vibration response in the horizontal direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 Interaction plots for vibration response in the horizontal direction 
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Fig. 19 Response surface plots for vibration response in the horizontal direction 

 

 

 

 

 

 

 

 

Fig. 20 Contour plots for vibration response in the horizontal direction 

 

IV. CONCLUSIONS 

In the present work, COMSOL multiphysics software is used 

for modelling and simulation of vibrations in a rotor-bearing 

system. 2-level FFD and response surface analysis methods 

are used to study and analyze the effects of four factors, 

namely disk eccentricity (for balanced/unbalanced rotor), 

radial clearance, rotor speed and radial load on vibration 

amplitude in vertical and horizontal directions of a rotor-

bearing system having 6205 ball bearings at both ends of the 

rotor. Regression equations are developed to predict the 
vibration responses at a ball bearing, and response surfaces 

are obtained, which depict the effects of input variables on 

vibration responses. From the analysis of vibration responses 

for the selected range of factors, the following conclusions 

can be drawn: 

1) Radial clearance of the bearing has a remarkable 

effect on vibration response of rotor-bearing system 

followed by disk eccentricity (which causes 

unbalance) and rotor speed, and radial load on bearing 

has no significant effect on vibration response of the 

rotor-bearing system. 

2) Radial clearance, disk eccentricity and rotor speed 
cause low vibration amplitudes at their lower levels 

and very high vibration amplitudes at their higher 

levels. Interaction plots and response surface plots 

between these factors show similar characteristics but 

are indifferent in magnitude. 

3) Vibration amplitude increases due to disk eccentricity 

and rotor speed because, in combination, these factors 

raise centrifugal forces on the rotor. The radial 

clearance allows extra displacement of the inner race 

and balls and hence increases vibration. 

4) Time waveforms of balanced rotor clearly show the 

peaks are found at intervals that correspond to critical 

speed frequency. Hence, time waveforms of the 

balanced rotor can be used to determine the critical 

speed of the rotor. 
5) The centre of the balanced rotor displaces in a 

downward direction due to radial load and vibrates 

there in vertical and horizontal directions only. At the 

same time, the centre of the unbalanced rotor rotates 

about the initial position due to centrifugal force. 

6) An unbalanced rotor becomes more unstable with an 

increase in clearance and speeds the system. For 

unbalanced rotors, at low clearance, the only dominant 

frequencies are the synchronous frequencies at fc and 

fr, and with the increase in clearance, the non-

synchronous frequencies increase. 

7) Vibration responses in the vertical and horizontal 
direction show similar characteristics but are different 

in magnitudes. Vibration amplitudes in the vertical 

direction are smaller than in the horizontal direction. 

This is due to radial load, which is acting in the 

vertical direction. 

 

Cr*Ed

1 .00.50.0

53

27

1

Nr*Ed

1 .00.50.0

1 0200

6500

2800

Nr*Cr

53271

1 0200

6500

2800

–  

–  
–  

–  

–  
<  10

10 30

30 50

50 70
70 90

90 1 10

VrmsY

Contour Plots of Vrms

Cr*Ed

1 .00.50.0

53

27

1

Nr*Ed

1 .00.50.0

1 0200

6500

2800

Nr*Cr

53271

1 0200

6500

2800

–  

–  
–  

–  

–  
<  10

10 30

30 50

50 70
70 90

90 1 10

VrmsY

Contour Plots of Vrms
Cr*Ed

1 .00.50.0

53

27

1

Nr*Ed

1 .00.50.0

1 0200

6500

2800

Nr*Cr

53271

1 0200

6500

2800

–  

–  
–  

–  

–  
<  10

10 30

30 50

50 70
70 90

90 1 10

VrmsY

Contour Plots of Vrms

Vrms 



Prashant H. Jain & Dr. Santosh P. Bhosle / IJETT, 70(1), 327-347, 2022 
 

343 

X 

Z 

Y 

Sectional isometric view 

APPENDICES 

Appendix A: Calculation of Linear Bearing Stiffness 

Coefficient K 

According to Hertzian contact theory, the geometry of 

point contact between a race and a ball is described by four 
radii of curvature. By definition, convex surfaces have 

positive radii, and concave surfaces have negative radii [41].  

For inner race and ball contact : 

Fig. A1 shows the geometry of point contact between the 

inner race and a ball with four radii of curvature. Four radii 

of curvatures of contacting surfaces of the inner race and a 
ball in X and Y directions can be calculated using the 

following relations 

Radii of curvature of the ball in X and Y directions 

  bXr  = bYr  = 
2

bD
 = 

2

94.7
 = 3.97 mm 

Radii of curvature of inner race in X and Y directions 

  iXr  = ir  = 4.2082 mm 

  iYr  = 
2

iD
 = 

2

10.31
 = 15.55 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1 Inner race and ball in contact with four radii of 

curvature 

Two effective radii of curvatures of the contacting surfaces 

XR  and YR  in X and Y directions can be calculated using 

following relations 

  
XR

1
 = 

iXbX rr

11
   and    

YR

1
  =  

iYbY rr

11
  

  XR  = 

iXbX rr

11

1



 = 

2082.4

1

97.3

1

1




 =  70.136 mm 

and  YR  = 

iYbY rr

11

1



 = 

55.15

1

97.3

1

1



 =  3.1625 mm  

The combined radius of curvature R of the contacting 

surfaces can be calculated using the following relation 

  
R

1
 = 

YX RR

11
  

  R  = 

YX RR

11

1



 = 

1625.3

1

136.70

1

1



  =  3.026 mm 

    =  0.003026 m 
The contact stiffness for point contact between inner race and 

ball cinK  is given as 

  cinK  = 
3 4.5 




R
Ek ine   

where inE   is the equivalent modulus of elasticity between 

inner race and ball, which can be calculated from the 

following equation  

  inE   = 













 




ball

ball

inner

inner

EE

22
11

2


    

In which inner  and ball  are the Poisson’s ratio of inner 

race and ball materials; and innerE  and ballE  are Young’s 

modulus of the inner race and ball materials.  

  inE   = 













 




200

3.01

200

3.01

2

22
   =  219.78022 GPa   

   =  219.78022  109 N/m2 

as, inner  = ball  = 0.3 and innerE  = ballE  = 200 GPa. 

And   and   are 1st  and 2nd  kind of elliptical integral and 

ek  is the ellipticity parameter. Their approximate values are  

    = 









1

2ln6023.05277.1
R

R
   

   =  









1625.3

136.70
ln6023.05277.1  =  3.394262975 

     = 











2

15968.00003.1
R

R
    

   = 









136.70

1625.3
5968.00003.1  = 1.027210687 

rbX riX 

Sectional front view 

rbY 

riY 

Side view 
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X 
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Sectional isometric view 

  ek  = 

6360.0

1

20339.1 










R

R
= 

6360.0

1625.3

136.70
0339.1 








 

    = 7.421189 

  cinK  = 
3 4.5 




R
Ek ine    

 = 9

3

0.003026 1.027210687
7.421189 219.78022 10

4.5 3.394262975



   


 

  cinK  = 2.153578033920  1010 N/m 

For outer race and ball contact : 

Fig. A2 shows the geometry of point contact between the 

outer race and a ball with four radii of curvature.  

Four radii of curvatures of contacting surfaces of the 

outer race and a ball in X and Y directions can be calculated 
using the following relations. 

Radii of curvature of ball in X and Y directions 

  bXr  = bYr  = 
2

bD
 = 

2

94.7
 = 3.97 mm 

Radii of curvature of outer race in X and Y directions 

  oXr  = or  =  4.2082 mm 

  oYr  = 
2

oD
  = 

2

98.46
  =  23.49 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A2 Outer race and ball in contact with four radii of 

curvature 

 

Two effective radii of curvatures of the contacting surfaces 

XR  and YR  in X and Y directions can be calculated using 

the following relations 

  
XR

1
 = 

iXbX rr

11
   and    

YR

1
  =  

iYbY rr

11
  

  XR  = 

iXbX rr

11

1



 = 

2082.4

1

97.3

1

1




  =  70.136 mm 

and  YR  = 

iYbY rr

11

1



 = 

49.23

1

97.3

1

1




 = 4.777 mm 

The combined radius of curvature R of the contacting 

surfaces can be calculated using the following relation 

  
R

1
 = 

YX RR

11
  

  R  = 

YX RR

11

1



 = 

777.4

1

136.70

1

1



  =  4.7272 mm 

    =  0.0044727 m 

The contact stiffness for point contact between outer race and 

ball coutK  is given as 

 coutK  = 
3 4.5 




R
Ek oute   

where outE  is the equivalent modulus of elasticity between 

outer race and ball, which can be calculated from the 

following equation  

  outE  = 













 




ball

ball

outer

outer

EE

22
11

2


    

In which outer  and ball  are the Poisson’s ratio of the 

outer race and ball materials, and outerE  ballE  are Young’s 

modulus of the outer race and ball materials.  

  outE  = 













 




200

3.01

200

3.01

2

22
 

    =  219.78022 GPa = 219.78022  109 N/m2 

as, outer  = ball  = 0.3 and outerE  = ballE  = 200 GPa. 

And     are the first and second kinds of elliptical integral 

and ek  is the ellipticity parameter. Their approximate values 

are  

    = 









1

2ln6023.05277.1
R

R
   

   = 









777.4

136.70
ln6023.05277.1  = 3.145805696 

Side view 

rbX roX rbY 

roY 

Sectional front view 
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Lr 

Td 

Dd 
Dr 

Wd Wro 

Lr 

RL RR 

     = 











2

15968.00003.1
R

R
   

   = 









136.70

777.4
5968.00003.1   

   = 1.040951577 

  ek  = 

6360.0

1

20339.1 










R

R
    

   = 
6360.0

777.4

136.70
0339.1 







    

   =  5.708637 

 coutK  = 
3 4.5 




R
Ek oute    

= 
3

9

145805696.3 4.5

040951577.10044727.0
1078022.219708637.5




  

 coutK  = 2.27232128434  1010 N/m 

The equivalent contact stiffness K corresponding to both 

inner and outer contacts is  

  K  = 
1

3
2 2 2
3 31 1

K K
cin cout

 
    
    
    
    
 

 

= 1

3
2 2 2

1 13 3

10 102.153578033920 10 2.27232128434 10

 
    

    
     
  

 

  K  = 7.819265042099  109 N/m 

 

Appendix B: Calculation of Radial Loads (Wr)            

on each bearing 
Fig. B1 shows the rotor with disk simply supported 

between two ball bearings, and fig. B2 shows the rotor as a 

simply supported beam subjected to loads due to rotor and 

disk weights. If Wro and Wd are the weight of rotor and disk, 

respectively, then the radial load on each bearing Wr will be 
equal to the reactions at each bearing end.  

 

 

 

 

 

 

 

 

 

Fig. B1. Rotor with disk supported between bearings 

 

 

 

 

 
 

Fig. B2. Loads acting on the rotor 

 

Calculation of radial load on each bearing (Wr) : 

 Mass of rotor (mro)  =  Density  Volume   

   =  Density  (Area  Length) 

   = 







 rr LD

2

4


  = 








 1025.0

4
7850 2

  

   =  3.85336 kg 

Weight of rotor (Wro)  = Mass of rotor  gravitational accen 

   = gmro   = 3.85336  9.81 = 37.8 N 

 

For disk thickness 26.12 mm : 

 Mass of disk (md) = Density  Volume   

   =  Density  (Area  Thickness) 

   = 







 drd TDD )(

4

22
    

   = 







 02612.0)025.02.0(

4
7850 22

  

   = 6.3409 kg 

Weight of disk (Wd) = Mass of disk  gravitational accen 

   = gmd   = 6.3409  9.81 = 62.2 N 

Total weight of rotor & disk (W)  =  Wro + Wd 

   = 37.8 + 62.2 = 100 N 

Radial load on each bearing (Wr) = Reactions at each end

   = 
2

W
 = 

2

100
 = 50 N 

 

For disk thickness 110.09 mm : 

 Mass of disk (md) = Density  Volume   

   =  Density  (Area  Thickness) 

   = 







 drd TDD )(

4

22
    

   = 







 11009.0)025.02.0(

4
7850 22

  

   = 26.7276 kg 

Weight of disk (Wd) = Mass of disk  gravitational accen

   = gmd   = 26.7276  9.81 = 262.2 N 

Total weight of rotor & disk (W) = Wro + Wd 

   = 37.8 + 262.2 = 300 N 

Radial load on each bearing (Wr) = Reactions at each end

   = 
2

W
 = 

2

300
 = 150 N 
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Appendix C: Critical speeds of rotor obtained for the 

selected radial loads and radial clearances 

Table C1 shows the values of linear bearing stiffness 

coefficient K and critical speeds Nc (critical frequencies fc) 

obtained for selected values of radial loads (Wr) and radial 
clearances (Cr) using COMSOL and Dyrobes simulators. 

Critical speed values for the first three modes are given in the 

table. 

TABLE C1  

Values of K and Nc (fc) were obtained for given Wr and Cr 

using simulators 

Radial  

load  

(Wr)  

in  

Newton 

Stiffness  

coefficient  

and 

Critical  

speeds 

Radial clearances in m 

1 m 53 m 

50 

K in N/m 
7.8192650338868  

109 

7.8192646068505  

109 

Nc (fc) in 

rpm (Hz) 

1428.07 (23.80) 

1428.32 (23.80) 

7708.71 (128.48) 

1428.07 (23.80) 

1428.32 (23.80) 

7708.71 (128.48) 

150 

K in N/m 
7.8192650338868  

109 

7.8192646068505  

109 

Nc (fc) in 
rpm (Hz) 

765.55 (12.759) 
795.59 (12.76) 

4096.24 (68.27) 

765.55 (12.759) 
795.59 (12.76) 

4096.24 (68.27) 

 

Appendix D: Calculation of critical speed by analytical 

method 

Fig. D1 shows the rotor as a simply supported beam 

subjected to rotor weight Wro and disk weight Wd.  

Static deflection of the rotor rr due to uniformly 

distributed rotor weight Wro  

 rr =
rr

rro

IE

LW

384

5
4

 = 
49

4

025.0
64

10200384

18.375





   

  = 4102834.1  m 
 

For disk thickness 26.12 mm : 

For Td = 26.12 mm and Dd = 0.2 m, disk weight Wd = 

62.2 N (see annexure B).  

Static deflection of the rotor rd due to concentrated 

mid-point disk weight Wd  

 rd = 
rr

rd

IE

LW

48

3

 = 
49

3

025.0
64

1020048

12.62





   

  = 410379.3  m 

Total static deflection of the rotor r due to disk weight Wd 

and rotor weight Wro  

  r = rr  + rd   

   = 4 41.2834 10 3.379 10     

   = 44.6624 10 m  

Natural angular frequency of the rotor n 

  n = 
r

g


 = 

4106624.4

81.9


 = 145.054 rad/s 

Critical speed of the rotor Nc 

  Nc = 




2

60
 = 

2

60054.145 
 = 1385.16 rpm 

Critical frequency of the rotor fc 

  fc = 
60

cN
 = 

60

16.1385
 = 23.09 Hz 

 

 

For disk thickness 110.09 mm : 

For Td = 119.09 mm and Dd = 0.2 m, disk weight Wd = 

262.2 N (see annexure B).  

Static deflection of the rotor rd due to concentrated 

mid-point disk weight Wd  

 rd = 
rr

rd

IE

LW

48

3

 = 
49

3

025.0
64

1020048

12.262





   

  =  3104244.1  m 

Total static deflection of the rotor r due to disk weight Wd 

and rotor weight Wro  

  r = rr  + rd   

   = 4 31.2834 10 1.4244 10     

   = 31.5527 10 m  

Natural angular frequency of the rotor n 

  n = 
r

g


 = 

3105527.1

81.9


 = 79.485 rad/s 

Critical speed of the rotor Nc 

  Nc = 




2

60
 = 

2

60485.79 
 = 759.03 rpm 

Critical frequency of the rotor fc 

  fc = 
60

cN
 = 

60

03.759
 = 12.65 Hz 

 

 

 

 

 

 

 

Fig. D1. Loads acting on the rotor 
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