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Abstract - For the prediction and classification of Ovarian 

cancer's four subtypes using histopathological pictures, 

this article uses a deep convolutional neural network 

(DCNN). With a dismal survival rate, Ovarian Cancer is 

the fifth most common and most aggressive kind of 
gynecologic cancer. Serous, mucinous, endometroid, and 

clear cell are the four major subtypes of ovarian epithelial 

cancer. A new trend in medical picture analysis is the use 

of computers to assist in the detection of various diseases 

such as cancer, brain tumors, seizures, and Alzheimer's. 

An improved DCNN-based architecture for detecting 

benign and malignant cells has been developed and 

implemented in this paper, as shown in the figure. A 

subtype can be added if it is malignant. The researchers 

used 500 histopathological pictures from The Cancer 

Genome Atlas (TCGA-OV) collection, which had been 
made publically available, to create a total of 24,742 new 

images. By augmenting the photos used as training data, 

the proposed classification model, called KK-Net, went 

from 75% to 91% accuracy. This model's performance was 

evaluated using the AUC-ROC curve (Area under the 

Curve - Receiver Operating Characteristics) statistical 

analysis approach. An AUC-ROC curve value of 95 

percent was reached on average. On top of that, we used 

AlexNet, VGG-16, VGG-19, and GoogleNet to test the 

suggested model's performance against the state-of-the-art 

approaches. Pathologists will be able to detect ovarian 

cancer in its earliest stages thanks to this newly 
established unique design, which can serve as a standard 

for predicting and classifying the disease. 

 

Keywords - Artificial Intelligence, Machine learning, 

Predictive methods, Supervised learnings, Image 

processing. 

I. INTRODUCTION 

The sixth-leading cause of death from cancer in 

women is ovarian cancer (OC). Women with OC are 

frequently unaware of their condition until they exhibit 

symptoms such as bloating, pelvic pain, weight gain, and 

enlargement of their abdomens [1]. However, in most 

cases, it is too late because the disease has spread to other 

parts of the body and is difficult to treat. Women's 

reproductive systems undergo significant structural and 

functional changes in the ovary over time. Menopausal 

women and those with OC in their families have a higher 

risk of developing the condition. It's difficult to catch an 

OC in its early stages [1]. Compared to other 

gynecological tumors, OC is the most common cause of 

death [2]. To increase the likelihood of early OC detection, 
numerous imaging modalities and serum indicators have 

been used in the study [3-5]. Biomarkers for ovarian 

cancer have shown great promise, but several drawbacks, 

such as missed detections, are time-consuming and require 

highly trained doctors. For the detection of Ovarian tumors, 

Serum Carbohydrate Antigen 125 (CA125) is one of the 

most commonly employed biomarkers. CA-125 

concentrations may be increased in the blood of certain 

patients with OC in the early stages, and in the later stages, 

more than 80% of women [6]. Imaging methods such as 

ultrasound imaging, MRI, and positron emission 
tomography (PET) are employed in the detection and 

characterization of OC tumors in humans. Machine 

learning methods like linear support vector machine 

(SVM), random forest, ensemble SVM, logistic regression, 

or boosting [7] don't show much promise for classification 

accuracy. Ovarian cancer may be diagnosed earlier if a 

biomarker and machine learning algorithm are used 

together [7, 8]. [7, 8]. Early detection of ovarian cancer has 

been attempted in the past using supervised machine 

learning algorithms to classify images into either 

malignant or non-cancerous categories using information 

extracted manually. Textural and pathological features 
were added to a support vector machine to categorize 

thyroid nodules, as was done by Chen et al. [9]. Ultrasound 

pictures were used to detect graves' disease using SVM by 

Chang et al [10]. It is the goal of Jose Martinez-et Ma's al. 

[11] to evaluate well-known Machine Learning (ML) 

algorithms such as KNN, Linear Discriminant (LD), SVM, 

and Extreme Learning Machine (ELM) for the automatic 

categorization of ovarian tumors from ultrasound images. 

[12] Authors apply machine learning techniques like 

logistic regression to predict OC. 
 

Conventional feature extraction methods rely on the 

manual creation of computationally complicated 

procedures to extract features, resulting in large 

dimensionality, heavy workloads, low efficiency, and poor 

classification rates [11-12]. Furthermore, to extract the 

most relevant features, a thorough understanding of 
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features is required during data gathering. To overcome the 

limits of machine learning, deep learning comes to the 

rescue of machine learning and can be used to process vast 

amounts of data [12]. One of the advantages of using deep 

learning algorithms is that they are capable of 
automatically learning raw data features. 

 

The 15-neuron ANN model was utilized by Md. 

Akizur Rahman et al. to classify OCs in [13]. According to 

[14-15], the system cannot rely on human feature 

calculation in Deep learning algorithms [14-15]. The 

potential to analyze medical images using deep learning 

algorithms has attracted a large number of researchers. 

Various medical applications, including cancer prediction, 

tumor cell segmentation, illness identification, and many 

more [16], can benefit from recent advancements in deep 

learning algorithms. 
 

DCNN was proposed by Roth et al. [17] as a method 

for constructing a lymph node detection system. For 

identifying, recognizing, and retrieving purposes, the 

features retrieved from images using DCNN can be useful. 

The non-linear network used by these deep learning 

methods creates a multilayer neural network for reading 

and extracting features. These low- and high-level features 

can be combined to construct an in-depth representation of 

incoming data and efficiently learn the dataset's key 

characteristics. The DCNN-based method developed by 
Spanhol et al. [19] has been used to classify OC based on 

pathological pictures. Pulmonary modules were classified 

using the DCNN technique by Li et al [20]. 

The literature showed that, even though conventional AI 

algorithms play an important role in the discovery of 

ovarian cancer, they are still not capable of meeting the 

standards of a pathologist's decision. Deep learning 

approaches have recently performed well in medical image 

analysis, such as thyroid nodules, breast cancer analysis, 

lung cancer analysis, and so on. There haven't been many 

studies applying deep learning in the area of ovarian 

cancer, and more might be done in that direction with 
advancements in technology. According to Wu M. and 

colleagues [7], their DCNN-based pre-trained AlexNet 

model for OC classification from histopathology pictures 

failed to reach an accuracy of more than 78%. There are 14 

million photos over 1000 classes in ImageNet, which is 

used as a training dataset for state-of-the-art models such 

as AlexNet and VGG-Net. VGG-Net and GoogleNet 

appeared in 2014; AlexNet in 2012; VGG-Net and Google 

Net in 2013; Res Net in 2015; mobile Net and dense NET 

appeared in 2016; and finally, in 2017, mobile Net and 

dense Net were released. Most pre-trained CNN designs 
are based on these. Research presented in this study 

presents an entirely new architecture for the prediction of 

ovarian cancer from histopathology images using deep 

learning. Only histological pictures are used to train our 

algorithms. This architecture has a higher AUC-ROC 

(accuracy/precision/reliability/recall) than the other 

architectures studied in the literature survey. The author's 

contribution in this research is as follows: 

 

 Data preparation and augmentation of 

histopathological images. 

 Designing & implementation of Enhanced DCNN 

architecture, KK-net, for prediction of OC and 

subtype classification. 

 Using Mean Square Error rate (MSE) as a cost 

function and activation function ELU as a 

substitute, an experiment in medical image 

analysis. 

 Our model was also thoroughly tested using the 

most recent techniques available in the scientific 

community. .. 

 

A review of earlier medical studies that utilized Deep 

Learning is presented in Section 1.1 of the study. Section 2 

discusses the proposed methods and materials. Model 
evaluation metrics will be described in Section 3. Section 4 

explains the proposed model's results, while Section 5 

explains the general technique. Section 6 concludes the 

project with a conclusion. 

. 

II. RELATED WORK IN MEDICAL IMAGING 

USING DEEP LEARNING FRAMEWORK 

CNN and RNN deep learning algorithms play an 

important role in medical image analysis, such as cancer 

diagnostics, predicting epilepsy, Alzheimer's diagnosis, 

and more [34]. Deep learning uses a variety of 

technologies, including Keras, Caffle, Tensorflow, Theano, 
and Torch [16]. Although computer vision professionals 

have a lack of clinical understanding and limited deep 

learning skills, the knowledge gap must be overcome 

quickly to provide satisfying results in terms of accuracy 

and sensitivity when dealing with biological pictures [7]. 

Researchers in the fields of medical image processing and 

deep learning have a substantial problem because of this 

knowledge gap. [48] Machine Learning relies on data 

representation rather than manually computing the features, 

training them, or categorizing [48]. To make the deep 

learning technique more shallow and efficient, it uses 
image pixel values directly rather than generated features 

from images [48]. 

 

According to Xu et al., the DCNN algorithm can be 

used for the classification, segmentation, and visualization 

of tissues in histopathology pictures. The DCNN strategy 

was used by Teramoto et al. [34] to classify microscopic 

pictures into lung cancer subtypes. Masood and colleagues 

built a computer-assisted decision support system to 

diagnose lung cancer using a deep learning approach, 

which yielded more accurate results. Medical imaging 

applications of DCNN have become more widespread and 
successful [7]. There are numerous uses for DCNN 

features collected from pictures, including recognition, 

identification, and retrieval [7–16]. A non-linear network 

is used to read and extract information from a multilayer 

neural network to create a deep learning architecture [7] 

[16] [48]. These deep learning methods combine low- and 

high-level features to create a representation of incoming 

data that is deeper than the sum of its parts. Feature 

extraction methods, which are often computationally 
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intensive in machine learning algorithms, can be reduced 

as a result. As a result, diagnostic systems benefit from the 

use of deep learning techniques. It is also true that deep 

learning algorithms outperform feature extraction 

approaches in terms of robustness. Deep Convolutional 
Neural Networks are used in this study to automatically 

identify ovarian cancer subtypes from a limited number of 

histopathological images. 

 

III. MATERIALS & METHODS 
 

A. Image Dataset 

Five hundred labeled histopathological images, which 

included 175 serous, 100 mucinous, 60 endometroid, 80 

clear-cell, and 85 non-cancerous, were retrieved from the 
National Cancer Institute's Genomic Data Commons data 

portal, TCGA-OV repository, and used for training, 

predicting, and further analysis in this study. Using the 

GDC Data Portal, researchers and bioinformaticians may 

easily find and download cancer-related data for further 

investigation. Ovarian Cancer & Subtypes Dataset 

Histopathology has been uploaded by the authors on the 

Mendeley Data website as well. [32]. 

B. Data Augmentation 

A key activity in deep learning is the addition of new 

data. Data augmentation is necessary when using DCNN 

since a significant amount of data is needed; a huge 
number of images cannot always be acquired. When it's all 

said and done, it helps raise the database's size and add 

uncertainty to it. Overfitting can also be caused by 

insufficient training data [7] [15]. Zooming, tilting, and 

emphasizing certain characteristics are some of the 

methods used to perform this image alteration or 

augmentation. The original image was rotated by 90 

degrees, the photographs were zoomed in to catch finer 

details, the images were flipped horizontally and vertically, 

and the brightness was boosted. An additional 24,742 

photos were obtained once the photographs were enhanced, 
about 50 times the initial dataset's amount. JPG files of all 

RGB photographs were digitized in 227x227 pixel 

dimensions and scaled to the same dimensions. Fig. 1 

depicts a variety of enhanced methods for expanding the 

amount of training data. One model was created for the 

original dataset, and the other was created specifically for 

the enhanced image dataset, which was around 50 times 

larger. The authors' data augmentation code is available on 

Github [33]. 

 

Fig. 1 Augmented histopathological images 

IV. PROPOSED DCNN ARCHITECTURE (KK-NET) 

Our literature study revealed that many pre-trained 

DCNN architectures for image classification exist, such as 

the AlexNet [16], VGG-Net [29], GoogleNet [30], ResNet 

[31], MobileNet [32] and DenseNet [33]. Inspired by these 
pre-trained models and the work completed by Wu M. et al. 

in [7], we designed and implemented an enhanced DCNN 

architecture with six convolutional layers, four max-

pooling layers ELU as the activation function. Figure 2 

illustrates the Proposed Architecture, KK-Net. We trained 

this model using the dataset as augmented in the above 

section. The primary factors considered while designing 

the KK-Net architecture are feature map, kernel size, stride, 

and activation function. 

 

                         Fig. 2 Architecture of KK-Net 

 The proposed model is sequentially created, layer-by-

layer, & includes the convolutional, fully connected, 

& max-pooling layers. 

 The initial two layers are convolutional layers with 32 

filters and a kernel size of 3x3. Therefore, the first 

layer needs an input image of shape 227x227x3. 

 The activation function, Exponential Linear Unit 

(ELU), is leveraged for all the layers other than the 

final output layer. 

 The max-pooling layer 1 reduces dimension and 

considers the maximum value in the 2x2 window. 

Output of Maxpooling layer 1 = 113x113x32 

 The third & fourth convolutional layers have 64 filters 

each & kernel size of 3x3 trailing with max-pooling 

layer 2 of window size2x2. The output of Maxpooling 

layer 2 = 56x56x64 

 After each layer, there is an increase in the number of 
filters in the convolutional layer. The initial layers 

with fewer filters learn input images' simple features, 

while the deeper layers learn more complex features. 

 The fifth convolutional layer with filter size 128, 

primarily for feature mapping, is followed by max-

pooling layer 3 with a window size of 2x2. Output of 

Maxpooling layer 3 = 28x28x128 

 The sixth and final convolutional layer is again 

followed by max-pooling layer 4 of 2x2 window size, 

further reducing overfitting. Output of Maxpooling 

layer 4 = 14x14x256 
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 The max-pooling layers' output is flattened from a 

three-dimensional feature map to a one-dimensional 

feature vector. The output of the flattened layer is 

connected to fully connected layers. The three fully 

connected layers have neuron sizes of 32, 16, and 5, 
respectively. The last fully-connected layer 3, has the 

number of neurons equivalent to the number of classes. 

In the present case, we have five classes, so SoftMax 

is set to 5. 

 

With KK-Net, we achieved an accuracy of 91%, and it has 

2,043,877 (2 million) parameters. Hyper-Parameters set for 

KK-Net architecture are mentioned in Table 1. 

Table 1. Hyper-Parameters of KK-Net 
Parameter Value 

Learning Rate 0.001 

Cost function 
Mean Squared Error 

(MSE) 

Optimizer 

 
Mean Squared Error 

(MSE) 

Epoch Number 15 

Batch Size 32 

Dropout (Convolution 

Layer) 
0.2 

Dropout (Dense Layer) 0.4 

Activation function ELU 

 

V. EXPERIMENTAL ENVIRONMENT 

Nvidia T4 GPU, 16GB GPU RAM, and a 1.569GHz 

clock speed are used for all current research work trials at 

Google Collaboratory. A Windows 10 PC with 8GB RAM 

and an Intel Core i5-6300U CPU running at a speed of 
2.40GHz and two cores are used in this example. Google 

Collaboratory was launched with the help of the Google 

Chrome web browser (GC). GC installed Google Drive 

storage as the host for the enhanced data. In addition, the 

KK-Net model is trained and tested using the Python 

libraries Keras and TensorFlow. 

 

VI. PERFORMANCE EVALUATION METRICS 

The performance measurements are described in detail 

in the following paragraph. The presented models are 

evaluated using several measures, such as accuracy, 

precision, recall, and F1-score. The confusion matrix 
presented above uses four values to construct these 

performance criteria in [21]. A deep learning method with 

multiple types of output can be understood using this 

confusion matrix. [21]. As a result, let's go over the 

specifics of each of these variables. 

 

A. Accuracy: a measure based on the proportion of 

accurate forecasts to all of the other predictions. 

Mathematically, calculated as 

 

 

B. Recall: It assesses the degree to which all of the 

positive classifications may be reliably anticipated. 

 

 
 

C. Precision: How many forecasts were correct compared 

to the total number of predictions  

 

 
 

D. F1–Score: double the multiplication-and-addition of 

recall and accuracy ratio. 

 

 

 

At different thresholds, the AUC-ROC (Area under 

the Curve - Receiver Operating Characteristics) Curve may 

be used as a performance statistic. The probability curve is 

depicted by ROC, whereas AUC illustrates the degree to 

which classes may be separated Thus, the model's ability 

to differentiate between the classes is measured by this test. 

When AUC values are greater, the model is more accurate 

in predicting. 

VII. RESULTS 

An original and modified dataset was used for DCNN 
training and evaluation. Tenfold cross-validation was used 

to test its categorization accuracy. According to Table 2, 

the original and enhanced photos for each class are 

provided. Each class has roughly 5000 photos after 

augmentation. Figure 3 depicts the classification model's 

training accuracy, training loss, training accuracy, and 

testing accuracy, all plotted against epoch. Results of KK-

measurements Net's are shown in the third table 

Table 2. Number of images of each class 

Class Original 

Images 

Augmented 

Images 

Serous 175 5640 

Mucinous 100 5223 

    Endometroid 60 4353 

Clear Cell 80 4999 

Non-Cancerous 85 4527 

Total 500 24742 

 

Table 3. Performance metrics of KK-Net 

Class Preci

sion 

Recall F1-

Score 

Testing 

Images 

ClearCell 0.88 0.94 0.91 100 

Endometroid 0.96 0.96 0.96 98 

Mucinous 0.89 0.91 0.91 100 

Non-

Cancerous 

0.88 0.8 0.84 100 

Serous 0.96 0.92 0.94 100 

 



Kokila. R. Kasture et al. / IJETT, 70(3), 310-318, 2022 
 

314 

 
Fig. 3 Various graphs of Training & Validation accuracy & loss versus epoch | Fig. 3 (A) Training Accuracy & Loss 

per Epoch | Fig. 3 (B) Validation Accuracy & Loss per Epoch | Fig. 3 (C) Training & Validation Loss per Epoch | 

Fig. 3 (D) Training & Validation Accuracy per Epoch 

 

 

Table 4. Shows the classification accuracy of the classes 

in scope with the original and augmented models 

 

Class 
Original 

Images 

Augmented 

Images 

Clear Cell 72% 84% 

Endometroid 81% 92.30% 

Mucinous 73% 84% 

Non-Cancerous 69.79% 80% 

Serous 78% 89% 
 

Fig. 4 shows the confusion matrix of the KK-Net 

model's classification results, trained and tested by 

augmented data. 
 

AUC-ROC is plotted for each class along with the 

micro-average and macro-average plots. Since AUC-ROC 

is usually used for binary classes, it can be extended for 

multi-class classification by plotting class 1 versus the rest 
of the classes, class 2 versus the rest of the classes, etc. 

 
Fig. 4 Confusion Matrix of Classification results for 

KK-Net with an augmented dataset 
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Fig. 5 AUC-ROC Curve for the KK-Net model 

 

 
Fig. 6 Predicted and misclassified images by KK-Net 

 

VIII. DISCUSSION 

DCNN models were used instead of conventional 

image recognition methods to predict OC and its four 

subtypes from histopathology photos. To get the best 

results from a DCNN, it must be trained on a big dataset 

and generalized effectively. The original picture collection 

was thereby 50 times increased using rotation, zooming, 

horizontal and vertical reversal, brightness. 
 

This may be observed in the training accuracy and 

loss per epoch shown in Fig. 3 (A), which reveals that 

training accuracy rose while the loss dropped. Even though 

the accuracy began to decline after ten epochs, we were 

able to end training at the best result at epoch 10. The 

validation accuracy began to deteriorate after epoch eight, 
as seen in Fig. 3 (B); as a result, a checkpoint is 

established and the CNN model is exported in h5 format. 
 

 

Training and validation losses are shown in Fig. 3 (C), 

and it is expected that they will decrease as more model 

learning takes place (Fig. 3(C)). Zero loss is ideal, but the 

model requires a massive amount of data to achieve this. It 

was still possible to achieve near-zero losses for both the 

training and validation datasets, at 0.05. As shown in Fig. 

3 (D), the model's training and validation accuracy follow 

the same path, indicating that it is capable of generalizing 

well. 



Kokila. R. Kasture et al. / IJETT, 70(3), 310-318, 2022 
 

316 

According to Table 4 and Fig. 4, the suggested KK-

Net model's classification accuracy increased from 75% to 

91% for the five classes when using the expanded dataset. 

In [7], Wu M. et al. had reached 78.20% with a 

supplemented dataset, and we improved it by 12.8 percent. 
 

We learned from Fig. 4 that training accuracy is 

inversely proportional to training loss, and this graph must 

be linear for the model to generalize successfully. In 

addition, as the training accuracy improved, so did the 
testing accuracy, reducing the likelihood of incorrect 

classifications in the data. 
 

When the cost of false positives is large, precision is 

critical. We can't afford to label a non-cancerous picture as 
malignant in light of the existing problem statement. When 

false negatives are expensive, the recall measure becomes 

more important. For all classes, the KK-Net results are 

above 80% using the F1-Score as a counterbalance to the 

accuracy and recall measures. Fig. 5 shows that the KK-

Net model's average performance assessment (AUC-ROC) 

is 95%. 
 

Table 4 shows a 12 percent improvement in the 

accuracy of clear-cell classification, an 11 percent increase 

for endometroid, mucinous, and serious, and a 10 percent 

rise for non-cancerous classification. It's mostly due to the 

difficulty of learning the morphological properties of cells 

that misclassification occurs. Errors can occur because 

some photos are blurry or have unclear cell membranes, at 

times overlapping, while others have many types of 

carcinomas in one image. We'd like to collect a larger 

number of samples with poor cell morphology so that we 

may use that data to retrain the future research model.  
 

 We also compared our dataset to current state-of-the-art 

approaches, such as AlexNet, GoogleNet, VGG-16, and 

VGG-19, which rely on pre-trained architectures. The 

results obtained with these methods areas are listed in 

Table. 5. 

 

Table 5. Performance Comparison of the proposed method with the state of the art Deep CNN methods 

SOTA 

Methods 

Ovarian Cancer 

Subtype 

Precision 

(%) 

Recall (%) F1-Score (%) Accuracy 

(%) 

AUC     (%) 

Training-Testing Dataset Splitting for all methods: 80:20 

Image Dataset Size for all methods: 24,742 

AlexNet 

Clear Cell 49 78 60 

72 75 

Endometroid 60 60 75 

Mucinous 79 56 65 

Benign 75 47 58 

Serous 60 87 71 

VGG-16 

Clear Cell 79 82 80 

84 85 

Endometroid 88 87 84 

Mucinous 80 73 76 

Benign 82 66 78 

Serous 63 84 72 

VGG-19 

Clear Cell 87 91 95 

90 93 

Endometroid 92 90 93 

Mucinous 83 89 91 

Benign 85 82 90 

Serous 90 89 89 

 
Google-Net 

Clear Cell 46 73 62 

70 72 

Endometroid 59 62 61 

Mucinous 60 59 55 

Benign 70 57 54 

Serous 72 63 57 

 

KK-Net 

Proposed 

Clear Cell 88 94 91 

91 95 

Endometroid 96 96 96 

Mucinous 89 91 91 

Benign 88 80 84 

Serous 96 92 94 
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In Table 5, we can see that the suggested strategy 

outperforms the current SOTA deep CNN methods. This is 

because CNN SOTA models cannot optimize model 

building in the cancer domain. The KK-net model, on the 

other hand, was created and is being utilized solely in the 
context of cancer research 

 

IX. CONCLUSION 

The present research is the first attempt to predict 

ovarian cancer and identify its four subtypes from 

histopathology images using a novel deep convolution 

neural network, KK-Net. Our model's accuracy increased 

from 75% to 91% with augmented images, 12.8% higher 

than what [7] achieved. Also, the AUC-ROC achieved is 

95% for the KK-Net model, concluding that it can 

distinguish each class well. While designing a  

 
DCNN, we learned that going deep does not 

necessarily help, and fine-tuning the hyperparameters can 

address many issues. Accuracy is not the only measure of 

performance, but the other metrics also gain importance 

depending on the problem statement.  

 

We further applied our dataset to the pre-trained 

SOTA DCNN models, which validates the enhanced 

performance parameters of the proposed KK-Net model. 

Hence concluding that KK-Net, exclusively trained in the 

cancer domain, provides the optimum results for ovarian 
cancer prediction for multi-class. 
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