
International Journal of Engineering Trends and Technology Volume 70 Issue 3, 22-28, March, 2022
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V70I3P203 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Test Cases Prioritization Using Ant Colony

Optimization and Firefly Algorithm

Muhammad Afiq Ariffin1, Rosziati Ibrahim2, Izrulfizal Saufihamizal Ibrahim3, Jahari Abdul
Wahab4

1,3PhD Candidate, Department of Software Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
2Supervisor, Department of Software Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

4 Industry Collaborator, Engineering R&D Department, Sena Traffic Systems Sdn. Bhd., Kuala Lumpur, Malaysia

 1rosziati@uthm.edu.my

Abstract - A software testing process is the most complex

and important part to be considered in the software

development life cycle. This testing process usually takes a

lot of time and is also very costly. The modification that has

been made must also not affect the other unmodified parts of
the software. Regression testing is the most suitable function

that can be used for the software testing process, and the

method includes the prioritization of test cases. There are

several techniques in the prioritization of test cases, and

most of the techniques are inspired by nature, such as Ant

Colony Optimization (ACO) and Firefly Algorithm (FA).

This paper will look at ACO and FA techniques for the

prioritization of test cases. These techniques will be executed

to identify the performance of each technique, which will be

evaluated based on the Average Percentage of Faults

Detected (APFD), execution time, and fault coverage. Based

on the evaluation results, it showed that the FA technique
recorded the lowest execution time and achieved a 100% of

fault coverage.

Keywords — Software testing, Prioritization of test cases,

ant colony optimization, Firefly algorithm.

I. INTRODUCTION
Software is usually affected by many factors during its

development, resulting in the production of a product of

lower quality or malfunction in those systems. The

Discovery of errors before the product is released is one of

the methods used during the development of software to

produce a high-quality program by testing the quality of this

software. Nowadays, the software development process is

something that happens every day, and, in fact, it is
becoming more vibrant and has grown successfully. Almost

every day, there are new applications and systems in the

environment, but some other systems or applications are also

becoming less useful due to the development of the new

systems or applications with new features that understand the

needs of users and are easier to use. However, these new

systems require periodic updates to meet the needs of users

and make them easier for users to use. Every update added to

an existing system needs to be tested first to see whether it is

effective or not.

Software testing is important to test the system or

software whether it meets its user requirements as well as to

test the functionalities of the system is correct or not. Some
of the researchers have conducted many techniques in the

software testing domain for generating test cases and test

cases prioritization, for example, [1–6]. This paper discusses

the techniques used in software testing for prioritization of

test cases and conducts an experiment for the techniques to

find out which technique is better in terms of its performance

in prioritization of the test cases.

The next section will discuss the related works, followed

by a discussion on the test cases prioritization techniques.

Then the results and discussion are presented in Section IV,

followed by the conclusion and future works in Section V.

II. RELATED WORK

The test case prioritization technique schedules test

cases in an execution order according to some criteria and

provide other methods to reduce regression testing costs. In

prioritization, the most powerful algorithm is the nature-

inspired algorithm [7]. Since there are several techniques

inspired by the nature that can be used in test case

prioritization, this paper will compare two of the most used

techniques for prioritizing test cases. One of the techniques
is Firefly Algorithm (FA), which has been widely used in

prioritization techniques. Sahoo et al. [8] had also

implemented the FA technique in their paper, including

Khatibsyarbini et al. [9], who used the same technique in

their study. Indeed, this technique has been widely used for

prioritization test cases to obtain better performance.

Another technique called Ant Colony Optimization (ACO),

which is based on the ant colony nature, has also been

implemented as a prioritization technique. For instance, this

ACO technique has been implemented by Zhang et al. [10]

in their paper for prioritizing test cases.
Test case prioritization (TCP) aims to order a set of test

cases to attain an early optimization based on preferred

properties. TCP helps to find the suitable variation based on

https://ijettjournal.org/archive/ijett-v70i3p203
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Girish Bhide et al. / IJETT, 70(3), 22-28, 2022

23

a series of test cases. Once the TCP has been executed, it can
produce optimized outcomes as well as reveal faults earlier.

Test cases can be ranked based on their randomness,

optimality and branch coverage. Islam et al. [11] presented

the test cases prioritization based on latent semantic indexing.

The regression test suite can be subjected to a variety of

prioritizing criteria with the goal of meeting a specific

requirement. Prioritization approaches based on one or more

of the chosen criteria have been applied in a variety of ways.

Among the most powerful optimization algorithms are those

inspired by nature [7]. Hence, this paper will use Ant Colony
Optimization (ACO) and Firefly Algorithm (FA) to prioritize

the given test cases. The ACO technique is a process based

on the real-life of ants and serves as an adaptive meta-

heuristic optimization method. This method is inspired by the

behaviour of ants in nature; after finding their food source,

the ants will carry the food back to their nest. In returning to

the nest, the ants will be guided with the smell of

pheromones that they left while going out to find the food

source. This pheromone path helps the ants find the shortest

path between their nest and food source [1]. Besides, various

combinatorial optimization issues have also been
successfully solved using the ACO approach, such as test

data generation [12]. Furthermore, this technique presents a

positive feedback parallel mechanism with several benefits,

including high robustness, a superior distributed computer

system, and ease of interaction with other methods. In

several cases, the ACO technique has also effectively

handled complicated optimization challenges, thus becoming

a hub for research in the field of intelligent optimization. The

ACO approach has been used to solve a variety of

combinatorial optimization issues, including the travelling

salesman problem [13], target assignment [14] and test data

generation [15]. For test case generation [4], the tool helps in
reducing the generation of test cases. Reducing on generating

the test cases has also been discussed in [3]. Other techniques

for optimization include black hole optimization [16], whale

optimization algorithm [17-19], cuckoo search algorithm

[20-23] and honey bee optimization algorithm [24, 25],

which is based on artificial bee colony algorithm [26]. These

techniques can also be customized and hybrid in optimizing
the selection of test cases, such as in [27].

III. TEST CASES PRIORITIZATION TECHNIQUES

For the test cases prioritization techniques, two

algorithms will be reviewed. They are the ant colony

optimization algorithm and firefly algorithm.

A. Ant Colony Optimization Algorithm
Dorigo [11] presented Ant Colony Optimization as one

of the adaptive meta-heuristic optimization approaches. The

goal of the ACO technique is to shorten the path and reduce

the time in searching for a fault. Fig. 1 shows the pseudocode

of the ACO technique and the steps taken in the process.

Fig. 1 Ant colony optimization algorithm

Based on Fig. 1, for test cases prioritization, the state

transition rule is used for each node to update the pheromone
rule.

B. Firefly Algorithm
Fireflies will get attracted to the lights flashed by nearby

fireflies. The flashing lights can be defined by associating

them with an optimization objective function, which allows

for the creation of a new optimization technique [13]. Fig. 2

shows the pseudocode of the Firefly Algorithm.

Fig. 2 Firefly algorithm

Based on Fig. 2, the algorithm begins with the derivation

of an objective function at the beginning of the selection.

Subsequently, the distance matrix between the firefly agent

(FA) and its brightness is calculated to identify which one is

used to determine each firefly's attractiveness. A firefly's

subsequent movement will be determined by the brightness

value. When all the fireflies have been visited, the movement

comes to a halt, and all movements are tracked. Finally, the

optimal firefly sequence is determined by the shortest
distance.

Girish Bhide et al. / IJETT, 70(3), 22-28, 2022

24

IV. RESULTS AND DISCUSSION

The ant colony optimization algorithm and the firefly

algorithm are implemented using two case studies in order to

see which technique is better in the test cases prioritization.

The performance of both techniques will be evaluated, and
the performance evaluation is based on the execution time,

Average Percentage of Faults Detected (APFD), and fault

coverage. These parameters are often used for performance

evaluation of the techniques and can be found in the

literature [6].

A. DataSet
In this study, the two techniques will be applied to two

datasets, namely Case Study One and Case Study Two. Each
Case study consists of a graph with data such as destinations,

paths, and the cost for each path. The graph for each case

study is different; Case Study One has six destinations, and

Case Study Two has five destinations. The original ordering

for the graph is {N1, N2, N3, N4, N5, N6}. The graph data

were executed and turned into an adjacency matrix for the

algorithm of each technique to prioritize. Fig. 3 shows the

graph dataset for Case Study One.

Fig. 3 DataSet for case study one

Meanwhile, Case Study Two consists of five destinations

and each destination are connected with a path. Each path

has its own cost, which can also be defined as distance. The

original ordering for the graph is {N1, N2, N3, N4, N5}. The

graph for this case study was transformed into an array to be
executed by ACO, and FA. Fig. 4 shows the dataset of the

graph for Case Study Two.

Fig. 4 DataSet for case study two

The datasets in Fig. 3 and Fig. 4 will be used in both

techniques. However, there are significant differences
between the two techniques by which the algorithm in the

FA technique needs to have an objective function to solve the

problem compared to the ACO technique, which can directly

solve the problem. Therefore, for the FA technique, the

objective function is encoded as light intensity. Fig. 5 and

Fig. 6 show the data for intensity for the FA algorithm in

Case Studies One and Two, respectively.

Fig. 5 Intensity for firefly algorithm in case study

one

Through light intensity, the number of fireflies is based on

the matrix of the intensity graphs. In the first step of this

technique, the related library will be imported, and the time

is subsequently recorded at the beginning of the process.

Next, all of the fireflies will be released into the intensity
graphs, and the fireflies will move to the solution. To find the

solution from the intensity graphs, the fireflies will be

released randomly, and they will be attracted to the highest

light intensity. The location of the fireflies can be assumed as

the solution for the optimization problem. All of the paths

travelled by the fireflies will be recorded and sorted to

identify the shortest path. After all, fireflies have completed

the iterations, and the route has been taken, the time

measurement will be stopped and calculated. The last step

includes printing out the output, such as the shortest path,

the execution time, and the total costs of the routes taken.

Fig. 6 Intensity for firefly algorithm in case study two

B. Implementation of the Algorithms
For Case Study One, the path consists of ten artificial

ants and six destinations with different routes and weights.

After the artificial ants are released into this path, they will

Girish Bhide et al. / IJETT, 70(3), 22-28, 2022

25

go through the path with 100 iterations. The APFD value for

the first case study is 0.783. All routes have been fully

covered and the best routes for these test cases are {N1->

N5-> N3-> N4-> N2 ->N6 ->N1}. After all of the iterations

had been completed, the artificial ants obtained 57 costs from
the covered path. Additionally, the execution time for this

case study is 0.4103 seconds. The segmentation of the source

code for this execution process is shown in Fig. 7.

Case Study Two consists of ten artificial ants. However,

the path only consists of five destinations with different

routes and weights. After the artificial ants have been

released into this path, they will go through the path with 100

iterations. The APFD value for the second case study is

0.780. All routes have also been fully covered, and the best

routes for these test cases are {N1-> N2-> N5-> N3-> N4 -

>N1}. After all the iterations had been completed, the
artificial ants obtained 57 costs from the covered path. In

addition, the execution time for this case study is 0.3312

seconds. The segmentation of the source code for this

execution process is shown in Fig. 8.

Fig. 7 Implementation of case study one

Fig. 8 Implementation of case study two

C. Comparison of the Results

In order to find the best technique for the prioritization of

test cases, the important part is to know what needs to be

measured at the evaluation parameters. Based on the review

of related papers and research, the most frequently selected

evaluation parameters by other authors are the Average

Percentage of Faults Detected (APFD) and the execution

time. The APFD evaluation method quantifies the fault
detection rates, and the value ranges from 0 to 100, which

means that a greater value signifies a better fault detection

rate. As such, the technique that achieves a high APFD value

indicates good performance, while the execution time is

evaluated based on the minimum time taken for the

execution process, by which the less time taken indicates

good technique performance. Another evaluation parameter

is the fault coverage; if the technique can cover all faults in

the test cases, then it indicates good performance.

To discover faults in test cases and measure how rapidly a

prioritized test suite detects the fault, the average percentage
of fault detected (APFD) is used. The fault detection rate will

be represented by the APFD values; if the fault detection rate

is faster, then the APFD value is also high. The APFD results

for the Ant Colony Optimization technique are 0.783 for

Case Study One (ACO 1) and 0.780 for Case Study Two

(ACO 2). The Firefly Algorithm technique also achieved the

same APFD values as the ACO technique, with 0.783 for

Case Study One (FA 1) and 0.780 for Case Study Two (FA

2). Table 1 shows the difference in APFD values for each

technique and case study.

Girish Bhide et al. / IJETT, 70(3), 22-28, 2022

26

Table 1. Comparison of APFD results for ACO and FA

Technique APFD Value

ACO 1 0.783

ACO 2 0.780

FA 1 0.783

FA 2 0.780

Based on Table 1, there are no differences between the

ACO technique and the FA technique. The APFD values

achieved by the ACO and FA techniques are about the same.

In any system, execution time is the most important

element to be considered. Based on the results, the ACO

technique achieved 0.4103 seconds for the first case study

(ACO 1) and 0.3312 seconds for the second case study (ACO

2). Meanwhile, the FA technique showed the lowest

execution time for both case studies with 0.001000 seconds
for Case Study One (FA 1) and 0.002000 seconds for Case

Study Two (FA 2). Table 2 shows the differences in the

execution time of each technique.

Table 2. Results for execution time

Technique Time (Seconds)

ACO 1 0.4103

ACO 2 0.3312

FA 1 0.001000

FA 2 0.002000

Based on Table 2, there are significant differences in the

execution time for both techniques. The Firefly algorithm

technique showed the shortest execution time for both test

suites in prioritizing test cases as well as outperforming the

Ant Colony Optimization technique in terms of time, as
shown in Fig. 9.

Fig. 9 Execution time for case studies

Fault coverage is important in the prioritization of test

cases. From the execution of the techniques, the results

showed that the Ant Colony Optimization technique had

reached 90% of the fault coverage for both case studies

(ACO 1 and ACO 2). Meanwhile, as for the Firefly
Algorithm technique, the solution is already available

through the use of the objective function. This further

enables the Firefly Algorithm technique to achieve the full

fault coverage through the intensity graphs, and it does not

need much to show that both of the case studies (FA 1 and

FA 2) achieved a 100% fault coverage. The results for the

fault coverage are shown in Table 3.

Table 3. Results for fault coverage

Technique Fault Coverage

ACO 1 90%

ACO 2 90%

FA 1 100 %

FA 2 100 %

Based on the fault coverage results, there are differences

between both techniques and the differences are illustrated in

Fig. 10.

Fig. 10 Fault coverage for case studies

The results obtained from the case studies on the

prioritization techniques reveal the performance of each

technique and are further analyzed comparatively. Each

technique will be measured based on its performance to

obtain the best technique.

Based on the results of each technique, Firefly Algorithm

is the best technique in prioritizing test cases since it has the

lowest execution time and covers 100% of the fault coverage.

The ranking of all results presented by each technique is

summarized in Table 4.

0.000125

0.0025

0.05

1

ACO 1 ACO 2 FA 1 FA 2

Execution Time

85

90

95

100

105

ACO 1 ACO 2 FA 1 FA 2

Fault Coverage

Fault Coverage

Girish Bhide et al. / IJETT, 70(3), 22-28, 2022

27

Table 4. Comparison of results for ACO and FA

Technique ACO 1 ACO 2 FA 1 FA 2

Measurement

APFD 0.783 0.780 0.783 0.780

Execution

Time

0.4103 0.3312 0.00100 0.00200

Fault
Coverage

90% 90% 100% 100%

Based on Table 4, the Firefly Algorithm and Ant Colony

Optimization techniques have achieved the same percentage

for fault coverage. However, in terms of the execution time,

the FA technique took lesser time in the execution process.

Thus, the FA technique is ranked first in the two

measurements of execution time and fault coverage. This

also shows that the FA technique has good performance and

outperforms the ACO technique. However, even though the

FA technique has the lowest execution time, it still cannot

outperform the ACO technique in terms of problem-solving
because the ACO technique can solve the test case

prioritization directly rather than the FA technique, which

needs the objective function to solve the problem. This

means that the FA technique does not have the same ability

as the ACO technique, which can directly solve the problem

without using the objective function. Thus, Ant Colony

Optimization still has better prioritization performance.

V. CONCLUSION AND FUTURE WORKS
In this paper, two techniques with two case studies for

each technique have been applied in the evaluation of good

technique performance in prioritizing test cases involving

Ant Colony Optimization and Firefly Algorithm. The
evaluation method has been applied for each technique, and

the results of each technique have been discussed and further

compared in order to evaluate its performance. Based on the

results, Firefly Algorithm is the best technique in prioritizing

test cases since it has the lowest execution time and covers

100% of the fault coverage compared with Ant Colony

Optimization. However, in terms of problem-solving, Ant

Colony Optimization has the ability to prioritize the test

cases directly within the algorithm without using the

objective function.

For future works, several techniques for test case
prioritization can be used for the purpose of hybriding two or

more techniques. The hybrid technique in prioritizing test

cases promises future work for software testing in order to

improve the accuracy and redundancy of generating test

cases. These techniques for optimizing the generation of test

cases include black hole optimization, whale optimization

algorithm, cuckoo search algorithm and honey bee

optimization algorithm.

ACKNOWLEDGMENT

The authors would like to thank Universiti Tun Hussein

Onn Malaysia (UTHM) for supporting this research. The

authors received funding for this study from Industry Grant

under Grant Vote No M081.

REFERENCES
[1] D. Gao, X. Guo and L. Zhao, Test case prioritization for regression

testing based on ant colony optimization., 2015 6th IEEE International

Conference on Software Engineering and Service Science (ICSESS),

(2015) 275-279.

[2] W. Su, Z. Li, Z. Wang and D. Yang, A Meta-heuristic test case

prioritization method based on the hybrid model, 2020 International

Conference on Computer Engineering and Application (ICCEA),

(2020) 430-435.

[3] R. Ibrahim, M. Ahmed, R. Nayak and S. Jamel, Reducing redundancy

of test cases generation using code smell detection and refactoring.

Journal of King Saud University - Computer and Information Science,

32(3) (2020) 367-374.

[4] R. Ibrahim, A. A. B. Amin, S. Jamel and J. A. Wahab, EPiT: A

software testing tool for generating of test cases automatically,

International Journal of Engineering Trends and Technology, 68(7)

(2020) 8-12.

[5] O. Dahiya and K. Solanki, An Efficient APHT Technique for

Requirement-Based Test Case Prioritization, International Journal of

Engineering Trends and Technology, 69(4) (2021) 215-227 .

[6] O. Dahiya and K. Solanki. An Efficient Requirement-Based Test Case

Prioritization Technique using Optimized TFC-SVM Approach,

International Journal of Engineering Trends and Technology, 69(1)

(2021) 5-16.

[7] X. S. Yang. Firefly algorithms for multimodal optimization. In: O.

Watanabe and T. Zeugmann (eds) Stochastic Algorithms: Foundations

and Applications. SAGA 2009. Lecture Notes in Computer Science,

Springer, Berlin, Heidelberg. 5792 (2009).

[8] R. K. Sahoo, D. P. Mohapatra and M.R. Patra. A Firefly algorithm-

based approach for automated generation and optimization of test

cases., International Journal of Computer Sciences and Engineering,

4(8) (2016) 54-58.

[9] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi and R. Tumeng. “Test

case prioritization approaches in regression testing: A systematic

literature review. Information and Software Technology, 93 (2018)

74-93.

[10] W. Zhang, Y. Qi, X. Zhang, B. Wei, M. Zhang et al., On test case

prioritization using ant colony optimization algorithm, 2019 IEEE

21st International Conference on High-Performance Computing and

Communications; IEEE 17th International Conference on Smart City;

IEEE 5th International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), (2019). 2767-2773.

[11] M. M. Islam, A. Marchetto, A. Susi and G. Scanniello, A multi-

objective technique to prioritize test cases based on latent semantic

indexing, 2012 16th European Conference on Software Maintenance

and Reengineering, (2012) 21-30.

[12] K. Ayari, S. Bouktif and G. Antoniol, Automatic mutation test input

data generation via ant colony. GECCO’07: Proceedings of the 9th

Annual Conference on Genetic and Evolutionary Computation, (2007)

1074-1081.

[13] M. Dorigo and L.M. Gambardella, Ant colonies for the travelling

salesman problem. Biosystems. 43(2)(1997) 73-81.

[14] M. L. Mohd-Shafie, W. M. N. Wan-Kadir, M. Khatibsyarbini and M.

A. Isa, Model-based test case prioritization using selective and even-

spread count-based methods with scrutinized ordering criterion. PLOS

ONE, 15(2) (2020).

Girish Bhide et al. / IJETT, 70(3), 22-28, 2022

28

[15] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed and

M. D. Mohamed Suffian, Test case prioritization using firefly

algorithm for software testing, IEEE Access, 7 (2019) 132360-

132373.

[16] H. N. Nsaif Al-Sammarraie and D. N. A. Jawawi, Multiple black

holes inspired meta-heuristic searching optimization for combinatorial

testing, IEEE Access, 8 (2020) 33406-33418.

[17] S. Mirjalili and A. Lewis. The Whale Optimization Algorithm.

Advances in Engineering Software 95 (2016) 51-67.

[18] A. A. Hassan, S. Abdullah, K. Z. Zamli and R. Razali, Combinatorial

test suites generation strategy utilizing the whale optimization

algorithm, IEEE Access, 8 (2020) 192288-192303.

[19] S. M. Bozorgi, S. Yazdani, IWOA: An improved whale optimization

algorithm for optimization problems, Journal of Computational

Design and Engineering, 6(3) (2019) 243-259.

[20] X.S. Yang and S. Deb, Cuckoo search: recent advances and

applications, Neural Computing & Applications, 24 (2014) 169–174.

[21] A.H. Gandomi, X.S. Yang and A.H. Alavi, Cuckoo search algorithm:

a metaheuristic approach to solve structural optimization problems.,

Engineering with Computers, 29 (2013) 17–35.

[22] M. Mareli and B. Twala, An Adaptive Cuckoo Search Algorithm for

Optimisation, Applied Computing and Informatics, 14(2) (2018) 107-

115.

[23] P. Lakshminarayana and T.V. Suresh Kumar. Automatic Generation

and Optimization of Test Case using Hybrid Cuckoo Search and Bee

Colony Algorithm, Journal of Intelligent Systems, 30(1) (2021) 59-72.

[24] D. Rai and K. Tyagi, Regression Test Case Optimization using Honey

Bee Mating Optimization Algorithm with Fuzzy Rule-Based, World

Applied Science Journal, 31(4) (2014) 654-662.

[25] S. Nayak, C. Kumar, S. Tripathi, N. Mohanty and V Baral, Regression

test optimization and prioritization using Honey Bee optimization

algorithm with fuzzy rule base, Soft Computing., 25 (2012). 9925–

9942.

[26] D. Karaboga., Artificial Bee Colony Algorithm. Scholarpedia, 5(3)

(2010) 6915.

[27] Palak, P. Gulia and N.S. Gill., Optimized Test Case Selection using

Scout-less Hybrid Artificial Bee Colony Approach and Crossover

Operator, International Journal of Engineering Trends and

Technology, 69(3) (2021) 39-45.

	The results obtained from the case studies on the prioritization techniques reveal the performance of each technique and are further analyzed comparatively. Each technique will be measured based on its performance to obtain the best technique.
	Based on the results of each technique, Firefly Algorithm is the best technique in prioritizing test cases since it has the lowest execution time and covers 100% of the fault coverage. The ranking of all results presented by each technique is summariz...

