
International Journal of Engineering Trends and Technology Volume 70 Issue 3, 54-65, March, 2022
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V70I3P207 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Conservative Dynamic Load Balancer for

Performance Enhancement of NUMA

Multiprocessor Systems
D. A. Mehta1, Priyesh Kanungo2

1Professor, Shri G S Institute of Technology and Science, Indore, MP, India
2Head, Computer Centre, Devi Ahilya Vishwavidyalaya, Indore, M.P, India.

1mehta_da@hotmail.com

Abstract - In pursuit of enhancing the performance of

NUMA multiprocessor systems in terms of throughput,

CPU utilization and Turn Around Time of processes, Linux

load balancer performs load balancing periodically, which

in turn causes storms of load balancing attempts and

process migrations involving large overheads of time.

Many of these attempts are futile and impose performance

penalties. We, therefore, propose a Conservative Dynamic

Load Balancer which avoids the aggressive load balancing

as done by existing load balancers and adheres to the
restrictive policies of balancing the load under certain

conditions. Reducing the overheads of load balancing

attempts, process migration, and memory & cache access

improves the Turn Around Time of processes significantly

as compared to the Linux load balancer. The results of

experimentation exhibit the performance gain in the range

of 7-12 % for different NUMA systems.

Keywords - Dynamic Load Balancing, DLB, Load

Balancer, NUMA, Sched domain.

I. INTRODUCTION

Multiprocessor and Multicore systems are typically

designed based on Non-Uniform Memory Access

(NUMA) architecture. A NUMA Multiprocessor/

Multicore system (NUMA system) is organized in the

form of Nodes. A node consisting of a set of processors

(the terms processor and core are used interchangeably in

this paper), part of the main memory and I/O, placed on a

common bus, is connected to other nodes via some high

speed, high bandwidth interconnection network. Memory
in a particular node is at a distance (which refers to

latency, bandwidth or hops) from the processors of other

nodes, resulting in the non-uniform access time of local

and remote memories [1] [20]. A typical NUMA system is

shown in Figure 1. It is said to have 2 Memory Access

Levels (MALs) due to two different memory latencies:

(i) When a processor accesses memory in its own node.

(ii) When the processor accesses any memory outside its

node [5].

Fig. 1 NUMA system with 4 nodes, 8 Processors and

two memory access levels
(P1, P2 … are Processor1, Processor2 …)

A. Dynamic Load Balancing

Linux, a widely used operating system for NUMA

systems, implements separate run queues for each

processor and, to avoid any load imbalance among them,

incorporates a Dynamic Load Balancing (DLB) technique

in the scheduler. Its load balancer makes use of a data
structure ‘sched domain’, which groups processors

together in a hierarchy that mimics the physical hardware.

A scheduling domain or sched domain is a set of

processors which share properties and scheduling policies.

Figure 2 depicts the sched domain hierarchy for the system

shown in Figure 1.

Fig. 2 Sched domain hierarchy for NUMA system with

two memory access levels

The lowest level sched domains are called CPU/Core

domains. Each CPU domain consists of all processors of a

particular node and points to a higher domain (parent

domain) called node domain which consists of this

particular node and all those nodes which are at some

https://ijettjournal.org/archive/ijett-v70i3p207
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

55

particular distance from this node [5] [9]. Thus, for a

NUMA system with two memory access levels, there will

be two levels in the sched domain hierarchy, and the node

domain will comprise all the nodes of the system, as

shown in Figure 2. The sched domain hierarchy defines the
scope of load balancing for each processor. In a scheduling

domain, the sets of processors among which the load

balancing is performed are called scheduling groups. For a

processor performing load balancing at the lowest level

domain, all the processors in its node will be the

scheduling groups; and at higher levels, all the nodes at

that level will be the scheduling groups. Load balancer,

which runs on each processor separately, is invoked in

three different situations and performs the load balancing

as explained below [15] [17] [23]:

 Periodically at specific time intervals: During the
periodic load balancing cycle, the load balancer

traverses the entire sched domain hierarchy, starting

at the current processor’s sched domain, and

initiates a balancing operation if it is due for

balancing. At each level, it first finds the busiest

processor of the busiest scheduling group and then

migrates the tasks (processes or threads) from that

processor to the current processor if the load of the

busiest processor is more than the load of the

current processor, as per the load threshold (25%; or

12% in some cases).

 When a task is newly created or woke-up through

system calls fork(), exec(), wakeup(): In this

condition, the task is moved to the least loaded

processor of the least loaded scheduling group

(node) in its current domain.

 When a processor becomes idle: In this condition,

idle load balancing is performed by the idle

processor; it selects the most loaded scheduling

group in its current domain and migrates tasks from

the most loaded processor to this processor.

 It is evident from the foregoing description that large

overheads of time are involved in performing the dynamic

load balancing. Though these overheads are inevitable and

not avoidable always, an efficient load balancer should

minimize them by finding the conditions under which

unnecessary attempts of load balancing and process

migrations may be avoided. The objective of our work,

therefore, is to design such an efficient load balancer to

improve the performance of NUMA systems.

II. AN ANALYSIS OF LOAD BALANCING

ATTEMPTS AND PROCESS MIGRATIONS DONE

BY EXISTING LINUX LOAD BALANCER

In every load balancing cycle, the Linux load balancer

executing on each processor performs a Load Balancing

Attempt wherein it tries to find a processor in the current

scheduling domain which is more loaded than the current

processor. If any such processor is found, processes are

migrated from that processor to the current processor to

balance the load, and this attempt is called a successful

load balancing attempt; if no processor overloaded as

compared to the current processor is found, the attempt is
called an unsuccessful load balancing attempt [6] [16]. The

load balancer carries out this process of load balancing for

all the scheduling domains in the sched domain hierarchy.

Apart from the periodic load balancing cycle, idle load

balancing is also performed in the same manner when any

processor becomes idle [10] [12].

While performing the load balancing in this manner,

many loads balancing attempts and consequent process

migrations succeed. However, a significantly large no. of

attempts and/or process migrations fail too. Moreover,

many successful attempts prove to be unfruitful also. All
such unsuccessful or unfruitful load balancing operations

result in situations that are undesirable from the

performance point of view.

 Reasons for such undesirable situations are described

below, along with the experimental results (which are the

outcome of the experimentation performed over a variety

of NUMA multiprocessor systems with various types of

workloads) to substantiate our reasoning/inferences.

A. Unsuccessful Load Balancing Attempt
Load Balancing (LB) attempt is made by the load

balancer, but it remains unsuccessful since the busiest

processor of the busiest scheduling group under

consideration is not found overloaded as compared to the

current processor. The possible reason could be that, after

the last load balancing cycle (during which the system’s

load was balanced)-

 No process might have exited or entered the system,

and hence a load of all processors is almost

balanced.

 Even if a new process has entered the system, it is

assigned the least loaded processor, and load

balance is maintained.

 In case a load of any processor would have become

zero, it must have initiated an idle load balancing

operation and pulled the appropriate no. of

processes from the overloaded processors to balance

the load.

 Due to aforesaid reasons, many attempts of load

balancing done during the lifespan of the processes remain

unsuccessful, as evident from Table 1, which shows few
representative cases based on the experimental results. It is

noticeable from this table that out of the total load

balancing attempts done by the load balancer, a fairly large

no. of attempts remain unsuccessful and thus result in huge

unnecessary time overheads.

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

56

Table 1. Unsuccessful load balancing attempts in linux

for the NUMA systems and the workloads mentioned

B. Successful Load Balancing Attempt but Unsuccessful

Process Migration
Even if certain load balancing attempts are successful

and consequently the process migrations take place, the

migrated processes are not executed on the destination

processors- they are further migrated from those

processors to some other processors, may be large no. of

times- proving the migrations to be unsuccessful

effectively.

 The possible reasons of unsuccessful process

migrations could be:

a) The processor on which some processes have been

migrated is already loaded heavily, and hence few

recently migrated processes do not get scheduled for a

long time, maybe till the next load balancing cycle,

and get migrated from this processor to some other

less loaded processor in that cycle.

b) An IO bound processes environment where the run

queue of a processor may seem to be overloaded, and

therefore processes are pulled from such processors;

however, after a short time, IO-bound processes to

proceed for IO operations, reduce the load of that
processor and cause it to pull back the previously

migrated processes.

c) Some processes have very large burst time and/or very

low priority.

 It is therefore apparent that even if the load balancing

attempts are successful, the consequent process migrations

prove to be unnecessary and add to the undesirable

overheads.

 Following Traces of a few representative processes out
of 400 processes that were executed on some NUMA

systems depict the unnecessary migrations.

Process-255: P10.wait(1384) - P10.run(79)- IO(21)-

P10.wait(1680) - P10.run(77)- IO(23)-P10.wait(219)-

P11.wait(361)- P10.wait(34)- P9.wait(313)-

P8.wait(113)- P5.wait(25) - P5.run(100) -P5.wait(0)-

P5.run(29).

Process-109: P1.wait(32)- P6.wait(29)- P12.wait(442) -

P12.run(100) -P12.wait(2186) - P12.run(100) -

P12.wait(2264) - P12.run(78)- IO(22)-P12.wait(756)-

P12.run(37).

Process-374: P0.wait(165)- P12.wait(1473)- P6.wait(20)-

P0.wait(442)- P3.wait(362)- P2.wait(396)- P0.wait(210) -

P0.run(100) -P0.wait(407)- P3.wait(663) - P3.run(100) -

P3.wait(432) - P3.run(100) -P3.wait(324)- P3.run(25).

Process-283:P10.wait(1126)- P10.run(71)- IO(29)-
P10.wait(722)- P11.wait(967)- P5.wait(195)-

P1.wait(33)- P10.wait(33)- P11.wait(266)- P10.wait(41)-

P11.wait(669)- P4.wait(831) - P4.run(100) -P4.wait(196)-

P3.wait(129) - P3.run(100) -P3.wait(104)- P3.run(60).

Process-167: P24.wait(75)- P26.wait(205)-

P43.wait(137)- P37.wait(237) - P37.run(100) -

P37.wait(247) - P37.run(100) -P37.wait(54)-

P61.wait(88)- P62.wait(148) - P62.run(100) -

P62.wait(21)- P62.run(61).

Process-106: P22.wait(331)- P15.wait(202)-

P22.wait(138)- P50.wait(115) - P50.run(50)- IO(50)-

P50.wait(100) - P50.run(77)- IO(23)-P50.wait(73)-

P53.wait(403) - P53.run(62)- IO(38)-P53.wait(16)-

P53.run(47).

The bold portions in the trace of each process show

that this particular process was unnecessarily migrated

across a few processors. For instance, Process-106 was

originated on processor P22; it got migrated to processor

P15; waited in its run queue for a certain amount of time

and then got migrated back to processor P22; it did not get

executed on P22 and, after some time, got migrated to

processor P50. Trace of Process-374 shows that it was

unnecessarily migrated 05 times from one processor to

another and eventually returned back to the parent

processor. Process-283 hops 09 times from one processor
to another processor. Likewise, many other processes were

also unnecessarily migrated.

NUMA

System

Architect

ure:
No. of
Nodes-
Processors
per

Node-No.
of MALs

Workload:
Type of
processes; No.
of processes
arriving
randomly; Av.
Execu. time of
each process

LB Attempts

Total
No. of
LB
Att.
done

No. of

LB
Att.
not

succee

ded

% of
LB
Att.
not

succee

ded

16-2-6 CPU bound; 50;
500 ms

244 211 86.48

16-2-6 CPU bound;
100; 500 ms

270 182 67.41

16-2-6 CPU bound;
150; 500 ms

345 263 76.23

16-2-6 CPU bound;
200; 500 ms

497 299 60.16

16-2-6 CPU bound;

400; 500 ms

804 422 52.49

16-2-6 CPU bound;
200; 200 ms

238 109 45.80

8-4-6 CPU bound;
100; 300 ms

213 152 71.36

8-2-3 CPUbound;100;

300 ms

148 88 59.46

8-2-3 CPU bound;
400; 300 ms

519 277 53.37

8-2-3 IO bound; 200;
300 ms

390 140 35.90

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

57

It is obvious that in this kind of scenario, the load

balancer incurs the overheads of load balancing attempts

as well as that of process migrations, which prove to be

unnecessary.

C. Successful Load Balancing Attempt & Successful

Process Migration, but not Advantageous

In many cases, a process is migrated and also gets

executed on the destination processor, but its memory

pages may be lying on the node from which it is migrated

or on a far node. This situation arises because the load

balancer while migrating the processes, does not pay any
attention to the origin of the process.

 From the simulation results, it was noted that a

significant no. of processes were migrated to and executed

on the nodes far away from their parent nodes, as shown in

Table 2.

Table 2. No. of processes executed on nodes belonging

to particular level of sched domain hierarchy in

NUMA multiprocessor system (having Linux Load

Balancer)

 It can be observed that out of 200 processes executed

on a NUMA system having 16 nodes, 32 processors and

06 Memory Access Levels, 31.5 % of processes were

executed for a long period of their life span, on far nodes-

the nodes belonging to IV, V and VI levels of sched

domain hierarchy; 22 % processes were executed, on very

far nodes- the nodes belonging to V and VI levels of the
hierarchy. For such processes, indirect overheads of

process migration, i.e., the increased memory latencies

and cache-miss overheads, outweigh the advantages of

load balancing.

 Experimentation was done, and the memory access

time was analyzed for both the cases- when load balancing

was done for all the levels and when it was restricted to a

few levels, and it was found that even if the slight
imbalance is caused in the latter case, the overall average

TAT of processes is better due to reduction in memory

access time and cache-miss overheads.

 The foregoing analysis and discussion gives an insight

into the functioning of the Linux load balancer and reveals

an important point: ‘’it is possible to improve the load

balancing performance by not performing load balancing

in certain conditions’’. This key point became the basis for

designing an efficient load balancing algorithm, as
described in section IV.

III. RELATED WORK

The performance improvement of load balancing

algorithms largely revolves around minimizing the

unnecessary load balancing attempts and process

migrations. Focusing on how to perform the load balancing
judiciously, many researchers have suggested approaches

to minimize the load balancing overheads and to improve

the performance thereby.

 Lim et al., for instance, suggested an approach to
minimize the cost of task migration by considering the

importance level of running tasks on multicore embedded

systems. They proposed an operation zone-based load-

balancer that avoids too frequent unnecessary load

balancing and consequently minimizes heavy overheads

related to double lock migration, cache invalidation, and

high synchronization cost. Their approach defers load

balancing till the current utilization of each CPU is not

seriously imbalanced. In their approach, three zones: cold,

hot and warm, based on CPU utilization (low, high and

medium), were created, and different policies were applied
for different zones [14].

 In their paper, Tan et al. present an adaptive load

balancing strategy. The adaptive load balancer triggers

tasks migration based on the tasks to processing core ratio,

as well as when a processing core becomes idle. The

authors utilize LinSched, a Linux operating system

scheduler simulator, to analyze the no. of task migrations.

Results from the simulation show that unnecessary task

migrations were eliminated, and at the same time, the load

balance was maintained effectively, as compared to the

default strategy used by Linux. The overheads introduced
by the adaptive load balancer had a negligible effect on the

scalability, and it was concluded that it does not introduce

overheads [24].

 There are several challenges Linux must address to

improve the performance of NUMA systems. In their

work, Focht et al. discuss these challenges, which include:

localization of memory references, I/O locality,

scheduling of processes on the parent node etc. A NUMA

system can achieve better performance by keeping

memory access to the closer physical memory. For
example, processors benefit by accessing memory on the

same node or nearer nodes. In [7], the authors describe

how Linux addresses the above mentioned NUMA

challenges and what are the gap areas. Lameter et

al. in [2] have discussed the ways of minimizing the

process migrations.

 Chiang et al. in [3] [28] [30] have suggested the

algorithms for improving the performance when inter-node

process migration takes place. Contributions of Pilla et al.

[21], Pusukuri et al. [22] and Khawatreh et al. [25] are

also noteworthy.

 Many other researchers have also suggested approaches

for improving the Linux load balancer’s efficiency and

thereby the performance of NUMA systems. The

commonality in their work is the avoidance of unnecessary

Level of sched

domain

hierarchy

Processes executed on Nodes of this

level

No. of such

processes

% of such

processes

I 87 43.5 %

II 27 13.5 %

III 23 11.5 %

IV 21 10.5 %

V 15 07.5 %

VI 27 13.5 %

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

58

load balancing and process migration attempts so as to

optimize the system performance. However, despite a lot

of work done in this direction, the scope of improvement

always remains looking to the complexities of the load

balancing mechanism and continuous evolution of new
NUMA architectures. Novel ideas need to be generated

and implemented to minimize the overheads of load

balancing operations. Researchers need to think in an

unconventional way also, for example, to make a trade-off

between a perfectly balanced system (which may exhibit

large overheads) and the slightly imbalanced system

(which may exhibit better performance).

 The work presented in this paper will be a significant

contribution and supplement the efforts of the researchers

towards the performance enhancement of NUMA systems

by designing state-of-the-art load balancers.

IV. PROPOSED CONSERVATIVE LOAD

BALANCING ALGORITHM

In order to improve the load balancer’s performance,

unnecessary overheads of load balancing attempts, process

migration, and memory/cache access need to be avoided.

Based on this key concept, a load balancer has been

designed, which refrains from load balancing when these

overheads are likely to degrade the performance. It carries
out the load balancing operations in a restrictive or

conservative manner and is thus named Conservative Load

Balancer.

 The proposed load balancer incorporates the following
three conservative policies and performs the load

balancing accordingly:

A. Restrict the load balancing within the ‘Load

Balancing Zone.’
As per the analysis of the present Linux load balancer,

it was noted that all load balancing attempts and process

migrations are not useful for performance improvement; in

fact, some of them may also degrade the performance.

Therefore, load balancing attempts and process migrations

should be made in those conditions only wherein the

performance is likely to improve. However, such

predictions are difficult to be made, and hence attempts

may be made to reduce the overheads of load balancing by

avoiding it in those cases where the overheads will mostly

be very high. A thorough analysis of the Linux load
balancer revealed (as presented in the preceding sections)

that performing the load balancing at higher levels of

sched domain hierarchies may result in large overheads

due to higher memory latencies and large no. of cache-

misses.

 The proposed conservative load balancer, therefore,

restricts the scope of load balancing within a specific zone,

named Load Balancing (LB) Zone, which, for a particular

processor, comprises its parent node and the nodes in

nearby memory access levels or sched domains. Load

balancing is not attempted in the No-Load Balancing Zone,

which comprises the nodes in the remaining sched
domains.

 More specifically, for no. of sched domain levels

four or more, the load balancing zone comprises of all the

nodes in the sched domains up to level S, where,

 S = ((total no. of sched domains)/2 + 1).

 For no. of sched domain levels two or three, the load

balancing zone comprises all the nodes of all the sched

domains. For example, for any particular Node (say Node

N0), the load balancing zone will comprise of the Nodes at

II, III and IV levels of sched domain hierarchy for a

NUMA system with six levels of sched domains. Load

balancer executing on a processor in N0 will balance its

load against these Nodes only. Thus load balancing

activities for the Nodes at V and VI levels are avoided,

which in turn result in saving time and improving the

performance.

 Figure 3 depicts the Load Balancing Zone and No

Load Balancing Zone for Node N0 for a NUMA system

with six memory access levels and 16 Nodes.

No LB Zone for N0

in Conservative LB

LB Zone for N0 LB Zone for N0
in Linux LB in Conservative LB

Fig. 3 LB Zone and No LB Zone in conservative load

balancing and linux load balancing, for a node N0

The implementation of a Zone-based load balancing policy

has been done as-

a) Hard policy

In this policy, strictly no balancing is done out of the

load balancing zone.

b) Soft or Hybrid policy

Not performing load balancing at higher levels of

sched domains will normally not result in any load

imbalance or performance degradation in a highly dynamic

process environment with a large no. of processes.

However, to take care of any intolerable load imbalance

which may occur in some cases, the Zone based load

balancing policy is also implemented as a soft policy,
which is a trade-off between the proposed hard policy and

 VI N5 N10 N15

 V N4 N9 N14

 IV N3 N8 N13

 III N2 N7 N12

 II N1 N6 N11

 I N0

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

59

the current Linux load balancing policy. As per this policy,

loads of the nodes/processors of the No load balancing

zone are also examined for detecting the load imbalance, if

any. However, the processes from these nodes/processors

are migrated only if their load is more than 150 % of the
current processor’s load. To implement this policy, the

default load threshold is increased to 50 % for the

processors which are out of the load balancing zone.

B. No Migration of Processes from No Load Balancing

Zone

The proposed load balancer operates within the Load

Balancing Zone of a processor on which it is currently

executing. Within the zone, when it finds a load imbalance

between the current processor and some other processor, it

has to migrate the processes from that processor. However,

the migration of any process which is originated on any
node pertaining to the No load balancing zone for that

process is avoided. In fact, the selection policy checks the

distance between the current node and parent node of that

process as well as the distance between the parent node

and the node on which the process is proposed to be

migrated (on which the load balancer is executing), as

follows:

 distance1 = distance between the current node and parent

 node of the process.

 distance2 = distance between the current node and the
 proposed new node for the process.

 If distance2 > distance1, the process is excluded from

the list of the processes to be migrated. This modified

process Selection Policy, therefore, results in fewer

overheads related to memory and cache access.

C. No Migration of ‘Aged’ Processes

The load balancer employs the concept of Ageing,

wherein it labels those processes which have been

migrated a very large no. of times as Aged Processes and

subsequently does not allow any further migration of such
processes. A track of the migration history of each process

is kept, and a counter associated with each process is

incremented every time the process is migrated. After this

counter crosses a particular value, the process is labelled as

an Aged process.

 Once an ageing process is frozen on its current node,

its memory pages can be migrated to that node,

minimizing the memory access overheads, apart from

making the migration and cache-miss overheads zero for

that process.

 Following is the formal description of the

Conservative Load Balancing Algorithm. The code given

is for periodic load balancing. Idle and Initial load

balancing is done in the usual manner.

Algorithm 1: Conservative Load Balancing

for all Nodes of the system N=1 to n and all processors

P=1 to p of each Node, carry out the following steps:

1. {

2. max_sched_domains = no. of scheduling domains

 (Memory Access Levels) in this NUMA system;

3. if the hard implementation is invoked, then

 //as per the setting in the kernel, either hard

 or soft implementation will be invoked.

4. {

5. hard_conser = TRUE;
6. if (max_sched_domains >= 4) then

7. sched_domains_in_LB_zone =

 (max_sched_domains/2) + 1 ;

8. }

9. else

10. {

11. soft_conser = TRUE;

12. sched_domains_in_LB_zone =

 max_sched_domains;

13. }

14. for MAL=1 to sched_domains_in_LB_zone do
15. {

16. if (MAL==1) then

17. {

18. processor_performing_LB = PP

 // PP is the idle processor or the first processor

19. find the load of all processors of curr_node,

 except the processor_performing_LB;

20. find the busiest processor;

 // processor having highest load

21. }

22. else // if MAL is > 1

23. {
24. processor_performing_LB=PP ;

25. find the busiest scheduling group out of all the

 scheduling groups (all nodes) at memory

 access level MAL;

26. find the busiest processor of the busiest node

 (scheduling group with highest load);

27. } //end of if statement at step no. 16

28. LB_processor_load = load of

 processor_performing_LB;

29. target_processor_load = load of the busiest

 processor;

30. if (LB_processor_load <

 target_processor_load) then

 // compare the load of the

 processor_performing_LB with that

 of the busiest processor

31. {

32. if (soft_conser == TRUE) .and. (MAL >

 (max_sched_domains/2) + 1) then

 load threshold = load threshold * 2;
33. obtain lock on target_processor;

 // busiest processor is the target processor

34. obtain lock on processor_performing_LB;

35. select appropriate no. of processes for

 migration;

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

60

36. if ((hard_conser == TRUE) .and. (any

 process selected for migration belongs to

 scheduling domain outside the load

 balancing zone of

 processor_performing_LB)) then
37. exclude all such processes from the list of

 processes to be migrated and instead

 select other processes, if available;

38. endif;

39. if any process selected for migration is aged

 process then

40. exclude all such processes from the list

 of processes to be migrated and instead

 select other processes, if available;

41. endif;

42. migrate the finally selected processes from

 busiest processor to
 processor_performing_LB;

 // pull the processes/threads from the

 busiest processor till the load of the

 two processors remain imbalanced, ie.

 dequeue the selected process from the

 target processor and enqueue on the

 processor_performing_LB;

43. release lock on processor_performing_LB;

44. release lock on target_processor;

45. } //end of if statement at step no. 30

46. MAL=MAL+1;
47. } // end of for loop at step no. 14

48. } // end of Algorithm

V. SIMULATION AND RESULTS

To evaluate the performance of the Conservative

Load Balancing Algorithm, experimentation was done

using a simulator of NUMA Multiprocessor systems under
Linux [19], modified by incorporating the proposed

algorithm into it.

The experimentation was done for different types of

NUMA Systems-

(i) S1: No. of Nodes=16, No. of Processors per

 Node=2, No. of Memory Access Levels=6

(ii) S2: No. of Nodes=16, No. of Processors per

 Node=4, No. of Memory Access Levels=6

(iii) S3: No. of Nodes=32, No. of Processors per

 Node=2, No. of Memory Access Levels=6.

For each system, a variety of workloads (W1, W2, W3)

were generated.

A. Results

a) Turn Around Time and Performance Gain

The results of simulation in terms of Av. Turn Around

Time (ms) and Performance Gain (%)are given in Tables

3 to 5 and are also depicted in the corresponding graphs

given after the respective Tables (Workload

Characteristics are specified as W1, W2, W3 in each Table

and Graph).

Table 3. Turn around time of processes and performance gain for conservative load balancing algorithm vs linux

load balancing algorithm for NUMA system S1

No. of

processes

W1- Process type: CPU bound;

Execu. time: 200 ms; Arrival:

same time

W2- Process type: CPU- bound;

Execu. time: 200 ms; Arrival:

random

W3- Process type: CPU-

bound; Execu. time: 300 ms;

Arrival: random

Linux

Algo.

Conser-

vative

Algo.

Perf.

Gain

(%)

Linux

Algo.

Conservat

ive Algo.

Perf.

Gain

(%)

Linux

Algo.

Conser-

vative

Algo.

Perf.

Gain

(%)

50 376 361
3.98

459 448 2.40 690 645 6.52

100 633 588 7.11 620 577 6.94 1010 909 10.00

200 1263 1174
7.05

993 896 9.77 1750 1581 9.66

300 1799 1620 9.95 1449 1303 10.08 2470 2292 7.21

400 2402 2237
6.87

1815 1613 11.13 3047 2805 7.94

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

61

Fig. 4 Turn around time of processes for conservative load balancing algorithm vs linux load balancing algorithm

for NUMA System S1

Fig. 5 Performance Gain in Conservative Load Balancing over Linux Load Balancing for NUMA System S1

Table 4. Turn around time of processes and performance gain for conservative load balancing algorithm vs linux

load balancing algorithm for NUMA system S2

No. of

processes

W1- Process type: CPU- bound;

Execu. time:300 ms; Arrival:
random

W2- Process type: CPU bound;

Execu. time: 300 ms; Arrival:
almost same time

W3- Process type: Mix of CPU

& IO-bound; Execu. time:
varying (50-400 ms); Arrival:

almost same time

Linux

Algo.

Conser-

vative

Algo.

Perf.

Gain

(%)

Linux

Algo.

Conserva

tive Algo.

Perf.

Gain

(%)

Linux

Algo.

Conser-

vative

Algo.

Perf.

Gain

(%)

50 875 860 1.71 560 534 4.64 419 404 3.58

100 977 928 5.02 823 762 7.41 552 510 7.61

150 1202 1098 8.65 1080 979 9.35 691 623 9.84

200 1545 1366 11.59 1277 1155 9.55 820 755 7.93

250 1639 1470 10.31 1627 1453 10.69 1062 936 11.86

350 2026 1812 10.56 2206 2025 8.20 1363 1243 8.80

376

633

1263

1799

2402

361
588

1174

1620

2237

459 620
993

1449

1815

448 577
896

1303

1613

690

1010

1750

2470

3047

645

909

1581

2292

2805

0

500

1000

1500

2000

2500

3000

3500

0 50 100 200 300 400 500

A
v
.

T
u

rn
a
ro

u
n

d
 T

im
e

(m
s)

No. of Processes
Linux Algo. (W1) Conservative Algo. (W1)
Linux Algo. (W2) Conservative Algo. (W2)
Linux Algo. (W3) Conservative Algo. (W3)

3.98

7.11

7.05

9.95

6.87

2.4

6.94

9.77 10.08 11.13

6.52

10

9.66

7.21

7.94

0

2

4

6

8

10

12

0 50 100 200 300 400 500

P
er

fo
rm

a
n

ce
 G

a
in

 (
%

)

No. of Processes

Perf. Gain (W1) Perf. Gain (W2) Perf. Gain (W3)

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

62

Fig. 6 Turn around time of processes for conservative load balancing algorithm vs linux load balancing

algorithm for NUMA system S2

Fig. 7 Performance gain in conservative load balancing over linux load balancing for NUMA system S2

Table 5. Turn around time of processes and performance gain for conservative load balancing algorithm vs linux

load balancing algorithm for NUMA system S3

No. of

processes

W1- Process type: CPU

bound; Execu. time:300 ms;

Arrival: random

W2- Process type: CPU bound;

Execu. time: varying (100-500

ms); Arrival: almost same time

W3- Process type: Mix of CPU

& IO-bound; Execu. time: 400

ms; Arrival: random

Linux

Algo.

Conservat

ive Algo.

Perf.

Gain

(%)

Linux

Algo.

Conser-

vative

Algo.

Perf.

Gain

(%)

Linux

Algo.

Conser-

vative

Algo.

Perf.

Gain

(%)

100 1061 966 8.95 679 610 10.16 1234 1123 09.00

200 1564 1414 9.59 942 848 9.98 1918 1737 09.44

300 2038 1883 7.61 1592 1422 10.68 2472 2225 09.99

400 2676 2453 8.33 2164 1987 8.18 3376 3028 10.31

875
977

1202

1545

1639

2026

860
928

1098
1366 1470

1812

560 823

1080

1277

1627

2206

534 762
979

1155
1453

2025

419

552
691

820

1062

1363

404 510
623

755

936

1243

0

500

1000

1500

2000

2500

0 50 100 150 200 250 350 400

A
v
.

T
u

r
n

a
r
o
u

n
d

 T
im

e
 (

m
s)

No. of Processes

Linux Algo. (W1) Conservaive Algo. (W1)
Linux Algo. (W2) Conservative Algo. (W2)
Linux Algo. (W3) Conservative Algo. (W3)

1.71

5.02

8.65

11.59

10.31

10.56

4.64
7.41

9.35
9.55

10.69

8.2

3.58

7.61

9.84

7.93

11.86

8.8

0

2

4

6

8

10

12

14

0 50 100 150 200 250 350 400

P
er

fo
rm

a
n

ce
cG

a
in

 (
%

)

No. of Processes

Perf. Gain (W1) Perf. Gain (W2) Perf. Gain (W3)

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

63

Fig. 8 Turn around time of processes for conservative load balancing algorithm vs linux load balancing

algorithm for NUMA system S3

 Fig. 9 Performance gain in conservative load balancing over linux load balancing for NUMA system S3

B. Traces of Few Processes Depicting their Migration

Zones

Traces of a few sample processes, out of 300

processes executed, were obtained from the simulator and

are illustrated below. From these traces, it can be seen that

processes are normally not migrated out of their Load

Balancing Zone (only a few processes are migrated to No
Load Balancing Zone as shown in bold):

Process-67: P5.wait(124) - P5.run(95)- IO(5)-P5.wait(34)-

P2.wait(266) - P2.run(79)- IO(21)-P2.wait(33)-
P9.wait(128)- P28.wait(528)- P28.run(12).

Process-184: P13.wait(24)- P24.wait(73)- P26.wait(125)-

P7.wait(149)- P2.wait(152) - P2.run(100) -P2.wait(95) -

P2.run(82)- IO(18)-P2.wait(0)- P2.run(23).

Process-166: P8.wait(304) - P8.run(100) -P8.wait(62)-

P5.wait(155)- P4.wait(106) - P4.run(78)- IO(22)-
P4.wait(197)- P4.run(17).

Process-60: P21.wait(184) - P21.run(77)- IO(23)-

P21.wait(215)- P18.wait(687) - P18.run(86)- IO(14)-

P18.wait(63)- P14.wait(152)- P14.run(18).

Process-155:P15.wait(19)- P28.wait(273)-P28.run(100)-

P28.wait(519)- P29.wait(76)-P29.run(100)-P29.wait(0)-
P29.run(30).

Process-185:P19.wait(311)- P19.run(100)-P19.wait(111)-
P4.wait(142)-P4.run(100)-P4.wait(137)- P4.run(12).

Process-36: P29.wait(82)- P12.wait(61)- P23.wait(43)-

P6.wait(-18) - P6.run(100) -P6.wait(387) - P6.run(100) -
P6.wait(881)- P6.run(20).

Process-164: P1.wait(157)- P12.wait(206) - P12.run(87)-

IO(13)-P12.wait(8)- P14.wait(259) - P14.run(80)- IO(20)-
P14.wait(21)- P9.wait(117)- P2.wait(38)- P2.run(23).

1061

1564

2038

2676

966

1414

1883

2453

679

942

1592

2164

610
848

1422

1987
1234

1918

2472

3376

1123

1737

2225

3028

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500

A
v
.

T
u

rn
a
ro

u
n

d
 T

im
e

(m
s)

No. of ProcessesLinux Algo. (W1) Conservative Algo. (W1)
Linux Algo. (W2) Conservative Algo. (W2)
Linux Algo. (W3) Conservative Algo. (W3)

8.95

9.59

7.61

8.33

10.16 9.98
10.68

8.18

9

9.44
9.99

10.31

0

2

4

6

8

10

12

0 100 200 300 400 500

P
er

fo
rm

a
n

ce
 G

a
in

 (
%

)

No. of Processes

Perf. Gain (W1) Perf. Gain (W2) Perf. Gain (W3)

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

64

Process-171: P21.wait(11)- P28.wait(379) - P28.run(58)-

IO(42)-P28.wait(17)- P29.wait(186) - P29.run(67)-

IO(33)-P29.wait(36)- P7.wait(63)- P17.wait(119)-
P17.run(40).

Process-241: P10.wait(21)- P19.wait(511) - P19.run(69)-

IO(31)-P19.wait(261)- P18.wait(301)- P27.wait(174) -
P27.run(100) -P27.wait(668)- P27.run(35).

Process-280: P22.wait(126)- P8.wait(198)- P13.wait(166)-

P15.wait(100)- P4.wait(218) - P4.run(84)- IO(16)-

P4.wait(31)- P0.wait(48) - P0.run(100) -P0.wait(0)-
P0.run(7).

Process-214: P5.wait(15)- P22.wait(529) - P22.run(66)-

IO(34)-P22.wait(214)- P8.wait(185)- P13.wait(160) -

P13.run(72)- IO(28)-P13.wait(61)- P12.wait(72)-
P12.run(28).

B. Observations and Discussion on Results

It is evident from the experimental results that the
Conservative Load Balancing Algorithm outperforms the

Linux load balancing algorithm for various NUMA

systems having different architectures and exhibits the

better average TAT in the range of 7-12%. The achieved

performance gain is attributed to the reduced load
balancing overheads.

It is further observed that-

a) Majority of processes remain within their Load

Balancing Zone only; even many processes are

completely executed on the originating

processor/node. Very few processes are migrated to
far nodes when the load balancing policy is

implemented as a soft conservative policy. This is

evident from the traces of a few sample processes

(shown in sub-section A.2 of this section) after

performing load balancing through Conservative Load

Balancer. Non-migration of most of the processes too

far nodes results in fewer overheads and, in turn, more

performance gain.

b) The performance gain is almost in the same range for

the three NUMA systems for which experimentation

was done. This is because all the systems have the

same no. of memory access levels. For the systems
with more levels, higher gains will be achieved.

c) Relatively small performance gain (in the range 2-4

%) observed in a few cases with a small no. of

processes is due to a good process to processor ratio.

In such cases, there will be relatively fewer overheads

of load balancing in the Linux algorithm and hence

less performance gain in Conservative Load

Balancing.

d) There is variation in performance gain for different

sets of processes for the same system. This is due to

differences in the characteristics of the workload, like,
no. of processes, arrival time of the processes,

different no. Of computation and input-output
instructions in a process etc.

VI. CONCLUSION

The major factors responsible for the non-optimum

performance or performance degradation of any load

balancing algorithm are the overheads of load balancing

and process migration. The overheads are aggravated for
the NUMA systems with large no. of memory access

levels. Thus, avoidance of unnecessary load balancing

operations is a key factor for the enhancement of any load

balancer.

 In this research, the approach followed by Linux for

load balancing was investigated and analyzed, and a

Conservative Load Balancer was proposed to achieve

better performance. On the basis of simulation results, it

can be concluded that the proposed load balancer has

successfully addressed the issue of unnecessary load

balancing overheads incurred in Linux and improved the
performance very significantly. The work presented will

supplement the endeavours of the researchers attempting to

design efficient load balancing algorithms for upcoming

NUMA multiprocessor and multicore systems.

.

REFERENCES
[1] Martin J. Bligh, M. Dobson, D. Hart, and G. Hu Lzenga, Linux on

NUMA Systems, Linux Symposium, (2004).

[2] Christoph Lameter, Process Scheduling on 1024 Processors, in Proc.

Gelato ICE 2007: Itanium Conference & Expo, San Jose, California,

(2007).

[3] Mei-Ling Chiang, Shu-Wei Tu, Wei-Lun Su, and Chen-Wei Lin,

Enhancing Inter-Node Process Migration for Load Balancing on

Linux-Based NUMA Multicore Systems, in Proc. IEEE 42nd Annual

Computer Software and Applications Conference (COMPSAC),

(2018).

[4] Priyesh Kanungo, Contributions in Dynamic Load Balancing

Techniques for Distributed Computing Environment, Ph.D. Thesis,

IET-DAVV, (2007).

[5] M. Correa, R. Chanin, A. Sales, R. Scheer, and A. Zorzo, Multilevel

Load Balancing in NUMA Computers, Technical Report No. 49,

PPGCC-FACIN-PUCRS, Brazil, (2005).

[6] Dejan S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, S.

Zhou, Process Migration, ACM Computing Survey, 32(3) (2000)

241-299.

[7] Erich Focht, Mathew Dobson, Patricia Gaughen, and Michael

Hohnbaum, Linux Support for NUMA Hardware, Linux

Symposium, (2003).

[8] S. Hofmeyr, C. Iancu, and F. Blagojevi, Load Balancing on Speed,

in Proc. 15th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP '10), New York, USA,

(2010) 147-158.

[9] Weiwei Jia, How does load balancing work inside of operating

systems, Linux as an example,

Available:https://www.systutorials.com/load-balancing-work-

internal-operating-systems (accessed June 9, 2020).

[10] M. Tim Jones, Inside the Linux Scheduler, Available:

http://www.ibm.com, (accessed Jan. 27, 2015).

[11] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma,

Performance Analysis of Load Balancing Algorithms, in Proc.

World Academy of Science, Engineering and Technology, 28

(2008).

[12] Linux Kernel Documentation [Online]. Available:

https://www.kernel.org/doc/html/latest/ (accessed Jan. 2021).

[13] Adam Wynne, Load Balancing in Distributed Operating Systems,

Technical Report, Western Washington Univ., (2005).

[14] Geunsik Lim, Changwoo Min, and Younglk Eom, Load-Balancing

for Improving User Responsiveness on Multicore Embedded

Systems, Linux Symposium, (2012).

[15] Ye Liu, Shinpei Kato, and Masato Edahiro, Optimization of the

Load Balancing Policy for Tiled Many-Core Processors, IEEE

Access Journal, (2018).

https://www.researchgate.net/scientific-contributions/Mei-Ling-Chiang-2045739612?_sg%5B0%5D=Yff6daliEALRV2De-70NvLbUK5bKmsPU1hoJUfl9ZaxdzroXFb2z0bphw5IHC5MI97r9r_w.EOKmi4M9ggAH_P0GYrhuPRREcfcvoe8UaHeoZhUr_kHBAPe2OmZOdDFQFnFeiV86uAa2cwQONe1rh5-Sv0i6Cw&_sg%5B1%5D=QGTRuvEKYtyuhslef6-ltgv3u8xvIBx3H_khk3kCD8D1aPlinMVcgIFfdmjUcggxXZMD6lQ.lAorYQpHH9Dbef2UPTEUWU-LpVilAqZMtMLpCpLN0d5cC72F98F4zMi994IQKvTVbs5blk9Odak-mOi5SRyKRA
https://www.researchgate.net/scientific-contributions/Shu-Wei-Tu-2113760069?_sg%5B0%5D=Yff6daliEALRV2De-70NvLbUK5bKmsPU1hoJUfl9ZaxdzroXFb2z0bphw5IHC5MI97r9r_w.EOKmi4M9ggAH_P0GYrhuPRREcfcvoe8UaHeoZhUr_kHBAPe2OmZOdDFQFnFeiV86uAa2cwQONe1rh5-Sv0i6Cw&_sg%5B1%5D=QGTRuvEKYtyuhslef6-ltgv3u8xvIBx3H_khk3kCD8D1aPlinMVcgIFfdmjUcggxXZMD6lQ.lAorYQpHH9Dbef2UPTEUWU-LpVilAqZMtMLpCpLN0d5cC72F98F4zMi994IQKvTVbs5blk9Odak-mOi5SRyKRA
https://www.researchgate.net/scientific-contributions/Wei-Lun-Su-2144446274?_sg%5B0%5D=Yff6daliEALRV2De-70NvLbUK5bKmsPU1hoJUfl9ZaxdzroXFb2z0bphw5IHC5MI97r9r_w.EOKmi4M9ggAH_P0GYrhuPRREcfcvoe8UaHeoZhUr_kHBAPe2OmZOdDFQFnFeiV86uAa2cwQONe1rh5-Sv0i6Cw&_sg%5B1%5D=QGTRuvEKYtyuhslef6-ltgv3u8xvIBx3H_khk3kCD8D1aPlinMVcgIFfdmjUcggxXZMD6lQ.lAorYQpHH9Dbef2UPTEUWU-LpVilAqZMtMLpCpLN0d5cC72F98F4zMi994IQKvTVbs5blk9Odak-mOi5SRyKRA
https://www.researchgate.net/scientific-contributions/Chen-Wei-Lin-2144451960?_sg%5B0%5D=Yff6daliEALRV2De-70NvLbUK5bKmsPU1hoJUfl9ZaxdzroXFb2z0bphw5IHC5MI97r9r_w.EOKmi4M9ggAH_P0GYrhuPRREcfcvoe8UaHeoZhUr_kHBAPe2OmZOdDFQFnFeiV86uAa2cwQONe1rh5-Sv0i6Cw&_sg%5B1%5D=QGTRuvEKYtyuhslef6-ltgv3u8xvIBx3H_khk3kCD8D1aPlinMVcgIFfdmjUcggxXZMD6lQ.lAorYQpHH9Dbef2UPTEUWU-LpVilAqZMtMLpCpLN0d5cC72F98F4zMi994IQKvTVbs5blk9Odak-mOi5SRyKRA
https://www.systutorials.com/author/harryxiyou/
https://www.systutorials.com/load-balancing-work-internal-operating-systems/

D. A. Mehta & Priyesh Kanungo / IJETT, 70(3), 54-65, 2022

65

[16] Robert Love, Linux Kernel Development, Novell Press, 2nd edition,

(2005).

[17] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud,

Vivien Qu´ema, and Alexandra Fedorova, The Linux Scheduler: a

Decade of Wasted Cores, in Proc. EuroSys ’16, London, UK,

(2016).

[18] N. Padhy, A. Panda, and S.P. Patro, A Cyclic Scheduling for Load

Balancing on Linux in Multi-core Architecture, in Proc. Third

International Conference on Smart Computing and Informatics,

(2019) 369-378.

[19] Shreelekha Pandey, Simulator for Linux Scheduler and Load

Balancer for NUMA Multiprocessor Architectures, M.E.

Dissertation, S.G.S.I.T.S., (2009).

[20] Shreelekha Pandey, D.A. Mehta, Simulator of NUMA

Multiprocessor Environment & Linux Load Balancing Scheduler,

IJCEE, (2013).

[21] L. L. Pilla et al., A Hierarchical Approach for Load Balancing on

Parallel Multi-Core Systems, in Proc. 41st Int. Conf. Parallel

Processing (ICPP), (2012) 118–127.

[22] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan,

Tumbler: An Effective Load Balancing Technique for MultiCPU

Multicore Systems, ACM Transactions on Architecture and Code

Optimization, Springer, Singapore, 160 (2015).

[23] Suresh Siddha, sched: new sched domain for representing multicore,

Available: http://lwn.net/Articles/169277/ (accessed Feb. 2014).

[24] Ian K. T. Tan, Ian Chai, and Poo Kuan Hoong, An Adaptive Task-

Core Ratio Load Balancing Strategy for Multi-core Processors,

International Journal of Computer and Electrical Engineering, 3(5)

(2011).

[25] Saleh A. Khawatreh, An Efficient Algorithm for Load Balancing in

Multiprocessor Systems, International Journal of Advanced

Computer Science and Applications (IJACSA), 9(3) (2018).

[26] Automatic NUMA Balancing, Available:

https://documentation.suse.com/sles/15- SP1/html/SLES-all/cha-

tuning-numactl.html, (accessed April 1, 2020).

[27] B. Mallikarjuna, D. Arun Kumar Reddy, and N Venkata Vinod

Kumar, Green Computing: Efficient Energy Load balancing

Technique in Cloud computing, International Journal of Computing

Communications and Data Engineering, (2018).

[28] M.L. Chiang, W.L. Su, S.W. Tu, and Z.W. Lin, Memory-

Aware Kernel Mechanism and Policies for Improving Inter-Node

Load Balancing on NUMA Systems, in Software: Practice and

Experience, John Wiley, NJ, USA, 49 (2019) 1485–1508.

[29] J. Chen, S. S. Banerjee, Z.T. Kalbarczyk, and R.K. Iyer, Machine

Learning for Load Balancing in the Linux Kernel, in Proc. The

11th ACM SIGOPS Asia-Pacific Workshop on Systems, Tsukuba,

Japan, (2020).

[30] Mei-Ling Chiang and Wei-Lun Su, Thread-Aware

Mechanism to Enhance Inter-Node Load Balancing for

Multithreaded Applications on NUMA Systems, Applied Sciences,

Available:

https://doi.org/10.3390/app11146486, (accessed Nov. 2021).

