
International Journal of Engineering Trends and Technology Volume 70 Issue 3, 222-233, March 2022
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V70I3P225 © 2022 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Taxonomical Classification and Systematic Review

on Microservices

Sidath Weerasinghe1, Indika Perera2

1Research Scholar, Department of Computer Science & Engineering, University of Moratuwa, Sri Lanka.
2Professor, Department of Computer Science & Engineering, University of Moratuwa, Sri Lanka.

1weerasingheldsb.20@uom.lk, 2indika@cse.mrt.ac.lk

Abstract - The software industry widely used monolithic

system architecture in the past to build enterprise-grade

software. Such software is deployed on the self-managed on-

premises servers. Monolithic architecture systems

introduced many difficulties when transitioning to cloud

platforms and new technologies due to scalability, flexibility,

performance issues, and lower business value. As a result,

people are bound to consider the new software paradigm

with the separation of concern concept. Microservice

architecture was introduced to the world as an emerging
software architecture style for overcoming monolithic

architectural limitations. This paper illustrates the

taxonomical classification of microservice architecture and

a systematic review of the current state of the microservice

architecture by comparing it to the past and future using the

PRISMA model. Conference papers and journal papers the

base on the defined keywords from well-known research

publishers. The results showcase that most researchers and

enterprise-grade companies use microservice architecture to

develop cloud-native applications. On the contrary, they are

struggling with certain performance issues in the overall

application. The acquired results can facilitate the
researchers and architects in the software engineering

domain who aspire to be concerned with new technology

trends about service-oriented architecture and cloud-native

development.

Keywords - Microservices, Systematic review, PRISMA,

Cloud computing, Architecture.

I. INTRODUCTION

Monolithic software architecture is a traditional way of

building enterprise-grade software. In this architecture, all

the modules are encapsulated into one single package and

deployed in one single server. Those applications are named

self-contained software. All the modules that reside in the

monolithic software are tightly coupled and could have

thousands of different services in a single executable file. For

example, can consider the web-based application consisting
of the significant three ties: user interface, business logic,

and the data access layer. From the standpoint of monolithic

architecture, all the ties are written in a single code base and

deployed in one package. Most of the architects focus on the

concept of granularity in software architecture. Monolithic

software architecture solely allows the coarse granularity

level since monolithic architecture has significant

subcomponents and single objects hold a lot of data in the

entire system. The object-Oriented programming (OOP)

concept is commonly used to develop software. Many

programming languages and languages versions are released

to the development community with the use of the OOP

concept. With technological development, people are prone
to embrace various other concepts for software architecture.

As a result, ‘separation of concerns’ was introduced to the

computer science field. As a consequence, people transited to

Service Oriented Architecture (SOA). This architecture has

become quite popular among software developers who

develop software in distributed environments [1]. In the SOA

architecture, services are the stand-alone components

deployed on the distributed environment and they perform

the service orchestration over the network. Service-Oriented

Computing (SOC) is a concept that applies services as the

underlying elements for creating applications [2]. Software

engineers use the SOA principle and the SOC concept to
develop the application rather than going for monolithic

architecture.

Amidst the popularity of cloud computing, people are

keener towards a developed application that possesses the

capability of using cloud services and deploying on the cloud

environment. That kind of application is called a cloud-

native application. New technology trends are also

introduced to the world for application development.

Software architecture is influenced by cloud-native

technologies as well [3]. As a result, microservice
architecture is introduced to the world to overcome the issues

of existing software architectures. In the microservice

architecture, all the services are deployed in the distributed

environment and necessary services are called for to satisfy

the business requirements. Such services are minute software

components and intend to logically perform a specific task. A

lot of microservice frameworks such as Spring Boot, Vert.x,

Go Fast HTTP, etc. are introduced to facilitate the

microservice development. Hence, developers can gain more

https://ijettjournal.org/archive/ijett-v70i3p225
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

223

advantages in using those software architecture frameworks

because they enable additional features in the form of simple

libraries such as security, service discovery, distributed

tracing, etc.

The objective here is to identify the taxonomical

classification and systematic comparison of the microservice-

based research studies and their real-world usage. Hence,

considered some selected papers from well-known scientific

publishers to conduct this research. Clarified and compared

the microservice architecture's different qualities and how

they evolved from the earlier stage to the current state and

then used current highly practiced research methodologies,

techniques, research approaches, and methods to conduct the

research mapping study on the microservice architecture.
This research study reveals that microservice architecture has

addressed the issues which persist in the monolith software

architecture. Most of the microservice's quality attributes

bring more value to the developers. But, certain areas like

inter-service communications in the microservice

architecture need to be further improved.

The outcomes of this research study benefit the

researchers in the subject areas of software architecture and

cloud computing. People who work in the capacity of

software designers will assist this study in choosing the
correct technology, tools, and methods for their projects.

Through this study, persons who are looking for converting a

monolithic application to the microservice architecture can

gain ample ideas to make decisions.

II. BACKGROUND

Several review studies related to the microservice

architecture were conducted in the past few years to leverage

the trending software concepts. Most of the researchers
conducted studies related to the microservice transition and

contemplated the problems associated with it [4]. The

optimal way of transformation in the microservice is to

define the service on the monolithic systems as fine-grained

services. Such services should be in the form of atomic

services; which means that one service is responsible for

performing only a specific task. A term called

‘microservitization’ is introduced to illustrate the system

transition to the microservices. The main challenge in

transforming applications to microservice architecture is to

define the services as independent modules. Another

systematic literature review was conducted by Atilim
University with relation to microservices [5]. The study

focused on three main areas such as types of research

conducted related to the microservices, motivation behind

microservice architecture, and the emerging trends in

microservice architecture. They have classified microservice-

based research into several classes such as validation

research, evaluation research, solutions, philosophy, and

experience. According to their research, most of the people

performed the solutions research related to the microservice

system development and its usage [5]. A relatively few

studies are conducted on the philosophical area of the

microservices as it is already defined by Lewis and Fowler

[6]. Most of the research focuses on the microservices

design and the functionalities. Recent microservice studies
show that most of the microservice architectural concerns are

overcome using continuous deployments and cloud

containerization technologies [7].

A systematic grey literature review was conducted by
the group of research related to the gap of the microservice

architecture and also to the advantages of the microservice

architecture [8]. According to them, the main pain area of the

microservice design stage is the security policies definitions

to the resource levels of the services. Handling the

distributed storage and application testing on the distributed

environment is mentioned as pains on the microservice

architecture in the application development stage. In the

operational time, the main pain point is the huge network

consumption because of the inter-service communication in a

microservice architecture. When developing the overall
solution using the microservice architecture, all teams need

to conclude what sort of communication mechanism should

be used for the interservice communication.

Nowadays, most architects use cloud-native software

architecture for the development of applications. According

to the researchers, the best cloud-native software architecture

is microservice architecture [9]. They comprise several non-

functional requirements for the cloud-native applications

such as elasticity, scalability, automated deployment, and

vendor lock-in avoidance [10]. Docker the Rocket

containerization concepts together with the Kubernetes.
Docker Swarm and Mesos automated container management

help microservice architecture to bring those non-functional

requirements to the deployments.

A German university conducted research related to the

features of the microservice architecture [11]. According to

their research, security, performance resilience, reliability,

latency, and fault tolerance are the most important features of
the microservice architecture. Most people use the

microservice architecture to get proper scalability,

extensibility, and agility. With these intentions, engineers

focus on the security of the microservices because it is

deployed in the distributed environment. When services are

deployed in remote locations, developers need to scrutinize

the entire application performance and the response time.

Most of the researchers conduct the review using standards

research approaches such as the quantitative research

approach and the qualitative research approach. In the

qualitative research approach, they collect feedback from the
engineers who are involved in the microservice architectures

via interviews, open-ended questionnaires, and surveys. As

qualitative research approaches researchers build the

prototypes of the microservices and collect the actual data for

their research analysis.

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

224

In summary, identified that most of the industries use the

microservices architecture for their upcoming developments

and some of them are faced with difficulties in the

microservice architecture. The key motivation of this study

is to find out the encouragement of converting the old system
to the microservice architecture and fill the gap of the

microservice architecture by the current state of practice

using the systematic review of the microservices.

II. RESEARCH METHOD

This systematic review methodology is conducted using

the guidelines provided by the well know PRISMA

(Preferred Reporting Items for Systematic Reviews and

Meta-Analysis) model. The primary aim of the systematic

literature review is to identify the presented results related to

the specific domain and then evaluate those results. Finally,

illustrate the identified results in a meaningful manner.

A. Research Question
This systematic review aims to consolidate research

findings that are conducted by several research institutes and

technology companies related to the microservice

architecture by answering the following research questions.

 What are the main motivations to convert the

monolithic application to microservice architecture?

 What are the technologies & architectural patterns
used in microservice architecture with technological

advancement?

 What are the pains of people in the software

development life cycle when using the microservice

architecture?

The aim is to address the above-mentioned research

questions by studying the past research activities, and in the

meantime provide taxonomical classification regarding the

microservice architecture. People who are still struggling

with the monolithic systems can get a better advantage from
this research to convert their systems into microservices

architecture using improved technologies and the

architectural patterns in their software development life

cycle.

a) What are the main motivations to convert the monolithic

application to microservice architecture?

In this scenario, intend to elaborate on the main

motivations behind converting monolithic systems into a

microservice architecture. The existing issues people face in

the monolithic, and how they mitigate those problems via the

microservice architecture will be further discussed in this

section.

b) What are the technologies & architectural patterns used

in microservice architecture with technological

advancement?

There are several architectural patterns for microservice

architecture. Here, aim to bring several architectural patterns

for problem-solving in the microservice architecture, as well

as discuss the new technological tools and frameworks that

are used for microservice development. According to the
application domain, developers need to change the tech stack

to cater to the business requirements.

c) What are the pains of people in the software

development life cycle when using the microservice

architecture?

Noticed that some of the research studies elaborate on

the problems associated with the microservice architecture in

the software development life cycle. The aim is to identify

those problems and provide possible solutions to mitigate

those types of pains.

B. Data Source
IEEE Xplore [12], ACM [13], Citeseerx [14] and

ScienceDirect [15] digital libraries were used for this

research study. The reason behind choosing these digital

libraries is due to high-quality research and easy

accessibility. Simultaneously, the research databases support

the advanced searching facility to search for any metadata of

the publication. Out of those databases, chose the published

research papers and journal papers for this study.

C. Search Strategy
Identification of the search term is a vital factor in

systematic reviews and it is mandatory to use proper search

terms in the relevant field to identify the research works.

Primary studies were conducted using high-impact

digital libraries, and well-reputed conference proceedings

were used to provide answers to the research questions.

Search is bounded to the online library search engines which
are available for university subscriptions. Time limits

weren’t applied for the search. Further to that, noticed that

microservice research started in 2000 decade.

Fig. 1 Yearly wise publication count

0

50

100

150

200

250

1995 2000 2005 2010 2015 2020 2025

Yearly Wise Microservices Related

Publications

IEEE Xplore ACM

Citeseerx ScienceDirect

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

225

Below combinations of strings were used for the search:

General Search string – (“Microservices” OR

“Microservice” OR “micro-service”) AND (“monolithic

application to microservice architecture”) OR (“microservice
framework” OR “microservice development tools”) OR

(“microservice architectural patterns”) OR (“Challenges of

microservice”)

According to the above graph 1, after 2016 microservice

became a popular area for research studies. Last year

research published a vast number of publications related to

microservices.

Fig. 2 PRISMA model

Once the papers related to the microservices were sorted

out, once again categorized the papers according to each

research, question-wise using the paper’s keyword, title, and

abstract. conducted each research question studies using the

filtered output.

D. Study Selection Process
With adherence to the PRISMA guidelines, [16]

selection process is carried out for the systematic review

which is shown in the above figure 2. Standard tools like
Microsoft excel and the Zotero tool are used to analyze and

store the papers. In each phase conducted the paper selection

and the filtering without being biased and made confidence

in the study process.

E. Inclusion, Exclusion Criteria
Inclusion criteria are included from the data sources for

this research study. Exclusion criteria that are used for the

research studies are not relevant to the systematic review.

These criteria are applicable for all data sources that have

been used for the study.

 Inclusion criteria 1 – Research studies that are relevant

to the search string from the data sources

 Inclusion criteria 2 – Research conference papers and

Journal papers are considered

 Exclusion criteria 1 – Paper languages other than

English

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

226

 Exclusion criteria 2 – Papers are not relevant to the

research questions

 Exclusion criteria 3 – Research studies that are unclear

to the domain

III. RESULTS AND DISCUSSION

A. What are the Main Motivations to Convert the

Monolithic Application to Microservice Architecture?

Publication Reference

Journal [17], [18], [19]

Conference [20], [21], [22], [23], [24], [25],

[26], [27], [28], [29], [30], [31]

In the 1990 decade, most software development

companies developed enterprise-grade software using the

monolith software architecture. Back in that period, client

requirements are very unique and bound to a specific scope.

Those requirements are not changing over time and possess a

clear understanding of the requirements. When moving to the
2000 decade, it is depicted that the world is subject to

technological advancement. Day by day new technology is

introduced while the existing technology has improved. With

such improvements in technology, clients’ requirements have

turned out to be more complex and advanced. To cater to

those requirements people should need to move out from the

traditional software architectures [32]. It can categorize

people’s intentions to choose the architecture as product,

cost, and process.

When considering the product, most of the engineers

focus on the product scalability over the cloud, product
maintainability, performance, and as well as product security

[33]. Most people are moving towards digital services, and

service consumers tend to use digital services as well. Hence,

application owners need to scale their applications. However,

with the monolithic architecture, it is very costly, and they

can’t scale the required service only. Therefore, with the

monolithic architecture, service providers can’t compete with

the news industry. Due to this fact, people are motivated to

move their architecture to microservice-based architecture.

Day to day requirements tends to change with the digitization

of the services and there’s an increased need to adhere to
those changes as well as to introduce new features. In the

monolith architecture, all the components are tightly coupled,

and the change of one component may affect the entire

application. The maintainability of the code is challenging in

monolithic architecture due to the tightly coupled modules.

In a microservice architecture, all the services work

independently and are deployed separately. Hence, adding

new features and changing the code is very easy and

testability is very high [34]. Certain industries need a higher

level of security while some of them need an acceptable level

of security. The monolithic architecture contains some

security modules, and most of the systems are having only
one checking point. On the contrary, code-level security is

also facing difficulties in changing some dependencies in the

monolithic architecture. But in the microservice architecture,

developers can implement several checkpoints to validate

security. Software performance can be measured using

several aspects such as response time, throughput, and
software capacity. Most of the real-time systems look for less

response time. On the other hand, they struggle with the

microservice architecture as microservice architecture is

deployed in the distributed environment, and service to

service communication will add some latency to the response

time [35].

But when we consider the throughput, microservice

architecture provides massive throughput with architectural

behavior. Single microservice can handle an extensive

workload because of its independent behavior. Hence,

microservice is better capacity-wise in comparison to the
monolithic system. For such reasons, a lot of people move

their systems towards a microservice architecture. Many

companies initiate the process of frequent software releases.

In the monolithic architecture, all the modules are tightly

coupled to each other. Hence, adding new features or

patching existing logic takes a lot of engineering effort.

When converting that effort to the cost, it is considerably

larger in comparison to project cost. In the actual business

context, software companies need to provide solutions within

the shortest time frame and the lowest cost to win over the

business. That is very challenging in monolithic based
systems. But with the microservice architecture, people can

easily patch and adapt to the new requirements within short

cycles with the leverage of Continuous Integration (CI) and

Continuous Deployment (CD) pipelines [36]. With the

microservice architecture, software companies can run an

agile-based software development process that can cater to

the frequent requirement changes.

B. What are the Architectural Patterns used in

Microservice Architecture with Technological

Advancement?

Publication References

Journal [37], [38], [39]

Conference [40], [41], [42], [43], [44], [45], [46],

[47], [48], [49], [50], [51], [52], [53],

[54], [55], [56], [57], [58]

Microservice architecture is one of the emerging

architectures in the software industry. With the motivation

towards microservice architecture, software companies

convert their monolithic-based software and service-oriented

architecture software to microservice-based architecture.

Several frameworks have been developed for microservice
development in various programming languages. Those

frameworks expose the interfaces to use and write the

business logic to the users. Underline framework

implementation helps establish several features to

microservice such as security features, resiliency,

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

227

asynchronous programming, cloud enablement, etc. By

choosing the framework, developers need to speculate

several factors like framework maturity, in-build features,

development support, performance, and software license. In

consideration to all these factors, choose the most used and
popular microservice development framework to perform the

systematic reviews such as Java base Spring Boot framework

[59], Go-based Go Micro framework [60], Node.js based

Molecular framework [61], and Java bases, Vert. x

framework [62].

Table 1. Microservice framework comparison

Fig. 3 Quality attributes ranking in microservice

Fig. 4 Architectural patterns in a microservice architecture

Based on the above table 1, Spring Boot is the most
popular and the number one trending microservice

framework of the world, that comprises the most critical

quality attributes. Go-micro-framework is also turning out to

be famous in the industry because of its performance. Vert. X

microservice framework does not give proper flexibility to

bring the software quality attributes as required [63]. It is a

slowly evolving framework compared to the Spring boot.

But, Vert. X is implemented using the multi reactor pattern

and therefore possesses good performance. The molecular

framework is not widely popular in the microservice

development industry. However, according to its
architecture, it is suitable for high-performance

microservices. World-famous multimillionaire companies

have transited their systems to the microservice-based

architecture to get more advantages in terms of the product,

cost, and the process. Services in the microservice

architecture develop, deploy and execute independently.

Thus service needs proper technology to perform efficiently.

Architectural patterns are more important to gain quality

attributes of the system. If correct architectural patterns are

not followed according to the software domain, will fail to

0

1

2

3

4

5

Quality Attribute Rating

Spring Boot Go Micro Moleculer Vert.X

Spring

Boot Go Micro Moleculer Vert.X

Founded Date

01.10.
2002

06.12.
2017

17.02
2017

10.10.
2011

Contributors 831 135 1721 212

Github Star 56800 16600 4600 12300

Releases 204 92 99 123

Available

Documentation

(1-5 Rating) 5 3 4 2

Stack

Overflow Tags 25 2 2 10

Dependency

Management

Maven,
Gradle,

Ant Go Build npm

Maven,
Gradle,
Kotlin

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

228

deliver high-quality software services to the client.

When considering the architectural pattern for the

microservices, one needs to consider the following factors.

 Software solution understandability

 Modifiability

 Resiliency

 Performance

 Continuous deployment of the software solution

 Scalability

 Emerging technology adaptation

 Independency

In the software industry, several architectural patterns

can be used to ensure the above-mentioned factors.

Segregated the patterns into several areas to achieve the

above factors (figure 4). There are various architecture

patterns-based quality attributes in the systems [64]. Service

decomposition patterns illustrate how the system can be

independent of several services. Monolithic system holders

can use this pattern to segregate their services to maximize

the application performance. To use this pattern, architects
need to have proper knowledge of the business domain, as

well as the technology associated with the domain. The

method of interacting with the data is critical to the system.

There are several microservice architecture patterns defined

to design the data management. Before designing the data

management pattern, you need to study the scenarios of

scaling the microservices, the requirement of different data

sources such as RDBMS, NoSQL, data retentions, and the

data flow. Based on the business requirement, architects can

choose the data management patterns. Many studies show

that event sourcing patterns are not good for transactional
management business scenarios [65]. When scrutinizing

modern trends of microservices, containerized deployments

are more popular in the world. Certain people opt for server-

less kind of solutions for less computational services. Cloud

providers are also inventing server-less platform features as

well as containerization supports. The most famous

architectural pattern is the API-based pattern. Because most

of the microservice expose through the API manager to

governance the APIs which are exposed through the

microservices. New API management platforms are invented

for the software industry daily. People move to microservice

architecture to attain better scalability in their services.
Microservices can be scaled into many services based on the

traffic load, and if the traffic is low, such a service can be

brought down into the optimal value on demand. It is crucial

to make configuration changes in and out of each scale. In

such a scenario, can use service discovery patterns. Most

software firms are currently concerned about software

resilience. Resilience pattern is responsible for preventing the

cascading failure to other services from one service network

or service failure. The renowned pattern for resilience is the

circuit breaker pattern.

C. What are the Main Motivations to Convert the

Monolithic Application to Microservice Architecture?

Publication References

Journal [66], [67], [68], [69], [70]

Conference [71], [72], [73], [74], [75], [76],

[77]

Many people move to microservices to gain more

advantages for their business and software. But,

microservices are not the perfect match for every software

domain. Some architects, developers, support teams, and
other stakeholders have pains in using microservice

architecture. Technology has gradually improved to resolve

these challenges; yet, some of the pains could not be

mitigated by the current technological advancements or

solutions. This paper elaborates the findings on the challenge

when using microservice architecture. Segregate the

challenges into several phases such as design level

challenges, implementation level challenges, and support

level challenges.

There are two main types of microservice design. The
first one is designing the microservice from the new business

requirement and new solutions. Another type is converting

monolithic systems or service-oriented traditional systems to

microservice architecture. The first challenge in developing a

microservice is to determine the scope of one service in a

microservice architecture. The scope can vary from business

domain to domain, software type, functional and non-

functional requirements. Yet, a concise theory is not brought

forward for the separation of microservices. Some

researchers demonstrate that service should only need focus

on the specific business flow; while another group of

researchers suggests that service scope should be bound to
one application domain. In the software industry, the scope

of microservice is segregated into programming operational

service on the overall microservice architecture such as DB

service, messaging service, file read/write service, etc. Fast-

growing and well-established frameworks like Spring boot

are also built to support the industry practice. Hence, a clear

principle to define the microservice scope is still ambiguous.

Amidst the absence of a proper scope definition, it is

challenging to contemplate the size of the microservice.

Hence, based on that, can’t determine the connection points

within microservice architecture.

At the implementation level, the developer needs to

detect the quality attribute. Services in the microservice

architecture are deployed in the distributed environment.

This could be different networks, multi-cloud or hybrid

clouds. Therefore, data needs to be transferred to each

service to complete the business requirement, which

ultimately leads to vulnerabilities in the entire software

solution. Data security across the microservice is a big

concern in the microservice architecture. It is a complicated

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

229

assignment to preserve the integrity, confidentiality, and

privacy of business data. Some frameworks support

validating the security tokens such as JSON Web Token.

But, validating the JWT token on each service will lead to an

overall performance issue [78].

Another main concern behind the microservice is the

application performance in terms of latency [79]. There are a

lot of protocols, for instance, HTTP/HTTPS, gRPC, JMS,

AMQP, and web sockets to service-to-service

communication. Some protocols generate more complexities

to the microservice architecture, while some do not support

the cloud-native environments. Based on the domain of the

business, service-to-service communication can be

synchronous or asynchronous. Most of the developers use the

HTTP/HTTPS protocol for service-to-service

communication. Because of the latency issues, architects do
not try to define the services accurately in the microservice

architecture.

Nowadays, several languages are present to write the

deployment scripts such as Ansible for server deployments

and configurations, puppet and the helm chart for the

Kubernetes deployment, and terraform for cloud-level

deployments. In the microservice architecture, one single

software solution has several services and needs to write

deployment scripts to every microservice. Software

deployment will take considerable time compared to

traditional software systems. Introducing the CI/CD pipeline

can reduce the time of deployment, but it will take additional

effort and cost.

Supporting the microservice architecture is very
challenging because of the service distribution. If

microservices don’t have the request tracing mechanism

implemented, then support engineering will be facing a

nightmare. They would have to reach each microservice and

check on the root cause for the issue. Bringing the fault

tolerance to the microservice architecture is crucial as many

services are involved with the distributed environment. Each

path needs to test for fail resilience and should ensure fault

tolerance. The production system would need to have very

strong monitoring. In a microservice architecture, enabling

monitoring needs more effort and resources due to the small
number of services deployed in the distributed environment.

V. TAXONOMY CLARIFICATION ON

MICROSERVICES TECHNOLOGY TRENDS

Researchers have chosen 3 fundamental stages in the

software lifecycle to construct the taxonomy [80]

development, deployment, and operational (figure 5). After a
critical review, identified the three main categories that

microservice research is moving towards in near future AI,

cloud, and architecture.

Fig. 5 Taxonomy on microservices future trends
Most of the monolithic systems are moved to

microservice-based architecture to bring quality attributes to

the system. Nowadays chief technology offices around the

world's KPI is to bring the business software into the cloud-

native platform. When moving to the cloud-native

architecture, cost and application performance are the biggest

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

230

limitations. To get better performance with low cost in the

cloud-native environment, the application should possess the

capability to run on low computational specifications and

need to perform with better results. Most of the microservice

frameworks are now built according to the cloud-native
architecture concepts. The review found that the most

famous JAVA Spring framework massively supports cloud-

native development. As an example, spring-cloud supports

the GCP / Azure / AWS / Alibaba cloud Integration for

microservices. Go micro kind of microservice frameworks

enable high performance with the lightweight applications to

achieve low cost. Other frameworks are actively working on

developing cloud-native support libraries. The future of the

microservice is mainly based on the cloud-native

environment.

Most of the microservice-related research mainly
focuses on the cloud-native concepts and integration with

artificial intelligence to the microservice architecture. By

critically evaluating the ongoing research, found out that

most of the machine learning and neural network

technologies are used for the predictive analysis in proactive

scaling. But those kinds of implementations are needed for

high-end computational resources. Or else, it is mandatory to

use the cloud services (which are inclusive of certain costs).

AIOps concepts mainly focus on microservices [81].

Most of the cloud providers invent serverless architecture

services and function as a service. Cloud consumers are
moving towards serverless because it provides on-demand

computing resources. Also, it is very beneficial for the

industry cost-wise. Researchers have introduced the

architectural pattern for serverless architecture with several

reference architectures for some domains. The entire

application stack will be decentralized in the function as a

service concept. Intelligence-driven microservices with the

in-memory resources that conduct real-time analytics will be

the trend in this concept. On the other hand, people try to

deploy their solutions in hybrid cloud environments. The

reason behind moving to hybrid cloud deployment is to

minimize network latency based on geographical areas and to
gain several cloud vendor services.

The industry is rapidly moving to microservice

architecture to associate with considerable challenges as

well. The main challenge is the performance in terms of

latency because of the inter-service communication between

microservice in the distributed environment. Skill for

development of the microservices is another channel in the

software industry. When the application is deployed into the

production operation, the troubleshooting with the tracing is

quite complicated in the microservice architecture. But
currently, some of the tools are being developed to sort out

challenges like Zipkin and Jager [82].

V. CONCLUSION AND FUTURE WORK

This systematic review extensively discusses the

microservices using the three research questions by

providing supportive data. Used the PRISMA model to

conduct this systematic review. Research questions are
chosen to capture all aspects of the microservice research

area. Most people are moving their monolithic system to

microservice architecture to achieve the quality attributes

such as scalability, performance, security, maintainability,

etc. In the current context, with the emergence of world

pandemic situations, most of the services are served via

online platforms and a lot of users are moving towards the

online platforms to get the services.

Most software companies tend to develop scalable

microservice to cater to a considerable workload. To achieve

complete benefits of the cloud services application,

developers need to change the application architecture to the
cloud-native microservice architecture. The review found

that most of the software frameworks are now supporting

microservice development. Researchers introduce modern

architectural patterns for microservice development in terms

of integration patterns, data management, service

segregation, traffic routing, and deployment patterns. Since

microservice technology is a mature concept, most

researchers now focus on developing the framework,

patterns, and new technology advancement of the

microservice concept. Software architecture-related future

research tends to focus on the microservice integration
patterns on distributed cloud environments. With the

technological advancement and the architectural patterns,

some of the challenges are overcome but they are still faced

with several issues in the microservice architecture. The

main concern of the microservice architecture is the latency

because of the distributed services. Another problem is the

troubleshooting issue on the microservice, which is

challenging for the support engineers. Continuous research of

this to find a solution for the performance issue in the

microservice architecture. With the selected research

questions, can comprehensively go through the microservice

concepts and their related research areas.

The review identified the critical areas that the future of

the microservice-related research is focused on and

developed the taxonomy based on that. The researchers who

are interested in the AI field can focus on the microservice

proactive scaling in the cloud and containerization level

using AI technologies. AIOps is also a new trend in the

microservice operational layer which is used to identify the

possible faults using advanced technologies of AI.

Containerization and serverless technologies adaptation is the

most trending microservice research area for people who are
focusing on cloud-related research. Soon, most of the

systems may move towards cloud-based systems. Hence,

applications need to be micro-level to achieve all the features

of the cloud. Therefore, future research needs to focus on the

cloud-native development of the microservice architecture

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

231

and should prioritize resolving the problems identified in this

research. Enterprise-grade software has a proper

observability stack when moving to the microservices

architecture. New research areas are open to research to

further improve the microservice observability in the
distributed cloud environment. Can conclude that

microservices are evolving in countless areas to cater to the

current user trends.

REFERENCES
[1] L. O’Brien, P. Merson, and L. Bass, Quality Attributes for Service-

Oriented Architectures, in International Workshop on Systems

Development in SOA Environments (SDSOA’07: ICSE Workshops

2007), Minneapolis, MN, USA. (2007) 3–3.

doi: 10.1109/SDSOA.2007.10.

[2] N. Alshuqayran, N. Ali, and R. Evans, A Systematic Mapping Study in

Microservice Architecture, in 2016 IEEE 9th International Conference

on Service-Oriented Computing and Applications (SOCA), Macau,

China. (2016) 44–51. doi: 10.1109/SOCA.2016.15.

[3] N. Kratzke, A Brief History of Cloud Application Architectures, Appl.

Sci. 8(8) (2018) 1368. doi: 10.3390/app8081368.

[4] S. Hassan, R. Bahsoon, and R. Kazman, Microservice Transition and

its Granularity Problem: A Systematic Mapping Study, Softw. Pract.

Exp. 50(9) (2020) 1651–1681. doi: 10.1002/spe.2869.

[5] H. Vural, M. Koyuncu, and S. Guney, A Systematic Literature Review

on Microservices, in Computational Science and its Applications –

ICCSA. 10409 (2017).

[6] O. Gervasi, B. Murgante, S. Misra, G. Borruso, C. M. Torre, A. M. A.

C. Rocha, D. Taniar, B. O. Apduhan, E. Stankova, and A. Cuzzocrea,

Eds. Cham: Springer International Publishing. (2017) 203–217. doi:

10.1007/978-3-319-62407-5_14.

[7] James Lewis, Microservices, Martinfowler.com. [Online]. Available:

https://martinfowler.com/articles/microservices.html

[8] C. Pahl and P. Jamshidi, Microservices: A Systematic Mapping Study:

in Proceedings of the 6th International Conference on Cloud

Computing and Services Science, Rome, Italy. (2016) 137–146.

doi: 10.5220/0005785501370146.

[9] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, The Pains and

Gains of Microservices: A Systematic Grey Literature Review, J. Syst.

Softw. 146 (2018) 215–232. doi: 10.1016/j.jss.2018.09.082.

[10] Vilnius Gediminas Technical University, Saultekio al. 11, LT-10223

Vilnius, O. Pozdniakova, D. Mažeika, and Vilnius Gediminas

Technical University, Saultekio al. 11, LT-10223 Vilnius, Systematic

Literature Review of the Cloud-ready Software Architecture, Balt. J.

Mod. Comput. 5(1) (2017) 124–135. doi: 10.22364/bjmc.2017.5.1.08.

[11] J. Opara-Martins, R. Sahandi, and F. Tian, Critical Analysis of Vendor

Lock-In and its Impact on Cloud Computing Migration: A Business

Perspective, J. Cloud Comput. 5(1) (2016) 4.

doi: 10.1186/s13677-016-0054-z.

[12] J. Ghofrani and D. Lübke, Challenges of Microservices Architecture:

A Survey on the State of The Practice. 8.

[13] IEEE Xplore. [Online]. Available:

www.ieeexplore.ieee.org/Xplore/home.jsp

[14] ACM Digital Library. [Online]. Available: www.dl.acm.org/

[15] CiteSeerX. [Online]. Available:

www.citeseerx.ist.psu.edu/index;jsessionid=16DB95ECCF154FE7425

AFA00F9934740

[16] ScienceDirect.com | Science, Health and Medical Journals, Full-Text

Articles and Books. [Online]. Available:

www.sciencedirect.com/

[17] M. J. Page et al., PRISMA 2020 Explanation and Elaboration: Updated

Guidance and Exemplars for Reporting Systematic Reviews, BMJ.

(2021) 160. doi: 10.1136/bmj.n160.

[18] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M.

Mazzara, From Monolithic to Microservices: An Experience Report

from the Banking Domain, IEEE Softw. 35(3) (2018) 50–55. doi:

10.1109/MS.2018.2141026.

[19] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, Does Migrating

a Monolithic System to Microservices Decrease the Technical Debt? J.

Syst. Softw. 169 (2020) 110710.

doi: 10.1016/j.jss.2020.110710.

[20] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, From Monolithic

Systems to Microservices: An Assessment Framework, Inf. Softw.

Technol. 137 (2021) 106600. doi: 10.1016/j.infsof.2021.106600.

[21] O. Al-Debagy and P. Martinek, A Comparative Review of

Microservices and Monolithic Architectures, in 2018 IEEE 18th

International Symposium on Computational Intelligence and

Informatics (CINTI), Budapest, Hungary. (2018) 000149–00154.

doi: 10.1109/CINTI.2018.8928192.

[22] M. Villamizar et al., Evaluating the Monolithic and the Microservice

Architecture Pattern to Deploy Web Applications in the Cloud, In

2015 10th Computing Colombian Conference (10CCC), Bogota,

Colombia. (2015) 583–590.

doi: 10.1109/ColumbianCC.2015.7333476.

[23] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, Extracting

Candidates of Microservices from Monolithic Application Code, in

2018 25th Asia-Pacific Software Engineering Conference (APSEC),

Nara, Japan. (2018) 571–580. doi: 10.1109/APSEC.2018.00072.

[24] G. Mazlami, J. Cito, and P. Leitner, Extraction of Microservices from

Monolithic Software Architectures, in 2017 IEEE International

Conference on Web Services (ICWS), Honolulu, HI, USA. (2017)

524–531. doi: 10.1109/ICWS.2017.61.

[25] A. Selmadji, A.-D. Seriai, H. L. Bouziane, R. Oumarou Mahamane, P.

Zaragoza, and C. Dony, From Monolithic Architecture Style to

Microservice one Based on a Semi-Automatic Approach, in 2020

IEEE International Conference on Software Architecture (ICSA),

Salvador, Brazil. (2020) 157–168.

doi: 10.1109/ICSA47634.2020.00023.

[26] J. Kazanavicius and D. Mazeika, Migrating Legacy Software to

Microservices Architecture, in 2019 Open Conference of Electrical,

Electronic and Information Sciences (eStream), Vilnius, Lithuania.

(2019) 1–5. doi: 10.1109/eStream.2019.8732170.

[27] V. Velepucha and P. Flores, Monoliths to microservices - Migration

Problems and Challenges: A SMS, in 2021 Second International

Conference on Information Systems and Software Technologies

(ICI2ST), Quito, Ecuador. (2021) 135–142.

doi: 10.1109/ICI2ST51859.2021.00027.

[28] D. Kuryazov, D. Jabborov, and B. Khujamuratov, Towards

Decomposing Monolithic Applications into Microservices, in 2020

IEEE 14th International Conference on Application of Information and

Communication Technologies (AICT), Tashkent, Uzbekistan. (2020)

1–4. doi: 10.1109/AICT50176.2020.9368571.

[29] S. Sarkar, G. Vashi, and P. P. Abdulla, Towards Transforming an

Industrial Automation System from Monolithic to Microservices, in

2018 IEEE 23rd International Conference on Emerging Technologies

and Factory Automation (ETFA), Turin. (2018) 1256–1259.

doi: 10.1109/ETFA.2018.8502567.

[30] S. Eski and F. Buzluca, An Automatic Extraction Approach: Transition

to Microservices Architecture from Monolithic Application, in

Proceedings of the 19th International Conference on Agile Software

Development: Companion, Porto Portugal. (2018) 1–6.

doi: 10.1145/3234152.3234195.

[31] Z. Ren et al., Migrating Web Applications from Monolithic Structure

to Microservices Architecture, in Proceedings of the Tenth Asia-

Pacific Symposium on Internetware, Beijing China. (2018) 1–10.

doi: 10.1145/3275219.3275230.

[32] A. K. Kalia et al., Mono2Micro: An AI-based Toolchain for Evolving

Monolithic Enterprise Applications to a Microservice Architecture, in

Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of

Software Engineering, Virtual Event USA. (2020) 1606–1610.

doi: 10.1145/3368089.3417933.

[33] S. Weerasinghe and I. Perera, An Exploratory Evaluation of Replacing

ESB with Microservices in Service-Oriented Architecture, Presented at

the International Research Conference on Smart Computing and

Systems Engineering. (2021).

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

232

[34] T. Ueda, T. Nakaike, and M. Ohara, Workload characterization for

microservices, in 2016 IEEE International Symposium on Workload

Characterization (IISWC). (2016) 1–10.

doi: 10.1109/IISWC.2016.7581269.

[35] A. de Camargo, I. Salvadori, R. dos S. Mello, and F. Siqueira, An

Architecture to Automate Performance Tests on Microservices, in

Proceedings of the 18th International Conference on Information

Integration and Web-Based Applications and Services, New York,

NY, USA. (2016) 422–429. doi: 10.1145/3011141.3011179.

[36] M. Gribaudo, M. Iacono, and D. Manini, Performance Evaluation of

Replication Policies in Microservice Based Architectures, Electron.

Notes Theor. Comput. Sci. 337 (2018) 45–65.

doi: 10.1016/j.entcs.2018.03.033.

[37] A. Balalaie, A. Heydarnoori, and P. Jamshidi, Microservices

Architecture Enables DevOps: Migration to a Cloud-Native

Architecture, IEEE Softw. 33(3) (2016) 42–52.

doi: 10.1109/MS.2016.64.

[38] G. Marquez, F. Osses, and H. Astudillo, Review of Architectural

Patterns and Tactics for Microservices in Academic and Industrial

Literature, IEEE Lat. Am. Trans. 16(9) (2018) 2321–2327.

doi: 10.1109/TLA.2018.8789551.

[39] H. Suryotrisongko, D. P. Jayanto, and A. Tjahyanto, Design and

Development of Backend Application for Public Complaint Systems

Using Microservice Spring Boot, Procedia Comput. Sci. 124 (2017)

736–743. doi: 10.1016/j.procs.2017.12.212.

[40] H. Dinh-Tuan and M. Mora-Martinez, Development Frameworks for

Microservice-Based Applications: Evaluation and Comparison. 9.

[41] T. de Oliveira Rosa, J. F. L. Daniel, E. M. Guerra, and A. Goldman, A

Method for Architectural Trade-Off Analysis Based on Patterns:

Evaluating Microservices Structural Attributes, in Proceedings of the

European Conference on Pattern Languages of Programs 2020, Virtual

Event Germany. (2020) 1–8. doi: 10.1145/3424771.3424809.

[42] J. Dobaj, J. Iber, M. Krisper, and C. Kreiner, A Microservice

Architecture for the Industrial Internet-of-Things, in Proceedings of the

23rd European Conference on Pattern Languages of Programs, Irsee

Germany. (2018) 1–15. doi: 10.1145/3282308.3282320.

[43] G. Marquez and H. Astudillo, Actual Use of Architectural Patterns in

Microservices-Based Open Source Projects, in 2018 25th Asia-Pacific

Software Engineering Conference (APSEC), Nara, Japan. (2018) 31–

40. doi: 10.1109/APSEC.2018.00017.

[44] M. K and M. P, Evaluation of Data Storage Patterns in Microservices

Architecture, in 2020 IEEE 15th International Conference of System of

Systems Engineering (SoSE), Budapest, Hungary. (2020) 373–380.

doi: 10.1109/SoSE50414.2020.9130516.

[45] F. Osses, G. Márquez, and H. Astudillo, Exploration of Academic and

Industrial Evidence about Architectural Tactics and Patterns in

Microservices, in Proceedings of the 40th International Conference on

Software Engineering: Companion Proceedings, Gothenburg Sweden.

(2018) 256–257.

doi: 10.1145/3183440.3194958.

[46] F. Montesi and J. Weber, From the Decorator Pattern to Circuit

Breakers in Microservices, in Proceedings of the 33rd Annual ACM

Symposium on Applied Computing, Pau France. (2018) 1733–1735.

doi: 10.1145/3167132.3167427.

[47] H. Harms, C. Rogowski, and L. Lo Iacono, Guidelines for Adopting

Frontend Architectures and Patterns in Microservices-Based Systems,

in Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, Paderborn Germany. (2017) 902–907.

doi: 10.1145/3106237.3117775.

[48] G. Márquez and H. Astudillo, Identifying Availability Tactics to

Support Security Architectural Design of Microservice-Based

Systems, in Proceedings of the 13th European Conference on Software

Architecture - ECSA ’19, Paris, France. 2 (2019) 123–129.

doi: 10.1145/3344948.3344996.

[49] F. Li et al., Microservice Patterns for the Life Cycle of Industrial Edge

Software, in Proceedings of the 23rd European Conference on Pattern

Languages of Programs, Irsee Germany. (2018) 1–11.

doi: 10.1145/3282308.3282313.

[50] R. Petrasch, Model-Based Engineering for Microservice Architectures

Using Enterprise Integration Patterns for Inter-Service

Communication, in 2017 14th International Joint Conference on

Computer Science and Software Engineering (JCSSE),

Nakhonsithammarat, Thailand. (2017) 1–4.

doi: 10.1109/JCSSE.2017.8025912.

[51] M. Tusjunt and W. Vatanawood, Refactoring Orchestrated Web

Services into Microservices using Decomposition Pattern, in 2018

IEEE 4th International Conference on Computer and Communications

(ICCC), Chengdu, China. (2018) 609–613.

doi: 10.1109/CompComm.2018.8781036.

[52] A. Akbulut and H. G. Perros, Software Versioning with Microservices

through the API Gateway Design Pattern, in 2019 9th International

Conference on Advanced Computer Information Technologies (ACIT),

Ceske Budejovice, Czech Republic. (2019) 289–292.

doi: 10.1109/ACITT.2019.8779952.

[53] S. Vergara, L. Gonzalez, and R. Ruggia, Towards Formalizing

Microservices Architectural Patterns with Event-B, in 2020 IEEE

International Conference on Software Architecture Companion (ICSA-

C), Salvador, Brazil. (2020) 71–74.

doi: 10.1109/ICSA-C50368.2020.00022.

[54] S. du Plessis, B. Mendes, and N. Correia, A Comparative Study of

Microservices Frameworks in IoT Deployments, in 2021 International

Young Engineers Forum (YEF-ECE), Caparica / Lisboa, Portugal.

(2021) 86–91.

doi: 10.1109/YEF-ECE52297.2021.9505049.

[55] D. Lu, D. Huang, A. Walenstein, and D. Medhi, A Secure

Microservice Framework for IoT, in 2017 IEEE Symposium on

Service-Oriented System Engineering (SOSE), San Francisco, CA,

USA. (2017) 9–18. doi: 10.1109/SOSE.2017.27.

[56] X. Liu, S. Jiang, X. Zhao, and Y. Jin, A Shortest-Response-Time

Assured Microservices Selection Framework, in 2017 IEEE

International Symposium on Parallel and Distributed Processing with

Applications and 2017 IEEE International Conference on Ubiquitous

Computing and Communications (ISPA/IUCC), Guangzhou. (2017)

1266–1268. doi: 10.1109/ISPA/IUCC.2017.00192.

[57] R. Manciola Meloca, R. Ré, and A. Luis Schwerz, An Analysis of

Frameworks for Microservices, in 2018 XLIV Latin American

Computer Conference (CLEI). (2018) 542–551.

doi: 10.1109/CLEI.2018.00071.

[58] Y. Wang, L. Cheng, and X. Sun, Design and Research of Microservice

Application Automation Testing Framework, in 2019 International

Conference on Information Technology and Computer Application

(ITCA), Guangzhou, China. (2019) 257–260.

doi: 10.1109/ITCA49981.2019.00063.

[59] L. Liu, X. He, Z. Tu, and Z. Wang, MV4MS: A Spring Cloud-Based

Framework for the Co-Deployment of Multi-Version Microservices, in

2020 IEEE International Conference on Services Computing (SCC),

Beijing, China. (2020) 194–201. doi: 10.1109/SCC49832.2020.00033.

[60] Spring Boot. [Online]. Available: www.spring.io/projects/spring-boot

[61] (2021). A. Aslam, Go Micro. Accessed. [Online]. Available:

https://github.com/asim/go-micro

[62] Molecular - Progressive Microservices Framework for Node.js.

[Online]. Available: www.Moleculer.Services/Index.Html

[63] (2021). Eclipse Vert.x. [Online]. Available: https://vertx.io/

[64] S. Brenner, T. Hundt, G. Mazzeo, and R. Kapitza, Secure Cloud Micro

Services Using Intel SGX. (2017) 177–191.

doi: 10.1007/978-3-319-59665-5_13.

[65] Chris Richardson, Microservices Patterns. Manning Publications.

(2018).

[66] (2021). A Whole System Based on Event Sourcing is an Anti-Pattern.

InfoQ. [Online]. Available:

www.infoq.com/news/2016/04/event-sourcing-anti-pattern/.

[67] C. Esposito, A. Castiglione, and K.-K. R. Choo, Challenges in

Delivering Software in the Cloud as Microservices, IEEE Cloud

Comput. 3(5) (2016) 10–14. doi: 10.1109/MCC.2016.105.

[68] F. Rademacher, J. Sorgalla, and S. Sachweh, Challenges of Domain-

Driven Microservice Design: A Model-Driven Perspective, IEEE

Softw. 35(3) (2018) 36–43. doi: 10.1109/MS.2018.2141028.

Sidath Weerasinghe & Indika Perera / IJETT, 70(3), 222-233, 2022

233

[69] B. Götz, D. Schel, D. Bauer, C. Henkel, P. Einberger, and T.

Bauernhansl, Challenges of Production Microservices, Procedia CIRP.

67 (2018) 167–172. doi: 10.1016/j.procir.2017.12.194.

[70] N. C. Mendonca, P. Jamshidi, D. Garlan, and C. Pahl, Developing

Self-Adaptive Microservice Systems: Challenges and Directions, IEEE

Softw. 38(2) (2021) 70–79. doi: 10.1109/MS.2019.2955937.

[71] T. Cerny et al., On Code Analysis Opportunities and Challenges for

Enterprise Systems and Microservices, IEEE Access. 8 (2020)

159449–159470. doi: 10.1109/ACCESS.2020.3019985.

[72] M. Kleehaus and F. Matthes, Challenges in Documenting

Microservice-Based IT Landscape: A Survey from an Enterprise

Architecture Management Perspective, in 2019 IEEE 23rd

International Enterprise Distributed Object Computing Conference

(EDOC), Paris, France. (2019) 11–20.

doi: 10.1109/EDOC.2019.00012.

[73] R. M. Munaf, J. Ahmed, F. Khakwani, and T. Rana, Microservices

Architecture: Challenges and Proposed Conceptual Design, in 2019

International Conference on Communication Technologies

(ComTech), Rawalpindi, Pakistan. (2019) 82–87.

doi: 10.1109/COMTECH.2019.8737831.

[74] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, Microservices

Migration in Industry: Intentions, Strategies, and Challenges, in 2019

IEEE International Conference on Software Maintenance and

Evolution (ICSME), Cleveland, OH, USA. (2019) 481–490.

doi: 10.1109/ICSME.2019.00081.

[75] S. Eismann, C.-P. Bezemer, W. Shang, D. Okanović, and A. van

Hoorn, Microservices: A Performance Tester’s Dream or Nightmare?,

in Proceedings of the ACM/SPEC International Conference on

Performance Engineering, Edmonton AB Canada. (2020) 138–149.

doi: 10.1145/3358960.3379124.

[76] T. Yarygina and A. H. Bagge, Overcoming Security Challenges in

Microservice Architectures, in 2018 IEEE Symposium on Service-

Oriented System Engineering (SOSE), Bamberg. (2018) 11–20.

doi: 10.1109/SOSE.2018.00011.

[77] I. Pigazzini, F. A. Fontana, V. Lenarduzzi, and D. Taibi, Towards

Microservice Smell Detection, in Proceedings of the 3rd International

Conference on Technical Debt, Seoul Republic of Korea. (2020) 92–

97. doi: 10.1145/3387906.3388625.

[78] W. K. G. Assunção, J. Krüger, and W. D. F. Mendonça, Variability

Management Meet Microservices: Six Challenges of Re-Engineering

Microservice-Based Webshops, in Proceedings of the 24th ACM

Conference on Systems and Software Product Line: Volume A -

Volume A, Montreal Quebec Canada. (2020) 1–6.

doi: 10.1145/3382025.3414942.

[79] Y. Sun, S. Nanda, and T. Jaeger, Security-as-a-Service for

Microservices-Based Cloud Applications, in 2015 IEEE 7th

International Conference on Cloud Computing Technology and

Science (CloudCom). (2015) 50–57. doi: 10.1109/CloudCom.2015.93.

[80] N. Kratzke and P.-C. Quint, Investigation of Impacts on Network

Performance in the Advance of a Microservice Design, in Cloud

Computing and Services Science, Cham. (2017) 187–208.

doi: 10.1007/978-3-319-62594-2_10.

[81] T. Saravanan, S. Jha, G. Sabharwal, and S. Narayan, Comparative

Analysis of Software Life Cycle Models, in 2020 2nd International

Conference on Advances in Computing, Communication Control and

Networking (ICACCCN). (2020) 906–909.

doi: 10.1109/ICACCCN51052.2020.9362931.

[82] Y. Dang, Q. Lin, and P. Huang, AIOps: Real-World Challenges and

Research Innovations, in 2019 IEEE/ACM 41st International

Conference on Software Engineering: Companion Proceedings (ICSE-

Companion), Montreal, QC, Canada. (2019) 4–5.

doi: 10.1109/ICSE-Companion.2019.00023.

[83] M. S D and D. M., Distributed Request Tracing using Zipkin and

Spring Boot Sleuth, Int. J. Comput. Appl. 175 (2020) 35–37.

doi: 10.5120/ijca2020920617.

	Review Article

