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Abstract — Harsh working conditions, as well as 

vibrations of technological process units and unstable load 

intensity, impose high standards on overpressure 

monitoring devices that ensure the required measurement 

accuracy and trouble-free operation. Using manometer 

gauges today is a mandatory requirement for monitoring 

overpressure. Manometric tubular springs have become 
widespread in various fields of technology. Therefore, the 

issue of determining the forced fluctuations of the 

manometric tubular springs becomes more significant. The 

article presents a mathematical model of forced 

oscillations of the manometric tubular springs based on 

Lagrange equations of the second kind. A program has 

been developed in MATLAB based on the proposed model, 

which allows determining the required characteristics of 

pressure monitoring devices to exclude the possible 

occurrence of resonance. The presented model can be 

successfully used to calculate standard manometric tube 
designs since it is a classical approach to solving 

vibrations problems of mechanical systems. 
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I. INTRODUCTION 

The main development vector of the oil and gas industry 

is oriented to the Arctic and offshore area. Transportation 

of energy carriers from deposits to consumers is planned to 

be carried out using sea and pipeline transport. 

Construction areas are extremely complex and require high 

control during the operation of infrastructure facilities, 

which is reflected in [1]-[16]. 

One of the main technological processes parameters in 

the oil and gas industry is the operating pressure. 

Abnormal operation conditions, as well as vibrations of 
technological process units and unstable load intensity, 

impose high requirements on the pressure measuring 

devices, which in turn must have high reliability and the 

required accuracy. 

According to the regulatory documentation, all-digital 

pressure measurement sensors must be duplicated by 

analogue pressure gauges, and in some cases, using 

pressure gauges is a single option way to monitor 

excessive pressure. 

Manometric tubular springs (MTS), in which the 

property of a curved tube with a non-circular cross-section 

is used to deform with increasing internal pressure, are 
employed as sensitive elements in pressure gauges. 

Currently, besides pressure gauges, MTS have found 

application in various fields of technology [17]-[19]. 

The strength and frequency characteristics of tubular 

spring vibrations, the effects of the shape, cross-sectional 

dimensions, and basic geometric dimensions of the MTS, 

as well as the process of MTS vibration damping by a 

liquid, are analyzed in a large number of works [20]-[26]. 
However, the issue related to taking into account 

internal pressure pulsations remains unexplored. The 

present article solves the problem of forced oscillations of 

the MTS using the Lagrange equation of the second kind. 

II. METHODS 

The MTS is considered as a mechanical system with 

two degrees of freedom, with two generalized coordinates. 

Let us denote the relative change in the main angle of the 

MTS as φ and the increase in the vertical component of the 

cross-section of the MTS as w. 

 

 
Fig. 1 The dynamic model of MTS 

 

The mathematical model represents a system of 

equations based on the Lagrange equation of the second 
kind. In the case under consideration, exciting forces F(t) 

act at the points of the system in addition to the forces 

having potential. 
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Where t is the time, T is the kinetic energy, U is the 

potential energy, A is the generalized work of internal 

pressure pulsation. 

Earlier in [19, 20], expressions were obtained for 

determining the potential and kinetic energies. The 
expression for the potential energy has the form: 
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where E is the elasticity modulus, µ is the Poisson's 

ratio, h is the wall thickness, 

γ is the central angle, R is the radius of the central axis, 

A1, A2, A3, m, n, b, χ are the coefficients depending on the 

MTS cross-section shape. 

The expression for the kinetic energy has the form: 
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Where ρ is the density of the material, В1, В2, В3, Кб, mб 

are the coefficients depending on the cross-section shape. 

The work of the internal pressure forces pulsation can 

be represented in the following form: 

 

𝐴 = 𝑞∆𝑓𝑅𝛾 (4) 

 

where q is the internal pressure distribution law, which 

can be represented as 𝑝 ∙ sin(𝑘𝑝𝑡 + 𝛿), ∆𝑓 is the change in 

the area bounded by the middle line of the cross-section 

outline, represented as 
2𝑤𝑎

𝑚
(1−

𝑏2

𝑎2
)𝑛, where the notation 

is the same as in formula (2), γ is the central angle, R is the 

radius of the central axis. 

In the final form, the generalized work of the internal 

pressure pulsation will have the following form: 

 

𝐴 = 𝑝 ∙ sin(𝑘𝑝𝑡 + 𝛿)
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Having calculated the partial derivatives of the potential 

and kinetic energies, as well as the generalized work of the 

internal pressure pulsation, we obtain a system of 

differential equations describing forced oscillations of the 

system: 

 

{
𝑎1�̈� + 𝑐1𝜑 + 𝑐3𝑤 = 0

𝑎2�̈� + 𝑐2𝑤 + 𝑐3𝜑 = 𝑑1 sin(𝑘𝑝𝑡 + 𝛿)
 (6) 

 

where a1 and а2 are the inertia coefficients, c1, c2, c3 are 

the stiffness coefficients. 
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The general solution of the system of differential 

equations (6) is the sum of the general integral of the 

corresponding system of homogeneous equations (8) and 

the partial integral of the system (6). 

 

{
𝑎1�̈� + 𝑐1𝜑 + 𝑐3𝑤 = 0,
𝑎2�̈� + 𝑐2𝑤 + 𝑐3𝜑 = 0.

 (8) 

 

When integrating the resulting system of differential 
equations, partial solutions can be represented as: 

 

𝜑 = 𝐼1 sin(𝑘𝑡 + 𝛽), 
𝑤 = 𝐼2 sin(𝑘𝑡 + 𝛽), 

         

(9) 

 

Let us introduce a coefficient µ, equal to the ratio of 

generalized coordinates: 

 

𝜇 =
𝑤

𝜑
=
𝐼2
𝐼1
. (10) 

Thus, we receive: 

 

𝜑 = 𝐼1 sin(𝑘𝑡 + 𝛽), 
𝑤 = 𝜇𝐼1 sin(𝑘𝑡 + 𝛽),  (11) 
�̈� = 𝑘2𝐼1 sin(𝑘𝑡 + 𝛽) 
�̈� = 𝑘2𝜇𝐼1 sin(𝑘𝑡 + 𝛽) 

 

Substituting (11) into (8) and dividing both equations by 

𝐼1 sin(𝑘𝑡 + 𝛽) we get: 
 

{
𝑎1𝑘

2 + 𝑐1 + 𝑐3𝜇 = 0,

𝑎2𝑘
2𝜇 + 𝑐2𝜇 + 𝑐3 = 0.

 (12) 

 

Solving the system (12) with respect to µ, we obtain a 
characteristic equation for determining the frequencies of 

free oscillations k: 

 

𝑎1𝑎2𝑘
4 + (𝑎1 + 𝑎2)𝑐2𝑘

2 + 𝑐2
2 − 𝑐3

2 = 0 (13) 

 

Determining the oscillation frequencies, we have 

obtained two values of µ, corresponding to each of the 

oscillations. For each oscillation, the ratio of amplitudes 

will have a certain meaning, µ, which will depend on the 

parameters of the system under consideration and in no 
way depend on the initial conditions. 

The general solution to system (8) can be obtained by 

summing up the particular solutions. The final oscillatory 

motion of the system will represent a superposition of 

simple harmonic oscillations with different frequencies: 
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Constants 𝐼1
(1)
, 𝐼1
(2)
, 𝛽1, 𝛽2  are determined from the initial 

conditions. 

The partial solution to the system of equations (6), 

determining the forced oscillations of the system, has the 

form: 

 

𝜑 = 0, 
𝑤 = 𝐽2 sin(𝑘𝑝𝑡 + 𝛿), (15) 

 

Substituting (15) into (6) and dividing both equations by 

sin(𝑘𝑝𝑡 + 𝛿), we obtain: 

 

{
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 (16) 

 

Substituting the values of 𝐽2  found by the solving 

system (16), into equations (15), we obtain a general 

solution of the system of equations (6): 
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However, at resonance (in the case when 𝑘𝑝 = 𝑘1  or 

𝑘𝑝 = 𝑘2), expression (15) will not be a particular solution 

of the system (6). A particular solution at resonance can be 

obtained by turning to the main coordinates of the system 

(8). The general solution at 𝑘𝑝 = 𝑘1 will have the form: 
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The first component of expression (18) contains the 

variable t presented in explicit form; this component will 

increase indefinitely over time, which confirms the 

occurrence of resonance. 

The developed mathematical model is implemented in 

MATLAB as a program with a graphical interface. The 

choice of MATLAB is because firstly, it is a high-level 
programming language with understandable mathematical 

logic, and secondly, it is widely used in various fields of 

science and technology, as well as has a large database of 

already implemented libraries and algorithms. The 

interface of the developed program is shown in Fig. 2. 

 

 
Fig. 2 The graphical interface of the program for calculating forced oscillations of the MTS 
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III. RESULTS 

Employing the developed program, we estimated the 

effect of internal pressure pulsations on the movings of 

the free end of the MTS. The pressure was variable with 

periods equal to 1, 2.5, and 5 periods of natural 

oscillations. The results are shown in Fig. 3. 

 

 
Fig. 3 Moving free end of the MTS, caused by pressure pulsations 

 

As can be seen from the graph, when the period of 

pulsations is greater than the period of natural oscillations 

of the MTS, oscillations of the free end of the MTS occur, 

which allows indicating the presence of pulsations. When 

the pressure pulsates with a frequency equal to the first 

frequency of free oscillations of the MTS, a monotonous 

increase in moving is observed, indicating the presence of 

a resonance phenomenon. The operation of pressure 

gauges in such a mode will not allow correctly monitoring 

the state of the technological process and, as a result, will 
not be able to ensure the reliable and safe operation of the 

installations. 

IV. DISCUSSION 

A mathematical model of forced oscillations of MTS 

has been developed based on Lagrange equations of the 

second kind. Employing the developed program, it is 

possible to determine the required characteristics of 

pressure monitoring devices that exclude the possibility of 

resonance occurrence. 

The presented model can be successfully applied to 

calculate standard MTS designs since it is based on a 

classical approach to solving problems of mechanical 
systems vibrations. However, for non-standard designs, 

such as MTS with a changing cross-sectional shape along 

the length of the tube, a changing wall thickness of the 

MTS, etc., using this model will be difficult and requires 

certain adjustments. 
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