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Abstract - Heart disease (HD) is the most serious human disease, causing havoc on people's health. Heart disease detection 

must be accurate and timely to prevent and cure heart failure. In many instances, the diagnosis of HD based on standard 

medical history is seen as unreliable. Therefore, this paper introduces a novel HD prediction system that includes five major 

phases such as (a) Preprocessing, (b) Imbalance processing, (c)Feature extraction, (d) Feature Selection and (e) 

Classification. Originally, the input data is given to the preprocessing phase. Subsequently, the imbalance processing phase 

is carried out, where an improved strategy for the class imbalance process is performed. The features, including raw features, 

improved mutual information, higher-order statistical features, entropy, correlation, and statistical features, are extracted 

in the feature extraction phase. Moreover, appropriate features will be selected from the extracted features in the feature 

selection phase, for which an improved ReliefF process will be carried out. These selected features is then subjected to the 

classification phase, where the ensemble classifiers include Neural Network (NN), Recurrent Neural Network (RNN), 

Random Forest (RF), and K-Nearest Neighbour (k-NN) model. Here, the output of NN, RNN, and RF is given as the input of 

k-NN. To make the system more precise in disease prediction, the weights of NN and RNN are optimally tuned by a Self-

improved Shark Smell Optimization with Gaussmap Estimation and Cycle crossover Operation (SISSGECO) model. Then, 

the final output is obtained effectively in a precise manner. Finally, the outcomes of the adopted scheme are computed to the 

other extant schemes in terms of various measures like precision, sensitivity, accuracy, specificity, NPV, MCC, FPR, F1-

score, and FNR, respectively.  

Keywords - Heart Disease Prediction, Imbalance Processing, Improved ReliefF, Ensemble Classifiers, Optimization. 

 

Nomenclature 

Abbreviation Description 

OCFS Optimality Criterion Feature Selection  

SMOTE Synthetic Minority Oversampling 

Technique 

EMRs Electronic Medical Records  

RNN Recurrent Neural Network  

SSO Shark Smell Optimization  

WHO World Health Organization  

NN Neural Network   

UCI University Of California, Irvine 

RF Random Forest  

DT Decision Tree 

HPO Hyper Parameter Optimization  

K-NN K-Nearest Neighbour 

GA Genetic Algorithm  

LR Logistic Regression 

NB Naïve Bayes  

SVM Support Vector Machine  

RFS-IE Rough Feature Selection based on 

Information Entropy  

ANN Artificial Neural Networks  

PM-LU PSO Merged LA Update  

LA Lion Algorithm  

PSO Particle Swarm Optimization  

HD Heart Disease 

WOA Whale Optimization Algorithm 

XGBoost Extreme Gradient Boosting 

OH One-Hot  

AUC Area Under the Curve 

FPR False Positive Rate 

RMSE Root Mean Square Error  

AI Artificial Intelligence  

DBN Deep Belief Network  

ROC Receiver Operating Characteristic  

LM Levenberg–Marquardt 

MCC Matthews Correlation Coefficient 

FF Firefly 

CHD Cleveland Heart Disease  

TPOT Tree-Based Pipeline Optimization Tool  

PCA Principle Component Analysis 

DBNKELM Deep Belief Network and Extreme 

Learning Machine  

CMBO Cat Mouse Based Optimizer 

NPV Net Present Value 

BOA Butterfly Optimization Algorithm 

FNR False Negative Rate 

PRO Poor and Rich Optimization 

SISSGECO Self-Improved Shark Smell Optimization 

with Gaussmap Estimation and Cycle 

Crossover Operation  

Social SO Social Spider Optimization 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1. Introduction 
One of the most important and challenging health 

concerns is the automatic prediction of HD in the world [9]. 
HD [10] [11] produces coronary artery infections and 
impaired blood vessel function that damages the body of 
patients, mostly adults and the elderly. According to the 
WHO, cardiovascular illnesses cause more than 18 million 
deaths worldwide [12]. In addition, the United States of 
America invests $1 billion every day in HD treatments. 
HDs, including stroke, heart attack, and hypertension, are 
the leading causes of mortality in the United States. 
Consequently, early HD prediction [13] [14] is more helpful 
for treating heart patients efficiently earlier than a stroke or 
heart attack occurs. 

Medical testing, as well as wearable sensors, are used 
to detect cardiovascular diseases [15]. Nevertheless, as 
clinicians aim to identify the patients promptly and 
precisely, collecting valuable risk indicators for HD from 
computerized medical testing is challenging. Due to the 
frequent medical testing, these EMRs are unstructured and 
growing in size. Wearable sensors are currently being used 
to identify cardiac problems by continually monitoring the 
patient's body both inside and outside. On the other 
hand,  Signal abnormalities such as missing values and 
noise contaminate wearable sensor data produce an error in 
the accurate prediction of HD [16] [17]. 

Combining wearable sensors with EMRs for 
monitoring cardiac patients is a substantial and demanding 
challenge. Furthermore, obtaining meaningful and relevant 
characteristics from data to predict HD is a difficult task [18] 
[19]. Consequently, an intelligent scheme is essential to 
automatically merge information derived from EMRs and 
sensor data and evaluate the extracted data to anticipate 
heart illness [20] earlier than a heart attack happens and to 
find hidden indications of heart issues. 

Numerous approaches are suggested using data mining 
approaches and hybrid models to diagnose and predict HD 
[21]. Risk factors are extracted from unstructured textual 
data using a data mining approach. Furthermore, a hybrid 
model [52] [53] [56] is the combination of two or more 
techniques that perform better collectively than they do the 
individual method. Moreover, the conventional algorithms 
[55] [54] for HD diagnosis [22] are based on feature 
weighting approaches. For all classes, these techniques 
assign the same weight to each feature. Disease prediction 
systems [23] play a significant part in human lives, and it's 
been regarded as a crucial issue, as disease prediction is 
necessary for people to live a peaceful life [60]. Disease 
detection [24] is critical for health care organizations to 
provide the best medical care to patients. 

Moreover, the latest advancements in data mining 
systems resulted in several other illness prediction models 
that may be utilized for more purposes. Consequently, data 
mining plays an important role in illness prediction [25] 
throughout the healthcare system. For a successful 
prediction, the data prediction method incorporates 
classification methodologies such as DT, k-NN, SVM, NB, 
LR, and NN [50] [51] [58] [59], as well as additional 
clustering methods. The main contribution of this work is 
given below: 

• Determines higher-order statistical features, 
statistical, raw features, improved mutual 
information, entropy, and correlation features 
and improved ReliefF based feature selection 
takes place. 

• Implements a novel Self-Improved Shark 
Smell Optimization with Gaussmap Estimation 
and Cycle Crossover Operation (SISSGECO) 
model for the training of ensemble model via 
the optimal weights selection. 

The rest of this paper is ordered as follows: Section II 
determines the review of the HD prediction model. Section 
III describes the overall framework of adopted HD 
prediction. Section IV portrays the preprocessing, 
imbalance processing, feature extraction and feature 
selection based on HD prediction. Section V describes 
classification via ensemble classifiers: RF, NN, RNN AND 
K-NN. Section VI specifies the weight optimization of NN 
and RNN via self-improved shark smell optimization with 
gauss map estimation and cycle crossover operation. 
Section VII portrays the results of the presented scheme.  

2. Literature Review 
2.1 Related Works 

In 2020, Farman et al. [1] presented a smart healthcare 
system to predict HD employing ensemble DL and feature 
fusion methodologies. First, the derived features from 
sensor data integrated with the feature fusion approach 
provide useful health information. Furthermore, the 
information gain approach eliminates unnecessary and 
redundant features while focusing on the most essential, 
reducing computing load and improving outcomes. The 
suggested scheme was 98.5 % accuracy greater than that of 
conventional systems. In contrast to other traditional 
methodologies, this finding suggests that the system was 
more successful at predicting HD. 

In 2021, Valarmathi et al. [2] had explored a technology 
that can forecast HD. To improve the performance of the RF 
classifier and XG Boost classifier, 3 HPO approaches have 
been suggested: Grid Search, Genetic programming, and 
Randomized Search. RF and TPOT Classifiers attained the 
maximum accuracy of 97.52 % for the CHD Dataset. With 
the ZAlizadeh Sani Dataset, RF with Randomized Search 
had the greatest accuracy for detecting stenos in 3 vessels: 
LCX, RCA, and LAD.  

In 2021, Rani et al. [3] had established a decision 
support model which would help the diagnosis of HD 
depending on the patient's clinical factors. The authors 
employed a multivariate imputation approach based on 
chained equations to deal with missing data. To select the 
acceptable features in the provided dataset, a recursive 
feature elimination and GA were combined to form the 
hybridized feature selection technique was utilized. SMOTE 
and normal scalar techniques were also employed for data 
preprocessing. It was sorely tested using the CHD dataset, 
which may be found at UCI. The adopted model has shown 
higher accuracy than other HD prediction methods currently 
available in the literature. 
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In 2021, Harika et al. [4] adopted a unique ensemble 
framework for quick HD detection depending on classifiers 
such as ANN, SVM, and NB. The current study also 
validates that the three algorithms have been the most 
effective. The information was collected from UCI. The 
ensemble methodology takes the findings of individual 
classifiers and utilizes the majority voting method to get a 
solution. The ensemble model was shown to have an 
accuracy of 87.05 % in predicting HD than the SVM, ANN, 
and NB. The presented ensemble classifier was suggested to 
be used to forecast the cardiac status to improve accuracy 
and reduce misclassification. 

In 2019, Prakash et al. [5] had suggested a novel 
technique that extracts characteristics from the HD dataset 
and builds a decision table using those features. They 
reported the accepted technique for illness detection and 
prediction using OCFS. Using indiscernible optimality 
criteria extends the RFS-IE approach to feature selection 
using the optimality criterion. It was determined how long it 
took to forecast cardiac disease compared to RFS-IE and 
MRPS. The OCFS approach required the least amount of 
time to execute compared to other techniques. 

In 2020, Renji et al. [6] examined a novel HD 
prediction that incorporates Attribute Minimization, Feature 
Extraction, Classification, and Record procedures. 
Furthermore, the NN model that considers the 
dimensionally reduced information performs the prediction 
procedure. This study offers the PM-LU method, a new 
hybrid approach for NN weight optimization that combines 
the concepts of LA and PSO. The outcomes provided by the 
adopted scheme were more accurate than the traditional 
algorithms based on accuracy. 

In 2020, Shiny et al. [7] had created a hybridized 
approach that combines DBNKELM and FKMAW based 
ensemble methods researchers to enhance the diagnosis. 
Moreover, the input qualities were first weighted with the 
FKMAW model. A regression analysis of the HD detection 
method was presented using weighted attributes with 
DBNKELM. For all 6 datasets, the findings show that 
FKMAW + DBNKELM performed well in resolving the 
issues in medical data categorization. 

In 2020, Kartik et al. [8] had offered a diagnostic model 
which uses an enhanced XGBoost classifier to detect cardiac 
disease in this research. Any classifier's application would 

not be effective without proper hyperparameter 
optimization. They employed Bayesian optimization, which 
was a very effective approach for hyper-parameter 
optimization, to improve the hyper-parameters of XGBoost. 
They applied the OH encoding approach to encoding 
definite information in the dataset to boost prediction 
accuracy. For performance evaluation, 5 separate measures 
were used: accuracy, F1-score, sensitivity, AUC of ROC 
charts, and specificity. The study's findings demonstrated its 
validity and usefulness in predicting cardiac disease. 
Furthermore, the new model performed better compared to 
the previously mentioned models.  

2.2 Review 
Table 1 illustrates the reviews on the prediction of the 

HD model. Originally, the ensemble deep learning model 
was determined in [1] that offers higher accuracy, improved 
precision, better recall, and lower RMSE; however, the 
more sophisticated method was not determined to remove 
the irrelevant features. HPO techniques were exploited in 
[2] that offer the highest accuracy, precision, and increased 
F1-score, but the HD predictions were not performed in real-
time. The GA model [3] offers better accuracy, sensitivity, 
specificity, and precision. Nevertheless, experiment with 
more feature selection methods like ACO and PSO was not 
performed. Likewise, the AI‑based Ensemble approach was 
used in [4], which provides larger accuracy, high sensitivity, 
improved specificity, and higher AUC. Still, the proposed 
work does not explore Python to make HD detections. 
OCFS scheme was portrayed in [5] as having better 
computational time, minimal execution time, and low error 
rate; however, the attribute's existence would not offer any 
information regarding the objects. In addition, the PM-LU 
algorithm was introduced in [6], which offers high accuracy, 
maximum specificity, improved sensitivity, better precision, 
and increased MCC. However, need to predict HD based on 
other hybrid classifier models or with other hybridization 
algorithms. FKMAW + DBNKELM model was suggested 
in [7] that offers larger precision, better accuracy, improved 
recall, high F-measure, and maximum AUC. However, the 
decision support system was not supported via DBN. Lastly, 
the XGBoost classifier introduced in [8] offers maximum 
accuracy, high specificity, larger sensitivity, and better F1-
score but needs to test other related data sets or similar tasks 
to attain similar accuracy. These challenges were considered 
effective for the heart HD prediction model in the present 
work. 

 
Table 1. Reviews on Conventional Hd Prediction Models: Features And Challenges 

Author 

[citation] 

Adopted              

scheme 

Features Challenges 

Farman et al. 

[1] 

Ensemble deep 

learning model 

❖ Higher accuracy 

❖ Better recall 

❖ Lower RMSE 

❖ A more sophisticated method was not 

determined to remove the irrelevant features. 

Valarmathi et 

al. [2] 

HPO techniques ❖ Highest accuracy 

❖ Maximum 

specificity 

❖ Better sensitivity 

❖ Improved precision 

❖ Increased F1-score 

❖ The HD predictions were not performed in real-

time. 
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Rani et al. [3] GA model ❖ Best accuracy 

❖ Higher sensitivity 

❖ Better specificity 

❖ Improved precision 

❖ Increased F-

Measure 

❖ The experiment was carried out with more 

feature selection methods like ACO; PSO was 

not performed in this work. 

Harika et al. [4] AI‑based Ensemble 

Model   

❖ Larger accuracy 

❖ High sensitivity 

❖ Better specificity 

❖ Higher AUC 

❖ The proposed work does not explore Python to 

make HD detections. 

Prakash et al. 

[5] 

OCFS model ❖ Better 

computational time 

❖ Minimal execution 

time 

❖ Low error rate 

❖ The attribute's existence would not offer any 

information regarding the objects. 

Renji et al. [6] PM-LU algorithm ❖ High accuracy 

❖ Maximum 

specificity 

❖ Improved sensitivity 

❖ Better precision 

❖ Increased MCC 

❖ Need to predict HD based on other hybrid 

classifier models or other hybridization 

algorithms. 

Shiny et al. [7] FKMAW + 

DBNKELM model 

❖ Larger precision 

❖ Better accuracy 

❖ Improved recall 

❖ High F-measure 

❖ Maximum AUC 

❖ The decision support system was not 

supported via DBN. 

Kartik et al. [8] XGBoost classifier ❖ Maximum accuracy 

❖ High specificity 

❖ Larger sensitivity 

❖ Better F1-score 

❖ Need to test other related data sets or similar 

tasks to attain similar accuracy. 

3. The Overall Framework of Adopted Hd 

Prediction 
This work intends to introduce a novel HD prediction 

system that includes five major phases, such as  

• Preprocessing, 

• Imbalance processing, 

• Feature extraction, 

• Feature Selection, and  

• Classification.  

✓ Originally, the input data is given to the 
preprocessing phase, in which the data 
normalization process takes place.  

✓ Subsequently, the imbalance processing phase is 
carried out, where an improved strategy on the 
class imbalance process is performed.  

✓ Once the imbalanced problem is solved, the 
feature extraction is carried out, where the raw 
feature, improved mutual information, entropy, 
correlation, statistical and higher-order 
statistical features are extracted. 

✓ Moreover, appropriate features are selected 
from the extracted features in the feature 
selection phase, for which an improved relief 
process is carried out.  

✓ These selected features are given to the 
classification phase, where the ensemble 
classifiers include NN, RNN, RF, and k-NN 
models.  

✓ Here, the output of NN, RNN, and RF is given 
as the input of k-NN.  

✓ The proposed SISSGECO model optimally 
tunes the weights of NN and RNN to make the 
system more precise in disease prediction. 

✓ Then, the final output is obtained effectively in 
a precise manner. 

Fig. 1 represents the architecture of the adopted 
framework. 
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Fig. 1 The architecture of the adopted framework 

4. Preprocessing, Imbalance Processing, 

Feature Extraction and Feature Selection 

Process based on Hd Prediction 
 

4.1 Preprocessing 
The preprocessing is performed via the data 

normalization process. Data Normalization adjusts the 
scales of the features to have a standard scale of measure. 

4.2 Imbalance processing 
The number of abnormal and normal samples must be 

equal. The imbalance processing is given in Algorithm 1. 

Algorithm 1: Imbalance processing 

Input: Training set  ;,.....,2,1, ClDD l ==  C =number of 

classes, and ;SD =  S =Total number of samples 

Output: Balanced training set D ;  

Steps: 







=

C

S
IntIresam  

 For 1=l to C do 

 If resaml ID  then 

 ( )resamll IDSmoteD ,=  

 
resaml ID =  

 End if 
 

If resaml ID  then 

 ( )CDMKFCMV lk ,= //use multi-kernel FCM to 

cluster lD  into clusters C  

 For 1=k to C do 

 









=

C

I
VsampleV resam

kk ,Re  

 End for 

 ( )kl VeConcatenatD =
 

 End if 

 ( )lDeConcatenatD =
 

 End for 

Return D  

The process of MKFCM is as follows 

The multi-kernel will be used in FCM. 

1. Polynomial kernal 

2. Gaussian 

 

 

Input data 
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Proposed 

SISSGECO model 
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Feature Extraction 

Raw features 

Statistical features 

Higher order statistical 
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( ) ( )21 ,, dyyyyK ilil +=    (1) 

( ) 




 −−= 22

2 exp, ryyyyK ilil   (2) 

21 KKKcom +=     (3) 

The objective function of MKFCM is given in Eq. (4), 

which comP indicates the kernel. 

( )
= =

−=

C

l

n

i

licom
m
li OyPP

1 1

2
    (4) 

4.3 Feature Extraction 

The obtained preprocessed data is subjected to 

extracting the features, including 

❖ Raw features 

❖ Statistical features 

❖ Higher-order statistical features 

❖ Entropy 

❖ Improved mutual information 

❖ Correlation 

 

4.3.1 Raw Features 

Here, the original input data is considered the raw 

features. These features are indicated as RS . 

 

4.3.2 Statistical features 

These features are determined as follows. 

✓ Mean 

✓ Median 

✓ SD 
 
Mean (Average) [40]:  

The process in which the sum of all values divided 
through the sum of the count of values is known to be the 
mean value. 


=

=

b

q

qG
b

G

1

1
                   (5) 

Eq. (5) G  indicates the observed value, b  represents the 

number of values and G refers to the symbol of the sample 

mean. 

Median [40]:  
It is the process in which the middle value in a dataset 

are organized in ascending order. If the dataset contains 2 
values in the middle, then the mean of 2 middle values is 
regarded as the median of the data.  





















 +
+







 −










=

evenisbif

b
G

b
G

isoddbif
b

G

Median

2

2

1

2

1

2

    (6) 

SD 

It is a measure of the set of dispersion values or amount 

of variation. The lower SD [41] denotes the values that tend 

to be nearer to the mean value, whereas a larger SD denotes 

the extended values over a larger range. The SD is given in 

Eq. (7). Here,  refers to the symbol of SD. 

( )
=

−
−

=

b

q

q GG
b

1

2

1

1
    (7) 

 
The statistical features are indicated SF , and it is 

defined in Eq. (8).  

                ++= MedianGSF           (8) 

4.3.3 Higher-Order Statistical Features 

These features are given as follows. 

✓ Skewness 

✓ Kurtosis 

 
Skewness [39] 

It is a symmetry measure or the lack of symmetry 
exactly. A data set or distribution is symmetric only if it is 
similar to the right and left of the centre point. The 
mathematical expression of skewness is given in Eq. (9). 

          

( )
3

1

3



 =
−

=

b

q q bGG

Skewness           (9) 

In Eq. (9), 1GGq = 2G ..., bG G indicates the mean 

value,   refers to the SD and b  denotes the number of data 

points. Further,   indicates the SD, and it is calculated with 

b the present in the denominator rather than 1−b  while 

computing the skewness.   

Kurtosis [39] 
This is the measure that identifies if the data are light-

tailed or heavy-tailed related to the normal distribution. 
Datasets with less kurtosis tend to provide the lack of 
outliers or lower tails. Moreover, the datasets with larger 
kurtosis tend to provide outliers or heavy tails. The formula 

of kurtosis for univariate data such as 1G 2G bG ... is 

expressed in Eq. (10). The SD is examined through the b  

value present in the denominator rather than 1−b  while 

computing the kurtosis.  

( )
4

1

4



 =
−

=

b

q q bGG

Kurtosis         (10) 

The higher-order statistical features are indicated HF , 
and it is given in Eq. (11). 

    KurtosisSkewnessHF +=         (11) 

4.3.4 Entropy 
Entropy is known as the average level of surprise, 

uncertainty, or information inbuilt in the variable's feasible 
resultant of the data theory. The conception of information 
entropy is sometimes known as the Shannon entropy. 
Further, the entropy is given in Eq. (12). 

   
( )q

b

q qq

Glength

GG

Entropy
 =

−

=
1

log

        (12) 
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4.3.5 Improved Mutual Information 
An improved mutual information is in Eq. (13). 

( )

( ) ( ) vHuH

vuJ
IMI

+
=

2
1

,
    (13) 

In Eq. (13), ( )uH and ( )vH specifies the conditional 

entropies and ( )vuJ , denotes the mutual information. 

( ) ( )
( )
( )uQ

vuQ
vuQvH

uv

,
log,−=   (14) 

( ) ( )
( )
( )−=

uv
vQ

uvQ
vuQuH

,
log,   (15) 

4.3.6 Correlation 
Correlation is the measure of similarity between the 2 

features. The correlation approach is used to determine the 
relationship among the features. To determine the 
correlation between 2 random variables, there are 2 basic 

groups to examine. For a set of variables ( )ZY , , the linear 

correlation coefficient ‘ r̂ ’ is determined in Eq. (16). 

( )( )

( ) ( )


−−

−−
=

22
ˆ

jjjj

jjjj

ZZYY

ZZYY
r                (16) 

The overall extracted features are indicated FE , and it 
is given in Eq. (17). 

rIMIEntropyHFSFRSFE ˆ+++++=         (17) 

4.4 Feature Selection 
After extracting the huge set of features FE , the feature 

selection gets carried out, for which an improved Relief 
algorithm is used. This determines the dimensionality 
reduction process. 

ReliefF determines the features scores on the basis of 
the feature value difference and class values among the 
nearby instances. The neighbouring instances group has 
dissimilar feature values; however, the similar class value 
would then reduce the score of relief value. 

An improved ReliefF: The step of an improved ReliefF is 
given as follows. 

Set all weights   0ˆˆ =kw ;  

 For 1=h to number of runs 

  Select 2 features randomly 

  Cluster with K-means on selected features 

 For 1=t to T  

  Randomly select a tuple x  from dataset  

 For  1=p to n̂  

  

( )( )
( )( )2

2

,

,ˆˆ

pp

pppp

xMissnearestxdiff

xHitnearestxdiffww

+

−=
 

 End 

 End 

 Calculate the Harmonic mean pŵ by the number of 

runs 

end 

The selected Relief feature is denoted as FS . 

5. Classification Via Ensemble Classifies: RF, 

NN, RNN AND K-NN 
These selected features are given to the classification 

phase, in which the ensemble model includes NN, RNN, RF, 
and K-NN models. Here, the output of NN, RNN, and RF is 
given as the input of k-NN. For making the system more 
precise in HD prediction, the weights of NN and RNN are 
optimally tuned by an improved SSO Algorithm. 

5.1 RF  
The selected features FS  are provided to RF classifier 

as its input. Further, the RF [32] is an approach that 
combines multiple tree predictors and each tree depending 
on the value of a randomly selected vector between all trees 
in the forest. The quality of characterization is improved by 
decreasing the overriding problems as the RF is associated 
with one DT. The characterization of the parameter 
assessment is more important in the RF technique. The RF 
algorithm consists of certain primary constraints like the 
parting basis, the extreme tree profundity, the number of 
attributes to be regarded during the best split searching, and 
a number of forest trees as well. The Gini debasement is 
used as the parting method, and it is determined in Eq. (18). 

( )p

H

h

M
GUGini ˆ

ˆ

1ˆ

2
ˆ

ˆˆ1 
=

−=        (18) 

Eq. (18) ( )pGU ˆ
ˆˆ denotes the subset of the element pG ˆ

ˆ  

class present in the tree node M̂ . Moreover, the splitting 
criterion in the case of binary classification is expressed in 
Eq. (19). 

minˆ

ˆ

ˆ

ˆ

2ˆ
2

1ˆ
1

ˆ
→+=

MM
split

M
Gini

C

C
Gini

C

C
Gini  (19) 

In Eq. (19), 1Ĉ and 2Ĉ  denotes the object count in the 

nodes to both descendants-nodes of binary tree 1M̂ and

2M̂ Ĉ  refers to the objects count in the present node. The 

classified outcomes of the RF classifier are denoted as

RFCL . 

5.2 Optimized NN 

NN [33] is a set of algorithms that endeavoured for 

recognizing the interaction in a data group via a process that 

decreases the technique the human brain works. The 

selected features FS are subjected to the NN as its input, and 

it is given in Eq. (20). Here, ẑ  denotes the total number of 

extracted features.  

 2
ˆ

2
2

2
1

2 ,.......,
z

FSFSFSFS =    (20) 
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The NN framework consists of hidden, output, as well 

as input layers. Moreover, the hidden layer output 
( )xq
ˆˆ is 

determined in Eq. (21). Here, c and Ê  represents the 

neurons in the input layer as well as a hidden layer, 

respectively, A  determines the activation function,
 vg ˆˆ  

refers to the input neurons count,  ( )
( )y

Ed
w

ˆ

ˆˆ  denotes the bias 

weight with 
thv̂ hidden neuron, and ( )

( )y

Ec
w

ˆ

ˆ denotes the 

weight between the thc input neuron to thÊ  hidden neuron. 

Moreover, the network output
 j
Rˆ
ˆ is determined in Eq. (22), 

which ( )
( )R

jE
w

ˆ

ˆˆ
 specifies the weight of the 

thÊ hidden layers to

thĵ  the output layer, Out  specifies the output neurons, 

( )
( )R

jd
w

ˆ

ˆ̂
 represents the output bias weight of 

thĵ the output 

layer and n  portrays the hidden neurons count. Therefore, 

the error ( Er ) attained in both actual and predicted values 

should be low, as given in Eq. (23). Where cl ˆ
ˆ

 
specifies the 

output neuron count
j

Rˆ
~

 and
j

Rˆ
ˆ  determines the predicted 

and actual output, respectively.  

( )
( )
( )

( )
( )

















+= 
=

E
l

c

y
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y
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x INwwAq

ˆ
ˆ
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ˆ

ˆ

ˆ

ˆˆ
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ˆ
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ˆˆ

,,,

ˆ~
minarg    (23) 

The classified outcome of the optimized NN classifier is 

denoted as NNCL .  

5.2.1 Optimized RNN 

The FS is given to RNN classifier as its input. 

Moreover, the RNN is a special type of NN that is used for 

the purpose of recognition, prediction, and classification. 

The RNN [43] includes the hidden layer, input layer, and 

output layer. In RNN, each layer includes neurons. The 

RNN is trained with the BPTT model using Bayesian 

regulation that depends upon the forward and backward 

pass. 

The input units Î at a time T̂  in the input layer with the 

set of vector as  ,...ˆ,ˆ,ˆ....,
1ˆˆ1ˆ +− TTT

JJJ , in which

( )
IT

JJJJ ˆ21ˆ
ˆ,....ˆ,ˆˆ = . Each input unit in the fully 

convolutional RNN is associated in the hidden layer with 
each hidden unit, and it is determined as the weight matrix

IhW . In addition, the hidden layer H
~

 consists of hidden 

units ( )
HT

DDDD ~21ˆ
ˆ,....ˆ,ˆˆ = that are associated with each 

other via the recurrent links in the matrix hhW . Moreover, 

the hidden layer of RNN is determined in Eq. (24). 

( )
bLhhLIhbL

BVWJWAV ˆ1ˆˆˆˆ
ˆˆˆˆˆ ++=

−
  (24) 

In Eq. (24),
 b
B ˆ
ˆ and ( ).ˆ

b̂
A specifies the hidden units bias 

vector and the activation function, correspondingly. 
Moreover, the hidden units are associated via the weight 

matrix hoW  to the output layer. Here, the output layer 

consists of K̂  units as ( )
CL

XXXX ~21ˆ
ˆ,....ˆ,ˆˆ = , and it is given 

in Eq. (25). 

 ( )oLhooL
BVWAX ˆˆˆˆ

ˆˆ +=     (25) 

In Eq. (25),
 oB̂   and ( ).ˆ

oA  indicates the output units bias 

vector as well as the activation function, correspondingly. In 

RNN, the weight matrix 3W connects among the input and 

hidden layer,
 1W  with hidden-to-hidden recurrent 

connections that is it exists in the hidden layer nodes,
 
as 

well as 2W connected to the hidden layer and the output 

layer. All these parameters ),,( 213 WWW are jointed across 

time. Further, the stages of the RNN are given below: 

✓ The weight matrices are given as 213 ,, WWW , and 

the bias function 21
ˆ,ˆ PP  is initialized with 0.  

✓ The RNN forward pass is determined in Eq. (26) to 
Eq. (29), correspondingly. 

)1ˆ(ˆ.)ˆ(ˆ.ˆ)ˆ(
~

131 −++= LVWLFWPLQ   (26) 

))ˆ(
~

.(tanh)ˆ(ˆ LQLV =    (27) 

22 ).ˆ(ˆˆ)ˆ(
~

WLVPLK +=    (28) 

))ˆ(
~

max()ˆ(ˆ LKsoftLZ =    (29)  

✓ The loss function of RNN is determined in Eq. 

(30). Where N
~

 indicates the number of class 

labels, E
~

 specifies the binary indicator which finds 
the class label cls s split correctly for the 

observation obs . 

),

~

1ˆ

,
~

log(.
~

2

clsobs

N

P

clsobs MELoss 
=

−=  (30) 

✓ The gradients are computed via the back-
propagation. The RNN output is denoted as

RNNCL . 

5.3 KNN 

The classified outcome of RF, NN, and NN ( RFCL

NNCL , and RNNCL ) FS  are subjected to K-NN classifier as 

its input. The K-NN [34] classifiers depend on learning 
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through its similarity as it compares the specified test tuples 
with training tuples that are similar to them. Moreover, each 
tuple specifies the point in a n~ -dimensional space. In 

addition, the k-NN classifier explored the k training tuples 
on providing unfamiliar tuples that reside near to the 
unfamiliar one in pattern space. Further, the k-NN of the 
unfamiliar tuples is known to be k training tuples[35]. 
Closeness is defined with respect to distance metrics like 

ED. The ED between the points ( )nrrrKN ~1...12111
~~,~=

( )nrrrKN ~2...22212
~~,~= and or the two tuples is computed in 

Eq. (31). 

( )
( )

Y

rr

KNKNdis

Y

y yy

~

~~

,

~

1~
2

~2~1

21

 =
−

=   (31) 

The classified output of k-NN is indicated by NNKCL − .  

6. Weight Optimization of NN and RNN Via 

Self Improved Shark Smell Optimization With 

Gaussmap Estimation and Cycle Crossover 

Operation 
 

6.1 Objective Function and Solution Encoding  

The weights of NN and RNN are tuned optimally via an 

adopted SISSOOL method. Fig. 3 illustrates the input 

solution to the adopted SISSOOL model. Here, the entire 

number of weights in RNN is indicated as N , and the entire 

number of weights in NN is denoted as J
~

. The objective 

function Obj  of the implemented scheme is determined in 

Eq. (32). Here Loss  is depicted the K-NN loss function. 

( )LossObj min=    (32) 

 

 

 
 

Fig. 2 Solution Encoding 

6.2 Proposed SISSGECO model 
Although, SSO [26] is implemented on the basis of the 

shark's ability for hunting with a high smell sense for 
solving real-world engineering problems. However, it 
suffers in preserving the convergence speed and 
convergence rate. To overcome this, the SISSGECO model 
is proposed. Generally, the self-enhancement is proved to be 
capable in the existing optimization models [27] [28] [29] 
[30] [31]. SSO includes 4 primary phases such as 
initialization, forward movement, rotational movement, and 
position update. 

6.2.1 Initialization 
For modelling SSO, the initial solution population are 

arbitrarily created in the searching space. Each solution 
denotes a particle of odour which is a feasible shark position 
at the start of the searching procedure. The initial solution 
vector is determined as in Eq. (33) and (34), in which the 

th
g gU =1 initial populace vector position and n signifies the 

size of the populace. 

 11
2

1
1

1 ,...., sUUUU =
    

(33) 

The associated optimization issue is determined in Eq. 

(34), wherein the th
ag aU =1

, dimension of thg the position 

of the shark and c signify the decision variable count. 

 1
,

1
2,

1
1,

1 ,...., cgggg UUUU =    (34) 

6.2.2 Forward Movement 
When blood is mixed with water, the Shark in each 

position produces strong odour particles with a “velocity B
” to come nearer to the target (prey). Therefore, the initial 
velocity vector A is expressed based on its positions as per 
Eq. (35), and each B comprises a dimensional element as 
specified in Eq. (36). 

 11
2

1
1

1 ,...., sg BBBB =     (35) 

 1
,

1
2,

1
1,

1 ,...., cgggg BBBB =    (36) 

Therefore, the velocity in every dimension is evaluated 

as in Eq. (37), where
( )

z
ag

a

OB
Xz

,

,,....2,1 max





=  point out 

derivative OB at the position
z

ag, , z  symbolizes stage 

count, maxX indicates stage count for shark’s forwarding 

movement, and 1 symbolizes arbitrary integer among (0, 

1). 

( )
z

ag

a

OB
B z

z
ag

,

.1.,








=    (37) 

The raise i B s depicted by raise in the intensity of the 

odour. In each phase
z

agB , , the velocity limiter is employed 

as exposed in Eq. (38), wherein z  denotes the inertia 

coefficient in (0, 1) and 2  signifies arbitrary integer 

amongst (0, 1),  which denotes the velocity limit ratio for

z . 
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
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,
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,

z
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agzz

z
ag AA

a
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z
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





(38) 

The new shark position is depicted owing to its 

preceding velocity and position as per Eq. (39), which zt̂

points out the time interval of the stage z .  

z
z
g

z
g

z
g tBML ˆ.1 +=+

                   (39) 

6.2.3 Rotational Movement 
The shark makes a rotational movement for discovering 

the stronger odour particle. This process is called a local 
search as defined in (40), where Ee ...2,1=  and 3 points 

out arbitrary integers amongst (0, 1). 
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11,1 .3 +++ += z
g

z
g

ez
g LLF    (40) 

  

Conventionally, the parameters 1 2 3  are 

randomly generated. As per the proposed SISSGECO 
model, the gauss map is used for this parameter estimation 
as per Eq. (41). 

( )





 =

=+ Otherwise
R

R

R

f

f

f ;
1mod

1

0;0

1                (41) 

6.2.4 Particle Position Update 
The searching path of the shark continues with 

rotational movement as it comes nearer to the strong odour 

particle that is exposed in Eq. (42), which here 1+z
gF

represents the subsequent position of the shark with a higher
OB  value. 

( ) ( ) ( ) Ez
g

gz
g

z
g

z
g FOBFOBLOBM ,1,111 ,...,,maxarg ++++ =  (42)  

In addition, as per the proposed logic, and arithmetic 
crossover operation is performed. 

As per the proposed model, the cyclic crossover 
operation is performed.  

6.2.5 Cycle Crossover 
A gene from one parent is replicated into a child in 

cycle crossover, but the offspring must acquire the location 
of the other parent. 

Steps for Cycle Crossover 

• As indicated in Fig. 5a, begin a cycle from the 1st gene 
of the 1st parent to the 1st gene of the 2nd parent. 

• Choose the gene in the 1st position of the 2nd parent and 
go to the 1st parent's corresponding gene. 

• Vertically travel from the 1st parent's present gene to the 
2nd parent's gene. 

• Examine if the 2nd parent's gene is identical to the 1st 
parent's 1st gene. If true, proceed to step 6; otherwise, 
proceed to step v. 

• Go to step 3 and find the gene in the 1st parent that 
corresponds to the present gene in the 2nd parent. 

• To get the 2nd offspring, repeat the previous processes. 

• Move the genes from the 1st parent's cycle to the 1st 
offspring's equivalent places, as indicated in Fig. 5b. 

• Copy the genes from the 2nd parent's cycle to the 2nd 
offspring's equivalent places, as indicated in Fig. 5b. 

• Copy the remaining genes from the 2nd parent to the first 
offspring's appropriate places, as indicated in Fig. 5c. 

• As illustrated in Fig. 5c, copy the remaining genes of 
the 1st parent to their respective places in the 2nd 
offspring. 

• The final matching offspring is formed by the present 
gene sequence in each of the children. 

Fig. 3 illustrates the Cycle crossover (a) formation of the 
cycle, (b) formation initial stage (c) completion of offspring.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Cycle crossover (a) formation of cycle(b) formation initial stage 

(c) completion of offsprings 

The Pseudocode of the presented SISSGECO scheme is 
specified in Algorithm 2. 

 

Algorithm 2: Adopted SISSGECO scheme 

Start 

Initialization 

Apply OBL and generate opposite solutions 

Assign constraints, s z maxz z and max,....2,1 Xz =  

Generate primary populace with all individuals 

initializing z =1 

For z =1: maxX  

Forward movement 

Compute every element of  agB ,  

The shark position is given as per forwarding movement 

in Eq. (38). 

Rotational movement 

Attain novel shark position as per the rotational 

movement 
ez

gF ,1+
 

The gauss map is used for this parameter estimation as 

per the proposed logic in Eq. (41). 

Choose subsequent shark position depending upon 2 

movements 

Carry out cycle crossover 

End for z  

Fix z = z +1 

Choose the best shark position with a higher OB value 

End 
 

7. Results and Discussions 
7.1 Simulation Procedure 

The adopted ensemble classifier+ SISSGECO based HD 

prediction scheme was implemented in PYTHON, and their 

results were confirmed. Furthermore, the outcomes of the 

 

 

Offspring 1 

Offspring 2 

 

1  2 3 4 7 6 9 8 5 

4  1 2 8 5 6 7 3 9 

(a) 

(b) 

(c) 

Parent 1 

Parent 2 

1  2 3 4 5 6 7 8 9 

4  1 2 8 7 6 9 3 5 

Offspring 1 

Offspring 2 

 

1  2 3 4 - - - 8 - 

4  1 2 8 - - - 3 - 



Parvathaneni Rajendra Kumar et al. / IJETT, 70(4), 59-81, 2022 

69 

presented ensemble classifier+ SISSGECO scheme was 

computed over the conventional schemes such as ensemble 

classifier +SSO [26], ensemble classifier + BOA [45], 

ensemble classifier +CMBO [37], ensemble classifier 

+PRO [36], and ensemble classifier +social SO [35], 

correspondingly. The dataset was collected from [57], and 

the respective 4 datasets were "dataset-1 (Cleveland), 

dataset-2 (Hungary), dataset-3 (Switzerland), and dataset-4 

(VA Long Beach)," respectively. "This database contains 76 

attributes, but all published experiments refer to using a 

subset of 14 of them. In particular, the Cleveland database 

is the only one that has been used by ML researchers to this 

date. The goal field refers to the presence of heart disease in 

the patient. It is integer-valued from 0 (no presence) to 4. 

Experiments with the Cleveland database have concentrated 

on simply attempting to distinguish presence (values 1, 2, 3, 

4) from absence (value 0)”. In addition, the performance 

was computed by altering the learning percentage from 

40%, 50%, 60%, 70%, and 80% for different metrics, 

including precision, sensitivity, accuracy, specificity, FNR, 

F-measure, MCC, FPR, and NPV, respectively.  

7.2 Performance Analysis 
The performance analysis of the adopted ensemble 

classifier+ SISSGECO scheme is computed over the 

existing schemes like ensemble classifier +SSO, ensemble 
classifier + BOA, ensemble classifier +CMBO, ensemble 
classifier +PRO, and ensemble classifier +social SO, 
correspondingly in terms of certain metrics and it is given in 
Fig. 4 to Fig. 15 for datasets 1,2, 3, and 4. Moreover, the 
positive measures such as precision, sensitivity, accuracy, 
and specificity are illustrated in Fig. 4 to Fig. 7. Similarly, 
the adopted ensemble classifier+ SISSGECO scheme holds 
maximum accuracy (~0.9) for a learning percentage of 50% 
than the other existing schemes in Fig. 4(b) for dataset 1. 
Likewise, the scheme attains higher specificity (~0.97) for a 
learning percentage of 70% than the other existing schemes 
for dataset 3 in Fig. 6(d). Further, the proposed ensemble 
classifier+ SISSGECO scheme has shown a higher precision 
value with better performance at a learning percentage of 
40% than at a learning percentage of 60% for dataset 4 in 
Fig. 7(c). This analysis outcome has proven the impact of an 
ensemble classifier that gets trained with the appropriate 
features. Further, as both the NN and RNN weights are 
tuned optimally, the proposed ensemble classifier+ 
SISSGECO technique paved the way for better results in the 
HD prediction model with lower error.  

 

 

 

 

 
(a) (b) 

 

 

 

 
 

(c) (d) 

Fig. 4 Performance analysis of the developed scheme to the traditional approaches for (a) sensitivity, (b) accuracy, (c) precision (d) specificity for 

dataset 1 
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 (a) (b) 

 

 
 

 

 
 (c) (d) 

Fig. 5 Performance analysis of the developed scheme to the traditional approaches for (a) sensitivity, (b) accuracy, (c) precision (d) specificity for 

dataset 2

 

 
 

 

 
(a) (b) 

 

 
 

 

 
 

(c) (d) 

Fig. 6 Performance analysis of the developed scheme to the traditional approaches for (a) sensitivity, (b) accuracy, (c) precision (d) specificity for 

dataset 3 
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(a) (b) 

 

 
 

 

 

(c) (d) 

Fig. 7 Performance analysis of the developed scheme to the traditional approaches for (a) sensitivity, (b) accuracy, (c) precision (d) specificity for 

dataset 4 

The negative metrics like FPR, and FNR of the adopted 
ensemble classifier+ SISSGECO scheme to the traditional 
schemes like ensemble classifier +SSO, ensemble classifier 
+ BOA, ensemble classifier +CMBO, ensemble classifier 
+PRO, and ensemble classifier +social SO, respectively for 
dataset 1, 2, 3, and 4 are represented in Fig. 8 to Fig. 11. In 
addition, the variations in learning percentage demonstrate 
the difference in the outcomes. This performance has proven 
that the adopted work has converged with the objective 

(minimization of error). In addition, the proposed ensemble 
classifier+ SISSGECO model proves the less FPR value 
(~0.15) as a better performance than the conventional 
models at a learning percentage of 60% for dataset 3 in Fig. 
1(b). Less FNR value of the proposed ensemble classifier+ 
SISSGECO model has proven that the model is less prone 
to error that direct to precise outcomes at a learning 
percentage of 40% in Fig. 8(a). 

 

 

 
 

 

 

(a)  (b) 

Fig. 8 Performance analysis of the developed scheme to the traditional approaches for (a) FNR (b) FPR for dataset 1 
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(a)  (b) 

Fig. 9 Performance analysis of the developed scheme to the traditional approaches for (a) FNR (b) FPR for dataset 2

 

 
 

 

 

(a)  (b) 

Fig. 10 Performance analysis of the developed scheme to the traditional approaches for (a) FNR (b) FPR for dataset 3

 

 
 

 

 

(a)  (b) 

Fig. 11 Performance analysis of the developed scheme to the traditional approaches for (a) FNR (b) FPR for dataset 4

Fig. 5 represents the other metrics analysis like MCC, 
NPV, and F-measure of the proposed ensemble classifier+ 
SISSGECO model over other conventional schemes. 
Similarly, the F-measure of the adopted ensemble 
classifier+ SISSGECO model for a learning percentage of 
60% in Fig. 12(b) is superior to other traditional for dataset 
1. Likewise, the adopted ensemble classifier+ SISSGECO 
model attains maximum NPV (~0.92) for a learning 

percentage of 50% than other extant schemes for dataset 4 
in Fig. 15(a). From the graph, it is clearly shown that the 
MCC of the adopted ensemble classifier+ SISSGECO 
model attains a higher value for learning percentage of 50%; 
however, the compared existing models attain lower values 
for dataset 2 as per Fig. 13(c). Therefore, the performance 
of the presented ensemble classifier+ SISSGECO model has 
shown its improvement over other traditional models.  
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(a) (b) 

 

 
 

(c) 
Fig. 12 Performance analysis of the developed scheme to the traditional approaches for (a) NPV (b) F-measure (c) MCC for dataset 1 

 

 

 
 

 

 

(a) (b) 
 

 
 

(c) 
Fig. 13 Performance analysis of the developed scheme to the traditional approaches for (a) NPV (b) F-measure (c) MCC for dataset 2
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(a) (b) 

 

 
 

(c) 
Fig. 14 Performance analysis of the developed scheme to the traditional approaches for (a) NPV (b) F-measure (c) MCC for data

 

 
 

 

 

(a) (b) 
 

 
 

(c) 

Fig. 15 Performance analysis of the developed scheme to the traditional approaches for (a) NPV (b) F-measure (c) MCC for dataset 4 
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7.3 Analysis on Classifier  
Table II to Table VI describes the performance of 

classifier analysis of the adopted work to extant models for 
datasets 1, 2, 3, and 4, respectively. Moreover, the 
performance of the presented ensemble classifier+ 
SISSGECO scheme is compared over existing schemes such 
as DBN, NB, SVM, CNN, and ensemble classifier+ HB-EA 
model, respectively, for all datasets based on different 
measures. From the table, the presented ensemble 
classifier+ SISSGECO scheme has held higher positive 
values and minimal negative values for all metrics than 
other extant schemes. In Table II, the adopted scheme 

provides a larger specificity value (0.995) to extant 
approaches, including DBN, NB, SVM, CNN, and 
ensemble classifier+ HB-EA model, correspondingly for 
dataset 1. Further, the accuracy value of the presented 
scheme in dataset 4 is higher than in dataset 2. Likewise, the 
NPV of the suggested approach for dataset 4 is better than 
the traditional models. The presented scheme has shown 
minimal FPR values (~0.0042) than the extant approaches 
for dataset 3. Thus, the proposed work has attained best 
outcomes than the extant approaches. 

 
Table 2. Analysis of the classifier of adopted and traditional schemes for dataset-1 

Metrics DBN 

[44] NB [47]  

SVM 

[46]  

CNN 

[48] 

Ensemble classifier 

+ HB-EA [38] 

Proposed Ensemble classifier 

+ SISSGECO model 

FPR 0.214592 0.184549 0.198856 0.254649 0.195972 0.004098 

sensitivity 0.356223 0.446352 0.403433 0.236052 0.941041 0.88835 

MCC 0.141631 0.261803 0.204578 -0.0186 0.842673 0.896096 

precision 0.356223 0.446352 0.403433 0.236052 0.934367 0.994565 

F- 

Measure 0.356223 0.446352 0.403433 0.236052 0.937692 0.938462 

specificity 0.785408 0.815451 0.801144 0.745351 0.804028 0.995902 

NPV 0.785408 0.815451 0.801144 0.745351 0.880631 0.913534 

Accuracy 0.678112 0.723176 0.701717 0.618026 0.916202 0.946667 

FNR 0.643777 0.553648 0.596567 0.763948 0.058959 0.11165 

  
Table 3. Analysis of the classifier of adopted and traditional schemes for dataset-2 

Metrics DBN 

[44] NB [47]  

SVM 

[46]  

CNN 

[48] 

Ensemble classifier 

+ HB-EA [38] 

Proposed Ensemble classifier 

+ SISSGECO model 

FPR 0.194444 0.208333 0.263889 0.402778 0.119597 0.074938 

sensitivity 0.734177 0.716981 0.650307 0.49711 0.940178 0.78524 

MCC 0.456203 0.427113 0.317579 0.075511 0.822647 0.75214 

precision 0.453125 0.431818 0.358108 0.228723 0.916945 0.895214 

F- 

Measure 0.560386 0.539007 0.461874 0.313297 0.924281 0.851436 

specificity 0.805556 0.791667 0.736111 0.597222 0.880403 0.938851 

NPV 0.932476 0.926829 0.902896 0.831721 0.930234 0.078521 

Accuracy 0.792711 0.778157 0.720272 0.577828 0.911152 0.932541 

FNR 0.265823 0.283019 0.349693 0.50289 0.059822 0.29975 

  
Table 4. Analysis of the classifier of adopted and traditional schemes for dataset-3 

Metrics DBN 

[44] NB [47]  

SVM 

[46]  

CNN 

[48] 

Ensemble classifier 

+ HB-EA [38] 

Proposed Ensemble classifier 

+ SISSGECO model 

FPR 0.271845 0.213592 0.262136 0.359223 0.192414 0.004215 

sensitivity 0.641026 0.710526 0.652361 0.54321 0.93389 0.909091 

MCC 0.302656 0.416295 0.320891 0.147955 0.836135 0.901245 

precision 0.348837 0.424084 0.36019 0.262948 0.915286 0.932146 

F- 

Measure 0.451807 0.531148 0.464122 0.354362 0.924495 0.821918 

specificity 0.728155 0.786408 0.737864 0.640777 0.807586 0.9375 

NPV 0.899281 0.924658 0.903686 0.856031 0.913499 0.201921 

Accuracy 0.712025 0.772655 0.72209 0.622152 0.899511 0.932642 

FNR 0.358974 0.289474 0.347639 0.45679 0.06611 0.047518 
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Table 5. Analysis of the classifier of adopted and traditional schemes for dataset-4 

Metrics DBN 

[44] NB [47]  

SVM 

[46]  

CNN 

[48] 

Ensemble classifier 

+ HB-EA [38] 

Proposed Ensemble classifier 

+ SISSGECO model 

FPR 0.087379 0.082524 0.058252 0.089806 0.235261 0.055556 

sensitivity 0.825243 0.834951 0.883495 0.820388 0.94118 0.932146 

MCC 0.737864 0.752427 0.825243 0.730583 0.872974 0.935813 

precision 0.825243 0.834951 0.883495 0.820388 0.947679 0.945813 

F- 

Measure 0.825243 0.834951 0.883495 0.820388 0.942296 0.925813 

specificity 0.912621 0.917476 0.941748 0.910194 0.764739 0.944444 

NPV 0.912621 0.917476 0.941748 0.910194 0.885314 0.925813 

Accuracy 0.883495 0.889968 0.92233 0.880259 0.937056 0.965512 

FNR 0.174757 0.165049 0.116505 0.179612 0.05882 0.111111 

7.4 Statistical Analysis 
The statistical analysis of the developed ensemble 

classifier+ SISSGECO approach is computed to the existing 
scheme based on the accuracy measure is represented in 
Table VI to Table IX. In Nature, the meta-heuristic 
algorithms are stochastic; thus, the algorithms are 
performed several times for determining the achievement of 
the defined objective. The mean performance of the adopted 
ensemble classifier+ SISSGECO scheme holds a better 
mean value than the traditional schemes for dataset 2. The 
best-case scenario proves an enhancement of the proposed 

ensemble classifier+ SISSGECO scheme attains (~0.04879) 
with more accurate results than the other traditional models 
like ensemble classifier +SSO, ensemble classifier + BOA, 
ensemble classifier +CMBO, ensemble classifier +PRO, 
and ensemble classifier +social SO, correspondingly for 
dataset 2. The proposed ensemble classifier+ SISSGECO 
scheme has proved its improvement almost in all cases. 
Therefore, the development of the presented ensemble 
classifier+ SISSGECO scheme has been validated 
effectively. 

 

Table 6. Statistical analysis with respect to accuracy: Proposed vs Conventional models for dataset 1 

Methods Best  Worst  Mean  Median  Standard Deviation 

Ensemble classifier + SSO [26] 0.074074 0.154333 0.102052 0.089901 0.03274 

Ensemble classifier + BOA [45] 0.084074 0.145333 0.109552 0.104401 0.022263 

Ensemble classifier + CMBO [37] 0.074333 0.214468 0.118552 0.092704 0.057217 

Ensemble classifier + PRO [36] 0.074333 0.140074 0.095802 0.084401 0.026825 

Ensemble classifier + Social SO 

[35] 0.053333 0.094468 0.071651 0.069401 0.015146 

Proposed Ensemble classifier + 

SISSGECO model 0.034488 0.064468 0.046906 0.044333 0.01093 

 
Table 7. Statistical analysis with respect to accuracy: Proposed vs Conventional models for dataset 2 

Methods Best Worst Mean Median Standard Deviation 

Ensemble classifier + SSO [26] 0.099917 0.125895 0.113822 0.114738 0.009237 

Ensemble classifier + BOA [45] 0.097252 0.125895 0.117818 0.124063 0.011945 

Ensemble classifier + CMBO [37] 0.10458 0.125895 0.118984 0.122731 0.008417 

Ensemble classifier + PRO [36] 0.1199 0.125895 0.122565 0.122231 0.002569 

Ensemble classifier + Social SO 

[35] 0.099917 0.125895 0.110824 0.108743 0.010583 

Proposed Ensemble classifier + 

SISSGECO model 0.04879 0.067459 0.056365 0.054605 0.006832 

 
Table 8. Statistical analysis with respect to accuracy: Proposed vs Conventional models for dataset 3 

Methods Best Worst Mean Median Standard Deviation 

Ensemble classifier + SSO [26] 0.205488 0.916779 0.394215 0.227296 0.302119 

Ensemble classifier + BOA [45] 0.185488 0.205287 0.197373 0.199359 0.00809 

Ensemble classifier + CMBO [37] 0.178543 0.274316 0.210752 0.195074 0.037315 

Ensemble classifier + PRO [36] 0.145488 0.401459 0.261856 0.250239 0.113283 

Ensemble classifier + Social SO [35] 0.104588 0.205873 0.147809 0.140388 0.036734 

Proposed Ensemble classifier + 

SISSGECO model 0.043189 0.067358 0.054825 0.054377 0.008814 
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Table 9. Statistical analysis with respect to accuracy: Proposed vs Conventional models for dataset 4 

Methods Best  Worst  Mean  Median  Standard Deviation 

Ensemble classifier + SSO [26] 0.081111 0.091111 0.086204 0.086296 0.003984 

Ensemble classifier + BOA [45] 0.076667 0.092222 0.08463 0.084815 0.005509 

Ensemble classifier + CMBO [37] 0.075556 0.09 0.08287 0.082963 0.005135 

Ensemble classifier + PRO [36] 0.075556 0.092222 0.0825 0.081111 0.006105 

Ensemble classifier + Social SO [35] 0.073333 0.091667 0.08162 0.080741 0.006562 

Proposed Ensemble classifier + 

SISSGECO model 0.048889 0.053333 0.050556 0.05 0.001843 

7.5 Analysis Based on Features 
The analysis based on features work for proposed and 

conventional features in terms of certain metrics are 
illustrated in Table X to Table XIII. In addition, the 
proposed ensemble classifier+ SISSGECO model holds 
better accuracy (~0.946667) than other feature comparisons, 
including the proposed model with conventional mutual 
information, the proposed model without imbalance 
processing, LDA, and PCA, respectively, for dataset 1. 
Further, the proposed ensemble classifier+ SISSGECO 
model holds lower FNR (0.111111) with better performance 

than other feature comparisons, including the proposed 
model with conventional mutual information, proposed 
model without imbalance processing, LDA, and PCA, 
respectively, for dataset 4. This has proved that with 
proposed ensemble classifier+ SISSGECO model helps to 
analyze more accurately, whereas other extant approaches 
show the least performance with the proposed concept. This 
absolutely evolves that the developed combination is a fit 
for the HD prediction model.  

 

Table 10. Analysis based on features of adopted and traditional schemes for dataset-1 

Metrics 
Proposed model 

with conventional 

mutual information 

Proposed model 

without imbalance 

processing LDA [49] PCA [42] 

Proposed Ensemble 

Classifier + SISSGECO 

model 

FPR 0.241774 0.16 0.198856 0.23319 0.004098 

sensitivity 0.201575 0.419355 0.310744 0.222576 0.88835 

MCC -0.02607 0.179352 0.074672 -0.00692 0.896096 

precision 0.070407 0.178082 0.119138 0.079096 0.994565 

F- Measure 0.104362 0.25 0.17224 0.116715 0.938462 

specificity 0.758226 0.84 0.801144 0.76681 0.995902 

NPV 0.912692 0.945946 0.930696 0.916396 0.913534 

Accuracy 0.711869 0.807882 0.76208 0.72188 0.946667 

FNR 0.798425 0.580645 0.689256 0.777424 0.11165 

 

Table 11. Analysis based on features of adopted and traditional schemes for dataset-2 

Metrics 
Proposed model with 

conventional mutual 

information 

Proposed model 

without imbalance 

processing 

LDA 

[49] 

PCA 

[42] 

Proposed Ensemble 

Classifier + SISSGECO 

model 

FPR 0.416667 0.1 0.25 0.347222 0.074938 

sensitivity 0.482759 0.857143 0.666667 0.556213 0.78524 

MCC 0.052861 0.679934 0.344051 0.168368 0.75214 

precision 0.21875 0.642857 0.375 0.273256 0.895214 

F- Measure 0.301075 0.734694 0.48 0.366472 0.851436 

specificity 0.583333 0.9 0.75 0.652778 0.938851 

NPV 0.823529 0.967742 0.909091 0.862385 0.078521 

Accuracy 0.563758 0.892562 0.734694 0.634421 0.932541 

FNR 0.517241 0.142857 0.333333 0.443787 0.29975 
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Table 12. Analysis based on features of adopted and traditional schemes for dataset-3 

Metrics 
Proposed model with 

conventional mutual 

information 

Proposed model 

without imbalance 

processing 

LDA 

[49] 

PCA 

[42] 

Proposed Ensemble 

Classifier + SISSGECO 

model 

FPR 0.417476 0.227273 0.291262 0.514563 0.004215 

sensitivity 0.481928 0.693878 0.618644 0.3861 0.909091 

MCC 0.051548 0.388627 0.266904 -0.10298 0.901245 

precision 0.218182 0.404762 0.327354 0.15873 0.932146 

F- Measure 0.300375 0.511278 0.428152 0.224972 0.821918 

specificity 0.582524 0.772727 0.708738 0.485437 0.9375 

NPV 0.823045 0.918919 0.890244 0.758725 0.201921 

Accuracy 0.56294 0.758364 0.691943 0.465477 0.932642 

FNR 0.518072 0.306122 0.381356 0.6139 0.047518 

Table 13. Analysis based on features of adopted and traditional schemes for dataset-4 

Metrics 
Proposed model with 

conventional mutual 

information 

Proposed model 

without imbalance 

processing 

LDA 

[49] 

PCA 

[42] 

Proposed Ensemble 

Classifier + SISSGECO 

model 

FPR 0.325243 0.139175 0.101942 0.330097 0.055556 

sensitivity 0.263736 0.633484 0.722467 0.255474 0.932146 

MCC -0.04245 0.381997 0.501664 -0.05144 0.935813 

precision 0.097035 0.341463 0.438503 0.093333 0.945813 

F- Measure 0.141872 0.44374 0.545757 0.136719 0.925813 

specificity 0.674757 0.860825 0.898058 0.669903 0.944444 

NPV 0.873664 0.953741 0.967067 0.871212 0.925813 

Accuracy 0.626661 0.837575 0.88063 0.621251 0.965512 

FNR 0.736264 0.366516 0.277533 0.744526 0.111111 

7.6 Convergence Analysis 
The convergence of the presented SISSGECO approach 

to the traditional schemes is examined by varying the 
iteration count from 0, 10, 20, 30, 40, and 50, 
correspondingly. Fig. 16 represents the convergence 
analysis of the presented scheme over the traditional 
schemes. The proposed SISSGECO approach attains the 
minimum cost function as per the defined objectives in Eq. 
(32). As the count of iterations rises, the cost function of the 
SISSGECO algorithm gets minimized. Moreover, the cost 

function of the proposed SISSGECO model had a fall in 
between the range 26th to 30th iteration for dataset 1. The 
cost function of the adopted SISSGECO scheme provides a 
lower constant value (1.042) from the 25th to 50th iteration 
than other existing models like SSO, BOA, CMBO, PRO, 
and Social SO correspondingly for dataset 4. Consequently, 
it is shown clearly that the adopted SISSGECO approach 
had attained the lower cost function with superior outcomes. 

 

 
 

 

 

(a) (b) 
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Fig. 16 Performance analysis of the developed scheme to the traditional approaches for (a) dataset 1 (b) dataset 2 (c) dataset 3 (d) dataset 4 

7.7 Computational Analysis  
The computation complexity for the proposed 

SISSGECO model with the conventional SSO, BOA, 
CMBO, PRO, and Social SO, is depicted in Table XIV. 
From the result, it can be noticed that the outcomes of the 
proposed SISSGECO model are 3.17%, 4.45%, 1.66%, 
0.88%, and 3.26% higher than traditional SSO, BOA, 
CMBO, PRO, and Social SO methods. From the result, it is 
evident that the proposed SISSGECO model takes less time 
to compute when compared to other existing methods. 

Table  14. Computational time 

S.no Methods Time (sec) 

1. SSO 1042 

2. BOA 1056 

3. CMBO 1026 

4. PRO 1018 

5. Social SO 1043 

6. SISSGECO 1009 

 

8. Conclusion 
This paper has proposed an HD prediction system. 

Here, the output of NN, RNN, and RF is given as the input 
of k-NN. For making the system more accurate in HD 
prediction, the weights of NN and RNN were optimally 
tuned by a SISSGECO model. Then, the final output was 
obtained effectively in a precise manner. Finally, the 
outcomes of the developed approach were compared to the 
other extant schemes based on various measures like 
precision, sensitivity, accuracy, specificity, NPV, MCC, 
FPR, F1-score, and FNR, respectively. Further, the 
sensitivity of the adopted ensemble classifier+ SISSGECO 
scheme for learning percentage of 60% was 10.25%, 5.12%, 
12.82%, 15.38%, and 7.69%, superior to the existing 
schemes for dataset 2. In addition, the proposed model 
proves the less FPR value (~0.15) as a better performance 
than the conventional models at a learning percentage of 
60% for dataset 3. The best-case scenario proves an 
enhancement of the proposed ensemble classifier+ 
SISSGECO scheme attains (~0.04879) with more accurate 
results than the other traditional models for dataset 2.  

 

References 
[1] Farman AliShaker El-SappaghKyung-Sup Kwak, A Smart Healthcare Monitoring System for Heart Disease Prediction Based on 

Ensemble Deep Learning and Feature Fusion, Information Fusion. 63 (2020) 208-222. 
[2] R. ValarmathiT. Sheela, Heart Disease Prediction Using Hyper Parameter Optimization (HPO) Tuning, Biomedical Signal 

Processing and Control. 70 (2021) 103033. 

[3] Rani, P., Kumar, R., Ahmed, NMOS et al., A Decision Support System for Heart Disease Prediction Based Upon Machine Learning. 
J Reliable Intell Environ. 7 (2021) 263–275. 

https://doi.org/10.1007/s40860-021-00133-6 
[4] Harika N, Swamy S.R., & Nilima, Artificial Intelligence-Based Ensemble Model for Rapid Prediction of Heart Disease, SN 

COMPUT. SCI. 2 (2021) 431. https://doi.org/10.1007/s42979-021-00829-9 

[5] Prakash S, Sangeetha K, & Ramkumar N, An Optimal Criterion Feature Selection Method for Prediction and Effective Analysis of 
Heart Disease. Cluster Comput. 22 (2019) 11957–11963. https://doi.org/10.1007/s10586-017-1530-z. 

[6] Renji P. CherianNoby ThomasSunder Venkitachalam, Weight Optimized Neural Network for Heart Disease Prediction Using 
Hybrid Lion Plus Particle Swarm Algorithm, Journal of Biomedical Informatics. 110 (2020) 103543. 

[7] D. Shiny IreneT. SethukarasiN. Vadivelan, Heart Disease Prediction Using Hybrid Fuzzy K-Medoids Attribute Weighting Method 
with DBN-KELM Based Regression Model Medical Hypotheses. 143  (2020) 8.  

[8] liyaShailendra Kumar ShrivastavaVivek Sharma, An Optimized Xgboost Based Diagnostic System for Effective Prediction of Heart 
Disease, Journal of King Saud University - Computer and Information Sciences. (2020). 

[9] Ibomoiye Domor MienyeYanxia SunZenghui Wan, An Improved Ensemble Learning Approach for the Prediction of Heart Disease 
Risk, Informatics in Medicine. 20 (2020) 100402. 

[10] C. Beulah Christalin LathaS. Carolin Jeeva, Improving the Accuracy of Prediction of Heart Disease Risk Based on Ensemble 
Classification Techniques, Informatics in Medicine. 16 (2019) 100203 



Parvathaneni Rajendra Kumar et al. / IJETT, 70(4), 59-81, 2022 

80 

[11] Md Mamun AliBikash Kumar PaulMohammad Ali Moni, Heart Disease Prediction Using Supervised Machine Learning 
Algorithms: Performance Analysis and Comparison, Computers in Biology and Medicine.136 (2021) 104672. 

[12] Ibomoiye Domor MienyeYanxia SunZenghui Wang, Improved Sparse Autoencoder Based Artificial Neural Network Approach for 
Prediction of Heart Disease, Informatics in Medicine. 18 (2020) 100307. 

[13] Zafer Al-MakhadmehAmr Tolba, Utilizing IoT Wearable Medical Device for Heart Disease Prediction Using Higher-Order 
Boltzmann Model: A Classification Approach, Measurement. 147 (2019) 106815. 

[14] Aniruddha DuttaTamal BatabyalScott T. Acton, An Efficient Convolutional Neural Network for Coronary Heart Disease Prediction 
Expert Systems with Applications. 159 (2020) 113408. 

[15] S. Mohan, C. Thirumalai and G. Srivastava, Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques, IEEE 
Access. 7 (2019) 81542-81554. doi: 10.1109/ACCESS.2019.2923707. 

[16] N. L. Fitriyani, M. Syafrudin, G. Alfian and J. Rhee, HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision 
Support System, IEEE Access.  8 (2020) 133034-133050. doi: 10.1109/ACCESS.2020.3010511. 

[17] Y. Pan, M. Fu, B. Cheng, X. Tao and J. Guo, Enhanced Deep Learning Assisted Convolutional Neural Network for Heart Disease 
Prediction on the Internet of Medical Things Platform, IEEE Access. 8 (2020) 189503-189512. doi: 
10.1109/ACCESS.2020.3026214. 

[18] S. A. Ali et al., An Optimally Configured and Improved Deep Belief Network (OCI-DBN) Approach for Heart Disease Prediction 
Based on Ruzzo–Tompa and Stacked Genetic Algorithm, in IEEE Access. 8 (2020) 65947-65958.  
doi: 10.1109/ACCESS.2020.2985646. 

[19] B. Wang et al., A Multi-Task Neural Network Architecture for Renal Dysfunction Prediction in Heart Failure Patients with 
Electronic Health Records, IEEE Access. 7 (2019) 178392-178400. doi: 10.1109/ACCESS.2019.2956859. 

[20] S. S. Sarmah, An Efficient IoT-Based Patient Monitoring and Heart Disease Prediction System Using Deep Learning Modified 
Neural Network, IEEE Access. 8 (2020) 135784-135797. doi: 10.1109/ACCESS.2020.3007561. 

[21] D. Bertsimas, L. Mingardi and B. Stellato, Machine Learning for Real-Time Heart Disease Prediction, IEEE Journal of Biomedical 
and Health Informatics. 25(9) (2021) 3627-3637. doi: 10.1109/JBHI.2021.3066347. 

[22] M. A. Khan, An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier, IEEE Access. 8 (2020) 34717-34727.  
doi: 10.1109/ACCESS.2020.2974687. 

[23] Javeed, S. Zhou, L. Yongjian, I. Qasim, A. Noor and R. Nour, An Intelligent Learning System Based on Random Search Algorithm 
and Optimized Random Forest Model for Improved Heart Disease Detection, IEEE Access. 7 (2019) 180235-180243.  
doi: 10.1109/ACCESS.2019.2952107. 

[24] Aggrawal, R., Pal, S. Sequential Feature Selection and Machine Learning Algorithm-Based Patient’s Death Events Prediction and 
Diagnosis in Heart Disease. SN COMPUT. SCI. 1 (2020) 344. https://doi.org/10.1007/s42979-020-00370-1. 

[25] Ripan, R.C., Sarker, I.H., Hossain, S.M.M. et al. A Data-Driven Heart Disease Prediction Model Through K-Means Clustering-
Based Anomaly Detection. SN COMPUT. SCI. 2 (2021) 112. https://doi.org/10.1007/s42979-021-00518-7 

[26] Mohammad-Azari S., Bozorg-Haddad O., Chu X. Shark Smell Optimization (SSO) Algorithm. In: Bozorg-Haddad O. (eds) 
Advanced Optimization by Nature-Inspired Algorithms. Studies in Computational Intelligence, 720. Springer, Singapore. 720 
(2018) https://doi.org/10.1007/978-981-10-5221-7_10. 

[27] R. Rajakumar, Impact of Static and Adaptive Mutation Techniques on Genetic Algorithm, International Journal of Hybrid Intelligent 
Systems. 10(1) (2013) 11-22. doi: 10.3233/HIS-120161.  

[28] B. R. Rajakumar, Static and Adaptive Mutation Techniques for Genetic Algorithm: A Systematic Comparative Analysis, 
International Journal of Computational Science and Engineering. 8(2) (2013) 180-193. doi: 10.1504/IJCSE.2013.053087. 

[29] S. M. Swamy, B. R. Rajakumar and I. R. Valarmathi, Design of Hybrid Wind and Photovoltaic Power System using Opposition-
based Genetic Algorithm with Cauchy Mutation, IET Chennai Fourth International Conference on Sustainable Energy and Intelligent 
Systems (SEISCON 2013), Chennai, India. (2013). doi: 10.1049/ic.2013.0361.  

[30] Aloysius George and B. R. Rajakumar, APOGA: An Adaptive Population Pool Size based Genetic Algorithm, AASRI Procedia - 
2013 AASRI Conference on Intelligent Systems and Control (ISC 2013). 4 (2013) 288-296.  
doi: https://doi.org/10.1016/j.aasri.2013.10.043.  

[31] B. R. Rajakumar and Aloysius George, A New Adaptive Mutation Technique for Genetic Algorithm, In proceedings of IEEE 
International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, India. 18(20) (2012) 1-7. 
doi: 10.1109/ICCIC.2012.6510293. 

[32] Zerina Masetic, Abdulhamit Subasi, Congestive Heart Failure Detection Using Random Forest Classifier, Computer Methods and 
Programs in Biomedicine. 130 (2016) 54-64. 

[33] Yogeswaran Mohan, Sia Seng Chee, Donica Kan Pei Xin and Lee Poh Foong, Artificial Neural Network for Classification of 
Depressive and Normal in EEG, 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). (2016). 

[34] M. Akhil Jabbar, B. L. Deekshatulu, Priti Chandra, Classification of Heart Disease Using K- Nearest Neighbor and Genetic 
Algorithm, Procedia Technology. 10 (2013) 85-94. 

[35] Fouad, Ahmed, Social Spider Optimization Algorithm. (2015). 
[36] Seyyed Hamid Samareh MoosaviVahid Khatibi Bardsiri, Poor and Rich Optimization Algorithm: A New Human-Based and Multi 

Populations Algorithm, Engineering Applications of Artificial Intelligence. 86 (2019) 165-181. 
[37] Dehghani, Mohammad, ŠtěpánHubálovský, and Pavel Trojovský, Cat and Mouse Based Optimizer: A New Nature-Inspired 

Optimization Algorithm. 21(15) (2021) 5214. https://doi.org/10.3390/s21155214. 
[38] Rajendra Kumar, Identification of Noteworthy Features and Data Mining Techniques for Heart Disease Prediction, In 

Communication. 
[39] [Online]. Available:  

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm#:~:text=Skewness%20is%20a%20measure%20of,relative%20
to%20a%20normal%20distribution. 

[40] [Online]. Availanble: https://en.wikipedia.org/wiki/Statistic. 
[41] [Online]. Availanble: https://en.wikipedia.org/wiki/Standard_deviation 
[42] Mishra, Sidharth & Sarkar, Uttam & Taraphder, Subhash & Datta, Sanjoy & Swain, Devi & Saikhom, Reshma & Panda, Sasmita & 

Laishram, Menalsh, Principal Component Analysis. International Journal of Livestock Research. 1 (2017). 
[43] Ling-Jing Kao, Chih Chou Chiu, Application of Integrated Recurrent Neural Network with Multivariate Adaptive Regression 

Splines on SPC-EPC Process, Journal of Manufacturing Systems. 57 (2020) 109–118. 
[44] H.Z. Wang, G.B. Wang, G.Q. Li, J.C. Peng, and Y.T. Liu,  Deep Belief Network Based Deterministic and Probabilistic Wind Speed 

Forecasting Approach, Applied Energy. 182 (2016) 80–93. 
[45] Arora, Sankalap & Singh, Satvir, Butterfly Optimization Algorithm: A Novel Approach for Global Optimization. Soft Computing. 

(2019).  



Parvathaneni Rajendra Kumar et al. / IJETT, 70(4), 59-81, 2022 

81 

[46] E. Avci, A New Intelligent Diagnosis System for the Heart Valve Diseases by Using Genetic-SVM Classifier, Expert Systems with 
Applications. 36(7) (2009) 10618-10626. 

[47] Paraskevas TsangaratosIoanna Ilia, Comparison of a Logistic Regression and Naïve Bayes Classifier in Landslide Susceptibility 
Assessments: The Influence of Models Complexity and Training Dataset Size, CATENA. 145 (2016) 164-179. 

[48] Y. Lecun, K. Kavukvuoglu, and C. Farabet, Convolutional Networks and Applications in Vision, In Circuits and Systems, 
International Symposium. (2010) 253–256. 

[49] Ping DengHongjun WangXinwen Zhu, Linear Discriminant Analysis Guided by Unsupervised Ensemble Learning, Information 
Sciences. 480 (2018) 211-221. 

[50] Malige Gangappa, Kiran Mai C, Sammulal P, Enhanced Crow Search Optimization Algorithm and Hybrid NN-CNN Classifiers for 
Classification of Land Cover Images, Multimedia Research. 2(3) (2019) 12-22. 

[51] G.Gokulkumari, Classification of Brain Tumor using Manta Ray Foraging Optimization-Based DeepCNN classifier, Multimedia 
Research. 3(4) (2020). 

[52] Sesham Anand, Archimedes Optimization Algorithm: Heart Disease Prediction, Multimedia Research. 4(3) (2021). 
[53] Yuanhao Liu, Hybrid Shark Smell Optimization Based on World Cup Optimization Algorithm for Minimization of THD, Journal 

of Computational Mechanics, Power System and Control. 3(3) (2020). 
[54] B. Kranthi Kiran, Indian Music Classification using Neural network Based Dragon Fly Algorithm, Journal of Computational 

Mechanics, Power System and Control. 4(3) (2021). 
[55] Vaibhav Ankush Thorat, Cloud Intrusion Detection using Modified Crow Search Optimized Based Neural Network, Journal of 

Networking and Communication Systems.4(2) (2021). 
[56] Sankul Rathod, Hybrid Metaheuristic Algorithm for Cluster Head Selection in WSN, Journal of Networking and Communication 

Systems. 3(4) (2020). 
[57] (2021). [Online]. Availabe: https://archive.ics.uci.edu/ml/datasets/Heart+Disease. 
[58] Kalletla Sunitha, Automatically Identifying Wild Animals in Camera-Trap Images with Deep Learning, SSRG International Journal 

of Computer Science and Engineering. 8(5) (2021) 12-16. https://doi.org/10.14445/23488387/IJCSE-V8I5P102 
[59] Nidhi Mongoriya, Vinod Patel, Review the Breast Cancer Detection Technique Using Hybrid Machine Learning, SSRG 

International Journal of Computer Science and Engineering. 8(6) (2021) 5-8. https://doi.org/10.14445/23488387/IJCSE-V8I6P102 
[60] V .P. Amadi, N.D Nwiabu, V. I. E. Anireh, Case-Based Reasoning System for the Diagnosis and Treatment of Breast, Cervical and 

Prostate Cancer, SSRG International Journal of Computer Science and Engineering. 8(8) (2021) 13-20. 
https://doi.org/10.14445/23488387/IJCSE-V8I8P103 

 
 

   
 

 


