
International Journal of Engineering Trends and Technology Volume 70 Issue 3, 162-169, March 2022

ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V70I3P218 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

SEFGAST: Step-Up to Environment Friendly

Green Automated Software Testing

Anithakrishna .G1, M. Mohankumar2

1Research Scholar, Department of CS, IT and CA, Karpagam Academy of Higher Education,

Coimbatore, Tamil Nadu, India.
2Associate Professor, Department of CS, IT and CA, Karpagam Academy of Higher Education,

Coimbatore, Tamil Nadu, India.

1anithamohanvm@gmail.com, 2mohankumar07@gmail.com

Abstract - In the current world scenario, sustainable
development has a magnificent role, especially in the two

sizable fields of information and communication, viz.,

Green Technology and Green Computing. Green IT make

ICT more sustainable and instigate solutions to set up and

use hardware in an energy-efficient way. Green by IT

focus on software-based solutions to make energy-efficient

utilization of resource and to dimmish the negative impact

on the environment. The energy-efficient software

development model is the right way toward sustainability.

Developing a software product is not only bound to writing

its core code, but it also includes many phases from
planning to maintenance. To erect an energy-efficient

green software, need to make the whole process green.

This paper proposes a technique to apply green concepts

on software testing to efficiently gather energy

consumption related information. For the same need a

closer look at green software and green software

engineering, and through this proposed work applied

green principles to measure, analyze and optimize

operations on software testing.

Keywords - Green software, Testing, Sustainability,

Green IT, Energy.

I. INTRODUCTION

Green software development describes a paradigm in

which software administrators, developers, and testers can

make the solutions and techniques more energy efficient.

Environment sustainable development deploy tools to

optimize the automated processes to save energy. Along

the software development life cycle, testing activities are

needed time and during the initial development to detect

and fix errors in and later to depend on maintenance type.

The proposed work is to improve energy transparency

during the testing phase. Automated test scripts have a

serious role in energy consumption, and combining test

case coverage and energy measurement tool effectively

localize code level energy consumption. The proposed

technique analyzes energy values of different hardware

components like CPU, DRAM, GPU etc., to compute

energy utilized [21] by a test script at a particular

timestamp. It will provide statistical proof of energy usage

of the current automated test script and suggestions to

improve energy efficiency. The power reading defines
energy consumption with respect to a timestamp, and the

total energy consumption of the application is obtained by

summing up all the measured values. The proposed work

is a Linux based analysis tool that provides an estimation

of energy consumption for a particular test script.

Green computing is a major concept that applies green

metrics [5,14] to hardware and software components.

Green software life cycle model, focus on energy [10,11]

efficiency of software.

Fig. 1 Green approach

Usage of components refers to the use of computer

components in an environment friendly [7] manner.

Disposal refers to the recycling of E-waste in an effective

manner. Resource manufacturing focus on the

manufacturing process of computer resources with reduced
[6] impact on the environment. Green software

engineering focuses on developing sustainable software

which follows green metrics [9,15]. Here the approach is

credulous, which analyse the energy consumption at

runtime to identify the portion of code which is avaricious

to energy.

Green
Metric

Resource
manufacturing

Hardware and
Software usage

and maintanance

Disposal of
componants

https://ijettjournal.org/archive/ijett-v70i3p218
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Anithakrishna .G & M. Mohankumar / IJETT, 70(3), 162-169, 2022

163

II. LITERATURE REVIEW

Christof Ebert presented an article that proposes

technical, social and environmental solutions [24] and a

paradigm shift on reducing the energy consumption of

software. It envisages ecologic behaviour as a business
opportunity, thus adopting it as a tool for conserving our

planet. Timo Johann and Markus hick presented a paper

that highlighted the white box measurement approach in

measuring energy consumption [25] of similar modules in

the software. It demonstrates a method to develop and

apply metrics [8,22] using the source code instrumentation

technique to find the resource-intensive part for energy

saving.

Devi J and Bhatia K conducted a study on the

functioning of selenium tools in software automation and

had an analysis of the [1] testing structure. K Lokeshwari
and M Kannan conducted a study on three automated tools

named Selenium, QTP and Load Runner. For factors like

[3], efficiency, cost, platform support has major credit to

selenium, whereas Load runner has a credit on

programming language support. QTP has high credit on

usability.

Kaur P and Agnihotri M analysed and presented a

paper on green practice, which includes handling

peripheral resources,[2] machines and handling of digital

investment. High utilization of energy cause environmental
problems like huge carbon emission [4], and the goal of

green is to find a solution for energy consumption

Marcus Hahnel and Bjorn Dobel presented a paper to

share their experience in using the Running Average

Power Limit (RAPL) energy sensor available in recent

intel CPU for determining the fine-grained power

consumption of short-running code path while executing a

single function within an application.

Roberto Verdecchia and Eva Kern conducted a study

that illustrates an approach to identifying energy hotspots
at the source code level. It takes an application and uses

[19] spectrum-based analysis process to localize the

portion. Rui Pereira and Marco Couto [16] implements a

language-independent tool to locate energy-inefficient

fragment in a program's source code, and it uses a

spectrum-based fault localization method to create energy

ranking of a source code fragment.

III. METHODOLOGY

A. Power and Energy

This section is defined to review the relationships
between software and power. Power is defined as the rate

of doing work measured in Watts. It is recorded on the

computer over a small finite value of time. Power is the

rate of energy consumption at a particular moment. In a

generic way, energy efficiency can be measured as

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑈𝑠𝑒𝑓𝑢𝑙 𝑊𝑜𝑟𝑘 𝐷𝑜𝑛𝑒

𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒𝑑

The quality aspect of the efficient model [17] belongs run

time efficiency, CPU intensity, memory usage and

idleness.

IV. RELATED WORK
The two sorts of energy monitoring policies to observe

the energy usage of a program are external and internal

evaluators. External energy monitors utilize the readings

such as voltmeter, ammeter etc. It evaluates the system as

a whole and has limited utility to monitor individual

programs because they are not comminuted to identify

energy usage [12,13] at the component level.

Internal evaluators are integrated as power monitoring

[20] within the system. This is achieved by measuring

energy registers, process wakeups and CPU state

transitions.

A. Code Optimization

Code optimization improves energy consumption by

reducing the work performed, which include dead code

elimination, loop optimization, common subexpression

elimination. An example of such a thing is demonstrated in

figure 2. Here the code b*a is optimized and assigned to a

new variable which avoids recomputing of same code

multiple times and saves energy.

Fig. 2 Sample code to show the role of code

optimization

Dead code elimination is implemented by removing

the code set which is no longer used in the application. In

the code snippet, x is assigned with a value that is no

longer used in the application.

B. Energy Model

In application model energy consumption of a

program can breakdown as

E (application) = E(active) + E(wait) + E(idle)

E(active) is the application’s running time, E(wait) is the

waiting time for other components, and E(idle) is the time in
which the system is not performing any work [23] for the

specific application.

V. APPROACH

Step-up to Environment-Friendly Green Automated

Software Testing aims at energy glassiness during the test

phase for test script developers to localize specific energy-

Anithakrishna .G & M. Mohankumar / IJETT, 70(3), 162-169, 2022

164

hungry portions of the code. This paper presents Energy

Spot Measuring Tool, which refers to runtime hardware

energy consumption. More specifically, the approach

consists of five steps.

Fig. 3 Overview of SEFGAST

Step 1: Select and set up the specific application for

which the quality analyst supposed to perform the test

process

Step 2: Automated Test Script Generation. Here, consider

the test script written by both experienced and fresh

testers.

Step 3: Energy consumption measurement module, which

prepares device under test for energy measurement and

will carry out the measurement process by analyzing the

CPU, Memory and Disk resources.

Step 4: Spotting the energy-hungry area of automated
script

Step 5: Generation of energy usage report, which focuses

on green metrics.

VI. EXPERIMENTAL PROCEDURE

We have conducted an experiment using Selenium, an

automated testing tool and the proposed ESMT (Energy

Spot Measuring Tool) to analyze energy consumption

while performing the testing activities.

To carry out the experiment, need to select an

automated testing tool. Software testing is a vital part of
the software development life cycle which is used to

ensure that the application is defect-free and to appraise

the functionality of the software. The traditional method of

software testing technique, which prepares and execute test

cases manually, is a most stringent process which

consumes more time taken to automated testing. The

automated testing tools implement a test suite that can run

or replay test cases without the intervention of human

resources. A large collection of testing tools was available,

and each has its own strength and limitations. A few tools

like Selenium, Katalon, UFT, Test complete, Watir are
topmost in this field. Various evaluation criteria have been

applied for the selection of an appropriate testing tool.

Fig. 4 Lookup on various Testing Tools

Select
and
setup the
applicati
on for
test
process

Data
collection
and
Automated
Test script
generation

Energy
consumpti
on
measurem
ent module

Process
to spot
the
energy
hungry
area.

Report
generation
towards
green

• It is an Open Source software

• For web application.

• Have record playback feature.

• It support all programming
languages.

• used in Windows, Linux, and OS
X platforms.

Selenium

• It is not a free software

• It is a functional automated platform

• Desktop,web and mobile application

• it support VB script, JScript, C++ script, C#
script, Python, .NET, JAVA, Android, iOS,
Visual C++,VB, HTML 5.

Test Complete

• It is a free software.

• It is a platform for web
applications and mobile
application.

• Used in Windows Linux OS
X.

• It support only java

katalon

• It is a free software.

• For web applications.

• It support only Ruby.

• It provide cross browser testing.

• Used in Windows Linux OS X
platforms.

• Not widly used as selenium.

Watir

• It is not a free software.

• It is a functional
automated platform.

• Desktop,web and
mobile application.

• It support only vb
script.

QTP

• Performance Testing tool

• It is a desktop and web
based applications

LoadRunner

Anithakrishna .G & M. Mohankumar / IJETT, 70(3), 162-169, 2022

165

Table 1. Merits and demerits of various software testing tools

Tools Merits Demerits

Selenium

 It can run under multiple browsers.

 It supports Windows/Mac or Linux.

 It supports parallel processing, which

helps to save execution time.

 It provides reduced hardware
resource utilization. It provides a

remote control server.

 As an open-source, it allows to share

and modify the code.

 Lack of technical supporting team.

 It needs support from a third party

framework for binding, result

reporting etc.

 It mostly demands high-level
technical skills on the programming

side.

 No centralized management section.

Test Complete

 It provides cross-platform testing,

which includes web, desktop and

mobile applications.

 It has a visualizer to capture

screenshots of every single

operation.

 Minimum of middle-level technical

skill is ok in the programming
section

 It provides good tech support.

 It supports only the Windows

platform.

 It is not a free software need to buy,

but mostly affordable price compares

to some other tools.

 Lack of checkpoint options to handle

debugging a little more easily.

Katalon

 It includes services in web

applications, mobile applications and

web services.

 It provides cross-browser testing.

 Test result reports can export as pdf.

 Java and Groovy are the only

supporting programming languages.

 It cannot be used for desktop

applications.

Watir

 It supports multiple browsers.

 It is open source and has all code

access rights.

 Code reusability is high.

 It supports only Ruby, so technical

people should learn the Ruby

language.

 Script execution speed is low.

 Using third-party tools for recording

Qty

 High technical knowledge in

programming is not mandatory.

 Its own built-in IDE.

 Test reporting provided with details.

 Very good object identification

process and is very user friendly.

 Costly compared to other tools.

 The execution process is

comparatively slow.

 Need to renew the license and buy

add-ins supported by Qtp.

LoadRunner

 It can stimulate a large number of

users concurrently.

 It is highly developed and complex.

 It reduces the hardware requirement.

 It stimulates heavy load and multiple

concurrent user’s stress.

 It is expensive.

 It focuses on performance testing not

feasible for functional testing.

 It is difficult to set up first.

 Its controller section needs the

specific windows OS.

Selenium is a collection of tools developed by a

number of professionals in a sequential development

manner. Primarily in 2004, it was developed by Jason

Huggins (selenium core). But for using selenium core, you

need to install the whole application under test, which is

inconvenient. To overcome this issue, Hammant invented

a system known as Selenium remote control (Selenium1).

Then an engineer named Patrick Light tried to find a

solution to minimize the execution time, and it led to the

creation of a system known as the Selenium grid. The

Selenium team merged Web Driver and Selenium RC to
develop Selenium 2, which is more powerful. It is a suite

of components: Selenium Driver, Selenium Grid.

Anithakrishna .G & M. Mohankumar / IJETT, 70(3), 162-169, 2022

166

Fig. 5 Selenium components

As the first step, we have selected two demo web

applications “tour travo” project and “harmony shop”, a

smart shopping application for implementing the selenium

testing. Configured test script by preparing web driver
code depending on the logic that needed to implement.

Included the essential codes that needed to be present in

the script like package inclusion, variable instantiation,

browser session, actual and expected value, acquisition of

page title code etc.

Fig. 6 Selenium Test Script

Then we have selected a desktop application, “MediMind” management Project for analyzing the performance. JMeter
is a java application for load and performance testing. So configured the test script using JMeter.

Fig. 7 Interface for JMeter

Selenium IDE

Firefox plugin,Easy to learn,
Used as a prototyping tool

Selenium RC

First automated web testing
tool,Using programming

languages like Java,perl,C#,PHP

Selenium WebDriver

Browser directly using its support
for automation.It doesnot hire

JScript for automation.

Selenium Grid

It will save time by applying the
technique for Parallel execution

of test

Anithakrishna .G & M. Mohankumar / IJETT, 70(3), 162-169, 2022

167

Here the desktop application is client-side, and users

are interacting with the front end of the application, but

there should be a back end where the application is

interacting with the server or database at the backend. So,

at the same time, multiple users interact with the back end.
Configured test script to focus interaction of application

request and response to the server and overall performance

of backend service.

While executing the test script, measure the CPU and

memory utilization using the [18] Linux shell script.

Fig. 8 Terminal output of the script

ESMT, Energy Spot Measuring Tool, is a software-

based tool proposed to estimate CPU and Memory

utilization of the Test process. It is a Linux based tool to

continuously monitor the Memory and CPU usage of a

specific process and, based on this, generate a report which

will carry us towards green metric implementation.

Fig. 9 Interface for ESMT

The User interface is designed using Python. The test

script can be chosen using the browse option of ‘Program

name’. Shell script generates the test result as a CSV file

that will be saved in the folder chosen in ‘Save File’. The

button 'Start' is used to initiate running the test script. It is

a toggle button that changes to 'Stop' once it is started. And

can end the monitoring by clicking the ‘Stop’.

For analyzing the role of code on energy utilization,

considered test script written by a fresher and an

experienced professional. By comparing the generated

result, we could understand that role of software on energy
utilization over hardware is not negligible.

VII. RESULT

Here in this section is a generated report based on

results gathered through the experimental procedure. For

evaluating the result, inspect the generated data and

automated script. The first test run was to evaluate the test

script written by the fresher for the tour travo demo

project. Further, it is evaluated with the test script written

by an experienced professional.

The result generated as CSV files are consolidated for

fresher and more experienced with CPU Usage and
Memory Utilization, and the graph is plotted.

Anithakrishna .G & M. Mohankumar / IJETT, 70(3), 162-169, 2022

168

Fig. 10 Comparison of Memory and CPU usage of Test

Script written by Fresher and Experienced

Professional for Tour travo project

We have considered two web applications and one

desktop application for monitoring and comparing the
energy efficiency while executing the test script. Energy

Spot Measuring Tool analyzed the performance while

executing the corresponding test script. The CPU based

energy consumption represents a major part of energy

usage. Peak and continuous memory usage have an

influence on energy consumption. In the study, energy,

time and memory are the optimization aspiration.

Fig. 11 Energy and Memory graphical data for tour

travo and harmony shop

Fig. 12 Energy and graphical memory data for

MediMind Project

From the experiment, I analyzed various test scripts

and testing tools and identified that each has a different

impact on energy consumption, time and memory.

VIII. CONCLUSION AND FUTURE WORK

Since now run through green computing has become

essential for environmental sustainability. Each one can

confer their own part to reduce global warming. A secure

environmental development in the software industry and

the society which is utilizing these applications should

have awareness about it.

Nowadays, minimizing the environmental impact on

software development has an important role. The energy-

efficient software needs certain metrics to measure

software energy usage and need to minimize it. This tool

aims at energy transparency during the testing phase of the

Software Development Life Cycle. The future of this

work is in extending the scope of the tool by detailing the

hoggish energy area of the test script.

0 1 2 3 4

4500

5500

6500

7500

8500

9500

CPU %

Ti
m

e

CPU usage

Escript

 FScript

0

20

40

60

80

100

120

1
0

0
0

2
0

0
0

30
00

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

M
e

m
o

ry

Time

Memory Usage

Fscript

Escript

0

20

40

60

80

100

120

140

0 20 40 60 80

M
e

m
o

ry
 %

Time

Memory usage

app1

app2

0

1

2

3

4

5

0 5 10 15

C
P

U
 %

Time

CPU Usage

app1 app2

0

1

2

3

4

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

CPU and Memory Usage

Memory CPU

Anithakrishna .G & M. Mohankumar / IJETT, 70(3), 162-169, 2022

169

REFERENCES
[1] Devi, J., Bhatia, K., & Sharma, R., A Study on Functioning of

Selenium Automation Testing Structure. International Journal of

Advanced Research in Computer Science and Software

Engineering, 7(5) (2014) 855-862.

[2] Kaur, P., & Agnihotri, M., Efficient Variable Neighbourhood

Search Performance Based Joint Optimization Task Allocation for

the Multicore Processor. In 2016 2nd International Conference on

Contemporary Computing and Informatics (IC3I), (2016) 745-751.

IEEE.

[3] Kannan, M., & Lokeshwari, K., Comparison af Software Testing

Tools with Respect to Tools and Technical Related Parameters.

International Journal of Advanced Research in Computer

Science, 8(9) (2017) .

[4] Hemanandhini, I. G., & Ranjani, C., A Study On Various

Techniques for Energy Conservation in Data Centers for Green

Computing. International Journal of Engineering Trends and

Technology (IJETT), 46 (2017) .

[5] Brown, D. J., & Reams, C., Toward Energy-Efficient

Computing. Communications of The ACM, 53(3) (2010) , 50-58.

[6] Abhishek, D. S., Anusha, V., Bheemappa, C. B., Vijaykumar, D., &

Sheela, S. V. Green Software.

[7] Gelenbe, E., & Caseau, Y., The Impact of Information Technology

on Energy Consumption and Carbon Emissions. Ubiquity, (2015) 1-

15.

[8] Johann, T., Dick, M., Naumann, S., & Kern, E., How to Measure

Energy-Efficiency of Software: Metrics and Measurement Results.

In 2012 First International Workshop on Green and Sustainable

Software (GREENS) , (2012) 51-54. IEEE.

[9] Hähnel, M., Döbel, B., Völp, M., & Härtig, H., Measuring Energy

Consumption for Short Code Paths using RAPL. ACM

SIGMETRICS Performance Evaluation Review, 40(3) (2012) 13-

17.

[10] Hilty, L. M., Arnfalk, P., Erdmann, L., Goodman, J., Lehmann, M.,

& Wäger, P. A., The Relevance of Information and Communication

Technologies for Environmental Sustainability–A Prospective

Simulation Study. Environmental Modelling & Software, 21(11)

(2006) 1618-1629.

[11] Hilty, L. M., Aebischer, B., & Rizzoli, A. E., Modelling And

Evaluating the Sustainability of Smart Solutions. Environmental

Modelling & Software, 56 (2014) 1-5.

[12] Aebischer, B., & Hilty, L. M., The Energy Demand Of ICT: A

Historical Perspective and Current Methodological Challenges.

in ICT Innovations for Sustainability, (2015) 71-103. Springer, Cham.

[13] Nixon, J. S., & Devaraj, A. F. S. Green Computing: Awareness,

Current Issues and Best Practices.

[14] Kern, E., Dick, M., Naumann, S., Guldner, A., & Johann, T., Green

Software and Green Software Engineering–Definitions,

Measurements, and Quality Aspects. In First International

Conference on Information and Communication Technologies For

Sustainability (ICT4S2013), ETH Zurich , (2013b) 87-9.

[15] Verdecchia, Roberto, Patricia Lago, Christof Ebert, and Carol De

Vries. Green IT and Green Software, IEEE Software , 30(6) (2021)

7-15.

[16] Pereira, R., Carção, T., Couto, M., Cunha, J., Fernandes, J. P., &

Saraiva, J., Spelling Out Energy Leaks: Aiding Developers to

Locate Energy-Inefficient Code. Journal of Systems and

Software, 161 (2020) 110463.

[17] Bangash, A. A., Sahar, H., & Beg, M. O.,A Methodology For

Relating Software Structure with Energy Consumption. In 2017

IEEE 17th International Working Conference on Source Code

Analysis and Manipulation (SCAM) , (2017) 111-120. IEEE.

[18] Bourdon, A., Noureddine, A., Rouvoy, R., & Seinturier, L., Linux:

Understanding Process-Level Power Consumption. in Green

Computing Middleware (GCM'2011).

[19] Verdecchia, R., Guldner, A., Becker, Y., & Kern, E., Code-Level

Energy Hotspot Localization Via Naive Spectrum Based Testing.

In Advances and New Trends in Environmental Informatics,

(2018)111-130. Springer, Cham.

[20] Pang, C., Hindle, A., Adams, B., & Hassan, A. E.,What Do

Programmers Know About Software Energy Consumption?. IEEE

Software, 33(3) (2015) 83-89.

[21] Hindle, A., Green Mining: A Methodology of Relating Software

Change and Configuration to Power Consumption. Empirical

Software Engineering, 20(2) (2015) 374-409.

[22] Steigerwald, B., & Agrawal, A., Developing Green Software. Intel

White Paper, 9 (2011).

[23] Mahmoud, S. S., & Ahmad, I., A Green Model for Sustainable

Software Engineering. International Journal of Software

Engineering and its Applications, 7(4) (2013) 55-74.

[24] Verdecchia, R., Lago, P., Ebert, C., & De Vries, C., Green IT And

Green Software. IEEE Software, 38(6) (2021) 7-15.

[25] Johann, T., Dick, M., Naumann, S., & Kern, E., How to Measure

Energy-Efficiency of Software: Metrics and Measurement Results.

In 2012 First International Workshop on Green and Sustainable

Software (GREENS), (2012) 51-54. IEEE.

ssrg 5
Text Box

