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Abstract - Recently, scheduling mixed-criticality tasks on a common computational system has become an imperative study 

in academia and engineering proposals. Since multicore processors are the main paradigm in mixed-criticality systems 

(MCS), reliability and energy consumption are vital concerns. In modern MCS, increased peak power dissipation, 

particularly in critical scenarios, may cause temperature issues, disturbing the system's consistency and timeliness. This 

work proposes a criticality-cognizant energy-efficient scheduling approach (CESA) that concurrently provides reliability, 

power management, and failsafe service level in MCS. The proposed approach decreases the system power dissipation as 

far as achievable at runtime through the dynamic voltage and frequency scaling (DVFS) approach with laxity allocation. 

CESA simultaneously accepts a number of tasks (i.e., workloads) and creates clusters with one high-criticality workload 

and a set of low-criticality workloads. It calculates the available laxities effectively and finds the most suitable task cluster 

to utilize that available laxity by considering its effect on the instantaneous power consumption and thermal issues. At the 

same time, varying the core speed, assigning an appropriate cluster for remaining laxity, and selecting a suitable core for 

task migration at runtime are arduous endeavors and lead to deadline defilement which is not acceptable for high-level 

workloads. Hence, we propose an online scheduling approach with DVFS and task migration during runtime whenever 

there is laxity. A cost function is defined as finding out the most suitable cluster to allot the laxities to reduce its V/F level 

or transfer the task to a new processing element. We assess the performance of our approach in an asymmetric multicore 

platform (i.e., ARM big. LITTLE processor) with several benchmark task sets. Empirical results demonstrate that the 

proposed algorithm realizes up to a 6.76% drop in maximum power and a 26.17% drop in core temperature related to the 

state-of-the-art method. 

Keywords - ARM big.LITTLE, DVFS, Energy efficiency, Task scheduling, Mixed-criticality system, Multicore processors, 

Laxity utilization. 

1. Introduction 
Following the unprecedented trend in the 

semiconductor industry, the domain of embedded 

electronics has faced an irreversible shift towards 

assimilating multiple tasks on a common processing 

platform [1]. Integrating more than one application on a 

shared hardware platform brings innumerable 

reimbursements to the safety-critical domains, allowing us 

to execute more tasks simultaneously to increase the 

reliability and resource utilization while minimizing size, 

weight, and power dissipation [2]. A system is called 

safety-critical, whose failure might cause a risk to human 

life or severe environmental harm (e.g., automotive, 

nuclear reactors, chemical plants, medical, avionics, etc.) 

[3]. Tasks in such systems are generally pigeonholed by 

the degree of criticality, called safety integrity levels (SIL) 

[5] or design assurance levels (DAL) [4], which are 

defined as the level of assurance needed against 

malfunctions.  

The workload with a higher degree of criticality 

reflects that a greater level of assurance is mandatory for 

reliable system functionality. For example, in the control 

system of a flight executing surveillance operation, it is 

required to provide more priority for the accuracy of flight-

critical tasks (e.g., tasks related to power system control, 

actuation control, trajectory, computation, and flight 

control) so that the aircraft does not crash, than for 

mission-oriented tasks (e.g., tasks related to 

reconnaissance purposes including navigation services, 

tracking potential targets, video surveillance, power 

steering, navigation services, weapons management, night 

vision, and parking assistance) or non-critical tasks (e.g., 

tasks related to vehicular entertainment like music 

streaming). Indeed, the flight-critical workloads must be 

finished before the deadline, and significant mission-

critical workloads could be discarded in overloaded 

conditions.  

 

In an MCS, the worst-case execution time (WCET) is 

an important parameter employed to ensure the correctness 

of all workloads, particularly high-critical tasks. Every 
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high-criticality task is defined by two or multiple WCETs 

[6], including a less conservative, low-level WCET (𝐶𝑖
1)  

and a more conservative, high-level WCET(𝐶𝑖
2). The 

larger 𝐶𝑖
2 is exploited to provide real-time assurance, and 

the likelihood that the actual completion time of the 

workload will be as large as 𝐶𝑖
2 is very low. As a result, 

mostly, the computational capacity of the system is 

unexploited since the completion time of workloads is less 

than the 𝐶𝑖
2, which is estimated through various 

approaches and techniques [7]. In the present work, we 

consider a dual-criticality system in which Ci1and Ci2 

define each high-level workload 𝐶𝑖
1and 𝐶𝑖

2. Each low-

critical workload is defined by 𝐶𝑖
1 only.  

High-level workloads (𝜏𝑖
2) must be schedulable in 

both low-criticality mode (𝑀1) and high-criticality 

mode (𝑀2); however, the schedulability of low-level 

workloads (𝜏𝑖
1) in 𝑀2 mode depends on the selected 

scheduling algorithm. Some schedulers impose to drop all 

𝜏𝑖
1 workloads, whereas the others provide the least possible 

service level. Indeed, the system begins its operation with 

𝑀1 mode, and it enters into 𝑀2 mode whenever an  𝜏𝑖
2 

overruns its 𝐶𝑖
1. Now, the scheduler assumes 𝐶𝑖

2 for all the 

residual workloads to ensure the system correctness, and it 

continues in this mode until all the high-level workloads 

are completed; now, the operation of all 𝜏𝑖
1 and  𝜏𝑖

2 tasks 

demands heavy computation, which may surpass the 

system’s capacity, and the processor becomes overloaded 

[8].  

In overrun mode, all the cores perform workloads 

concurrently to ensure the timeliness of  𝜏𝑖
2 tasks, which 

raises the processor's power consumption beyond its TDP 

limit (thermal design power) [9]. TDP is the peak power 

that a device can draw without any harm. The overall 

power dissipation of the processor is the summation of 

power dissipation of all processing elements irrespective of 

the task criticality level. Therefore, even undervaluing the 

power dissipation of a  𝜏𝑖
1 workload may disrupt the 

system TDP, which produces a lot of heat beyond the 

cooling capacity of the core. Hence, we need to restart or 

halt the system to prevent permanent damage [10]. 

Consequently, the timeliness constraints of  𝜏𝑖
2 workloads 

are violated, which causes jeopardizing effects in safety-

critical applications. Thus, it is essential to reduce the 

power dissipation of workloads at any criticality mode.  

 

Earlier studies have developed algorithms to execute 

mixed-critical workloads in both 𝑀1 and 𝑀2 modes, but 

most of them have focused on the average power 

consumption of the system [11, 12]. These studies exploit 

the DVFS method and discard low-level workloads in 

𝑀2 to tackle average power dissipation, but no one has 

attempted to control maximum instantaneous power 

dissipation. In the chorus, some methods cannot be simply 

implemented in 𝑀2 mode exclusively in the overloaded 

scenarios since varying the V/F settings of cores enforces 

increased timing complexity that may lead to timeliness 

defilement of  𝜏𝑖
2 and therefore reduce the dependability of 

the system. However, reducing only the average power is 

not acceptable. Even though it reduces the system's total 

power consumption, there is no assurance that the TDP is 

not disrupted [9]. In this regard, we attempt to minimize 

system peak power consumption and related thermal 

issues. One increasing difficulty in performing MCSs is 

providing fail-safe service levels for low-critical jobs in 

overloaded scenarios.  

 

This work proposes an energy-aware online 

scheduling method, CESA, to control the peak power 

dissipation of an MCS. To reach our goal, we calculate the 

available laxity (i.e., the deviation between the WCETs 

and their actual execution time of the workloads) in 

consort with DVFS. We consider two modes of operation: 

(i) Offline phase in which the workloads are clustered 

using the approach given in our previous work [3] and 

scheduled across cores using the earliest deadline first 

(EDF) approach for both 𝑀1 and 𝑀2. Then, the resultant 

scheduling plan is recorded as a static table. The low-level 

 𝜏𝑖
1  workloads that have to be discarded in 𝑀2 are reduced; 

consequently, the system performance is increased; and (ii) 

online mode in which CESA analyzes the prevailing 

clusters to find out the best one for execution. For selecting 

the appropriate cluster, we consider the effect of the 

workloads in the cluster on the maximum power 

consumption and thermal profile of the system. Hence, the 

core speed that executes the workload can be reduced 

accordingly through scaling. 
 

Moreover, along with the laxity utilization technique, 

we develop a task migration method to enhance the 

thermal profile of the system further. This work develops a 

criticality-aware energy-efficient real-time scheduling 

approach that reduces peak power dissipation of the 

mixed-criticality tasks and ensures sufficient response time 

for low-criticality workloads. The key contributions of our 

work are five-fold.  
 

• We propose a criticality-cognizant energy-efficient 

scheduling approach that provides reliability, reduces 

peak power consumption, and simultaneously enables 

failsafe service levels for low-critical tasks.   

• We generate an offline static scheduling table for both 

𝑀1 and 𝑀2 modes.  

• We develop a task migration method that utilizes the 

laxity to migrate the workloads to other cores within a 

core cluster to reduce the thermal issues in run time. 

• We evaluate the performance of our scheduling 

algorithm with DVFS controlling unit to deliver the 

timeliness assurance of MCS. 

• We also aim to provide an adequate service level for 

low critical workloads without jeopardizing the 

timeliness guarantee of the high-level tasks. 
 

The remaining sections are structured as follows: We 

review the most relevant studies in this domain in Section 

II. We illustrate the processor, task, and power models 

employed in Section III. The proposed criticality-cognizant 

energy-efficient scheduling approach is given in Section 

IV. We describe the empirical setup and results in Section 

V. Finally, and Section VI concludes this work. 
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2. Related works 
This section reviews some prior works which are related to our present study. Various earlier studies considered 

mixed-criticality task scheduling in both design and runtime modes. Since we consider runtime mixed-criticality 

scheduling to tackle power consumption and related thermal issues, we only focus on the methods developed for MCS with 

related scope. 
 

References 
Techniques 

/Methods used 
Objective(s) Result Limitation 

Singh et al. [13] A survey of dynamic 

energy and thermal 

management 

approaches for 

multicore mobile 

platforms. 

To provide useful 

insights about dynamic 

energy and thermal 

management 

approaches for 

multicore mobile 

platforms. 

Upcoming 

trends and open 

challenges are 

identified. 

- 

Guasque et al. [14] Energy-efficient 

partition to CPU 

allocation 

To provide a set of pre-

calculated allocations 

(i.e., profiles) so at run 

time, the system can 

switch to various 

modes based on the 

existing energy level. 

Achieves energy 

saving of up to a 

5%. 

It does not provide an 

optimum solution; instead, 

it delivers a faster feasible 

solution. 

Salami et al. [15] A heterogeneous 

fairness-aware 

energy-efficient 

model  

To meet fairness 

constraints and provide 

energy-efficient 

scheduling. 

Energy 

consumption is 

about 33% and 

41% less than 

Linux and Min-

Fair, 

respectively. 

Scheduling overhead is 

high 

Li et al. [16] Thermal and energy-

aware mixed-

criticality Fluid 

Scheduling 

To minimize the energy 

consumption and 

temperature while 

providing a better 

schedulability ratio. 

Achieve a 

considerable 

amount of 

energy saving 

Reduce the energy 

consumption and 

temperature with loss of 

schedulability 

Moulik [17] A three-phase 

hierarchical resource 

allocation strategy 

To schedule periodic 

tasks with a bounded 

number of migrations 

and context switches. 

Achieves 77% 

success ratio  

Resource contention leads 

to a substantial variation in 

memory access latencies. 

Bao et al. [18] Online temperature 

aware DVFS 

technique to utilize 

both dynamic and 

static slack 

To reduce energy 

consumption and 

temperature-related 

issues 

Achieves s an 

energy reduction 

of up to 39% 

Not focused on runtime 

complexities 

Kannaian and 

Palanisamy [19] 

Fixed Window 

dynamic reclamation 

algorithm 

To dynamically adjust 

the slow-down factor of 

the processor based on 

the online task 

requirements. 

The energy 

consumption of 

the task set is 

reduced by 50% 

The algorithm is 

particularly designed for 

non-preemptive tasks. 

Kang et al. [20] Dynamic scheduling 

algorithms for 

reallocating the 

slack for future tasks  

To reduce energy 

and/or satisfy deadline 

constraints 

Reduces energy 

up to 14% and 

reduces deadline 

miss ratio up to 

80% 

Not focused on 

computational complexities 
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Zhang et al. [21] Joint optimization 

schemes of energy 

efficiency and 

system reliability for 

directed acyclic 

graph (DAG) by 

adopting the shared 

recovery technique 

To achieve high system 

reliability and 

noticeable energy 

preservation 

Reduces energy 

consumption up 

to 21.3% 

High scheduling overhead  

Zhu et al. [22] Power-aware 

scheduling 

algorithms to 

reclaim the time 

unused by a task  

To reduce the 

execution speed of 

future tasks and reduce 

the total energy 

consumption of the 

system 

Save up to 44%  overhead on energy-saving 

ranges from 6% to 12% 

Several researchers have assessed their proposed 

approaches using simulators, and just considered energy or 

temperature reduction, and are not focused on online 

performance. They have not considered peak power or 

related thermal issues, and also, their approach is not 

appropriate for MCS in which workloads have diverse 

levels of criticality. In this context, we propose an online 

scheduling approach for dual-criticality workloads, which 

are performed on a heterogeneous multicore processor to 

reduce peak power dissipation and core temperature.  

3. Description of System Modeling 
The key objective of this work is to reduce peak 

power dissipation and related thermal problems in an 

MCS. Although several researchers attempt to tackle or 

reduce the power dissipation of MCS, they do not focus on 

peak power in both 𝑀1 and 𝑀2 modes. We developed an 

online task scheduler to tackle instantaneous power and 

related thermal issues. We use the DVFS technique with 

laxity utilization at runtime to reach the goal. In this 

method, the V/F setting of cores can be varied according to 

existing laxity time to decrease the peak power dissipation. 

However, the decisive research questions are (i) how to 

find out a suitable workload to allocate the available laxity; 

(ii) if it is feasible to migrate the workloads to other cores 

for improved temperature control, when and where the 

workloads are to be migrated; (iii) the computational 

overhead should be measurable and be as simple as 

feasible to circumvent intervention with the system 

workloads; and (iv) the cost function employed to find out 

suitable workload should not only be easy for estimation 

but also better to consider other measures such as energy 

and thermal profiles and calculate the potential effects of 

the impending workload. This study attempts to explore 

possible solutions to these issues. 

3.1. Processor Model 

The multicore system 𝜓 with heterogeneous 

processing elements 𝜆 is represented as  𝜓 =
{𝜓0, 𝜓1, … . . 𝜓𝜆−1}. We use the DVFS-enabled ODROID 

XU3 board, in which the processing elements can operate 

with various V/F levels. Furthermore, we assume that the 

resource distribution among the cores does not experience 

any discrepancy among the workloads performing over the 

cores. The ODROID XU3 contains two constellations with 

four A7 (LITTLE) cores and four A15 (big) cores. Each 

constellation can operate with various V/F levels and 

process elements within a constellation run at the same 

V/F level. The allowed voltage and frequency range of 

cores is given in Table 1.  

Table 1. Voltage-frequency range of cores in ODROID XU3 

 
ARM cortex-

A7 

ARM cortex-

A15 

Voltage (V) [0.9, 1.3] [0.9, 1.3625] 

Frequency 

(GHz) 
[0.2, 1.4] [0.2, 2.0] 

3.2. Task model 

Since our ultimate interest is in executing periodic 

mixed-criticality workloads, we consider a finite set of 

sporadic workloads scheduling across a heterogeneous 

multicore system. In this work, we limit our focus to a 

dual-criticality system where every workload is designated 

as τ𝑖
𝓍 = (𝒫𝑖 , 𝒟𝑖 ,  𝑥𝑖, 𝐶𝑖

1,  𝐶𝑖
2) with the following 

semantics: 𝑖 ∈ 𝑁+   is a task index (i.e., 1 ≤ 𝑖 ≤ 𝑛). 

𝒫𝑖  denotes the period, and 𝒟𝑖 represents the deadline of the 

task τ𝑖
𝓍. Since we focused on implicit-deadline sporadic 

workloads, every workload τ𝑖
𝓍 has a deadline equivalent to 

inter-arrival time (i.e., for each τ𝑖
𝓍, 𝒫𝑖 = 𝒟𝑖). 𝓍𝑖 = {1,2} is 

the criticality level of τ𝑖
𝓍. Correspondingly, workloads with 

𝓍𝑖 ← 1  and 𝓍𝑖 ← 2 represent low- and high-criticality. 

𝐶𝑖
1 ∈ 𝑁+ is the WCET of τ𝑖

𝓍 at a maximum frequency in 

𝑀1 mode. 𝐶𝑖
2 ∈ 𝑁+ is the WCET of τ𝑖

𝓍 at a maximum 

frequency in 𝑀2 mode. Each τ𝑖
2 task is defined by two 

WCET values (i.e., 𝐶𝑖
2 and 𝐶𝑖

1). Also, for each τ𝑖
2, 𝐶𝑖

2 ≥
𝐶𝑖

1. Each τ𝑖
1 is described by 𝐶𝑖

1. The high-criticality 

workloads must be completed before their subsequent 

arrival. Our approach unwinds the service level restraint of 

τ𝑖
1 workloads in which some degree of deadline failures are 

acceptable. 

3.3 Power dissipation model 

The total power dissipation of the chip can be divided 

into three measures [2] as given in Equation (1). 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐿𝑒𝑎𝑘 + 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑖𝑛𝑛𝑎𝑡𝑒                             (1) 
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where 𝑃𝑇𝑜𝑡𝑎𝑙  is total power consumption, 𝑃𝐿𝑒𝑎𝑘  is 

leakage or static power due to bias currents leakage. 

𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 is dynamic power due to transistor switching. 

𝑃𝑖𝑛𝑛𝑎𝑡𝑒  is an innate power of memory and I/O devices. 

Typically, static power contributes 20–40% of [23]. 

The key source of power dissipation is the subthreshold 

leakage current (𝐼𝑠𝑢𝑏), which can considerably upsurge 

with adaptive body biasing.  

𝑃𝐿𝑒𝑎𝑘 = 𝑉𝑆 × 𝐼𝑠𝑢𝑏                                                              (2) 

where 𝑉𝑆 is the supply voltage. Dynamic power is a 

dominant element related to other power constituents in 

Equation (1). It is a function of core frequency and supply 

voltage and contributes to the greater part of 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 in 

runtime. It can be calculated using Equation (3).  

𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝐿𝑜𝑎𝑑 × 𝑉𝑆
2 × 𝑓                                           (3) 

where 𝐶𝐿𝑜𝑎𝑑 represents the effective load capacitance, and 

𝑓 is the frequency (speed) of the core. As stated earlier, the 

V/F setting of a whole constellation in ODROID XU3 can 

be varied. This indicates that the V/F setting of all 

processing elements in a constellation is identical. This 

work aims to decrease  𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐  by utilizing the scaling 

factor of voltage and frequency as given in Equation (4). 

⟨
𝑓𝑚𝑖𝑛 ≤ 𝛼1 × 𝑓𝑚𝑎𝑥 ≤ 𝑓𝑚𝑎𝑥

𝑉𝑠_𝑚𝑖𝑛 ≤ 𝛼2 × 𝑉𝑠_𝑚𝑎𝑥 ≤ 𝑉𝑠_𝑚𝑎𝑥
                                    (4) 

Where 𝛼1 and 𝛼2 are the scaling factors of speed and 

voltage, the total power is calculated using Equation (5). 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑉𝑆𝐼𝑠𝑢𝑏 + 𝐶𝐿𝑜𝑎𝑑(𝛼2𝑉𝑠_𝑚𝑎𝑥)2𝛼1𝑓𝑚𝑎𝑥 +  𝑃𝑖𝑛𝑛𝑎𝑡𝑒                                                            

                         (5) 

In ARM big.LITTLE processor, some speed levels set 

with the same voltage as given in Figure 1. Thus, 𝛼1 and 

𝛼2 are not identical. Based on speed levels of A15 and A7 

cores, 𝛼1 can be fixed in the range of [0.1, 1] for big cores 

and [0.143, 1] for the LITTLE cores. Also, 𝛼2 is in 

[0.6606, 1] and [0.692, 1] for big and LITTLE cores. Even 

though the board is fabricated with power sensors, they 

only calculate the power of the whole constellation, not of 

each processing element. The energy consumption of cores 

in ODROID XU3 for different frequency levels is given in 

Figure 2. 

 

 

 

 

 

 

 

 
Fig. 1 Different V/F settings of cores in ODROID XU3 

 

 

 

 

 

 

 

Fig. 2 Energy consumption of cores in ODROID XU3 for different frequency levels 
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4. Proposed Scheduling Method  
The key objective of CESA is to reduce the peak 

power consumption and the related thermal issues of the 

processing elements. We exploit the DVFS approach to 

handle these measures. The objective function of CESA is 

defined in Equation (6). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑ 𝑃𝜓𝑗
, 𝑇𝑚𝑎𝑥𝑗∈𝑐𝑜𝑟𝑒𝑠 ) , ∀ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡                (6) 

Decreasing the V/F level of a particular core during 

task execution extends the task completion time and may 

lead to deadline defilement. Additionally, the overhead of 

varying V/F levels in the online phase leads to deadline 

defilement. Equation (7) denotes that the summation of the 

computation time of τ𝑖
𝓍 at V/F level ℓ on the core 𝜓𝑗 and 

timing overhead of scheduling (𝒪𝑠) and varying V/F level 

(𝒪𝑣) should not be surpassed the deadline (𝑑𝑖)  of the task 

in different criticality modes. 

𝐶𝑖

𝑓𝜓𝑗ℓ
+ 𝒪𝑠 + 𝒪𝑣 ≤ 𝑑𝑖 {

𝐶𝑖 = 𝐶𝑖
1 𝑖𝑛  𝑀1𝑚𝑜𝑑𝑒

𝐶𝑖 = 𝐶𝑖
2 𝑖𝑛 𝑀2 𝑚𝑜𝑑𝑒

                  (7) 

Our CESA contains two operating phases such as 

offline and online. It exploits the online mode for handling 

instantaneous power and thermal issues; therefore, it is 

impractical to apply optimization methods like the MINLP 

(Mixed Integer Non-linear Programming) model due to its 

increased time complexity. Therefore, we introduce a 

heuristic-based approach. Figure 3 illustrates the overall 

architecture of CESA. We employ the ODROID XU3 

board for profiling the power consumption of the tasks (in 

the offline phase) and for performing workload on cores 

(in the online phase). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Overview of the proposed approach 

4.1 Offline Phase 

In the offline phase, CESA accepts more tasks 

simultaneously and generates task clusters using the 

method employed in our previous work [3]. The power 

consumption of each task can be calculated by executing 

the benchmark tasks on the ODROID XU3 board. It is 

noteworthy that managing an unspecified task is out of the 

scope of our research. As we consider the safety-critical 

domain, generally, the system architect recognizes the 

workloads and their features at design time. Hence, two 

scheduling and mapping tables are generated using the task 

parameters for 𝑀1 and 𝑀2 modes. The EDF scheduling 

strategy is applied to find out the schedule in 𝑀1 and 𝑀2 

modes statically according to the WCETs of tasks, using 

the method given in [24]. In mode 𝑀1, all the workloads 

are performed with equal precedence; in 𝑀2 mode,  𝜏𝑖
2 

workloads are executed with more priority. These 

predefined tables are then employed to execute workloads 

during runtime. This imposes a stringent ordering in 

performing the workloads and assures that all the 

timeliness constraints are satisfied as per design-time 

exploration. As 𝐶𝑖
2 of  𝜏𝑖

2  is higher, not all  𝜏𝑖
1 workloads 
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may be executed in 𝑀2. CESA attempts to discard as few 

 𝜏𝑖
1 workloads as possible in creating a table in 𝑀2 mode to 

increase the service quality. Our approach utilizes these 

tables and task parameters in the online phase to handle the 

system. 

4.2 Task Clustering 

We defined the cluster as a crew of workloads 

assembled. Each cluster contains a single  𝜏𝑖
2 and a set of 

 𝜏𝑖
1 workloads in our method. The cluster is defined as 𝑆𝑖 =

{ 𝜏𝑖
2, 𝜏1

1,  𝜏2
1 … …  𝜏𝑛

1} where  𝜏𝑖
2(1 ≤ 𝑗 ≤ 𝑚) is the single 

high-level workload and the tasks 𝜏𝑖
1(1 ≤ 𝑖 ≤ 𝑛) are low-

level. The base period  (𝑃𝑆𝑖
) of  𝑆𝑖  is calculated as the 

greatest common factor (gcf) of the period of all tasks in a 

specific cluster, as given in Equation (8).  

 𝑃𝑆𝑖
= 𝑔𝑐𝑓{ 𝑃(𝜏𝑖

2), 𝑃(𝜏1
1),  𝑃(𝜏2

1) … … 𝑃(𝜏𝑛
1)}                 (8) 

Where 𝑃(𝜏𝑖
2) is the period of  𝜏𝑖

2 and  𝑃(𝜏𝑖
1)  is the period 

of  𝜏𝑖
1. The number of cluster budget replenishments in 

 𝑃(𝜏𝑖
1) is defined by Equation (9). 

 𝐿𝑂𝑖
𝑗

=
 𝑃(𝜏𝑖

1)

 𝑃𝑆𝑖

                                                                     (9)                         

 Also, the number of budget replenishments in  𝑃(𝜏𝑗
2) is 

defined by Equation (10).  

 𝐻𝐼𝑗 =
 𝑃(𝜏𝑗

1)

 𝑃𝑆𝑖

                                                                     (10) 

The cluster 𝑆𝑖 needs to accumulate enough execution time 

budget 𝐸𝑖  to ensure all of its tasks meet the schedulability 

constraint. Our approach executes every cluster 𝑆𝑖 as a 

regular workload with inter-arrival time  𝑃𝑆𝑖
 and budget 𝐸𝑖 . 

Now, we can calculate the utilization of a cluster by 𝐸𝑖/
 𝑃𝑆𝑖

. 

4.3 Online Phase 

The online phase of CESA contains some function 

controlling modules. The task scheduler is the most 

important component collaborating with the other 

modules. It is responsible for scheduling and mapping the 

workloads. When there is any laxity in a core or a cluster 

completes its execution earlier, the predictor finds the 

more suitable task cluster. Suppose a suitable task cluster 

is assigned for a processing element according to the 

thermal profile of the current core and the thermal profile 

of other processing elements. In that case, the task 

migrator decides whether to transfer the cluster to another 

core or not to minimize the core temperature. Then, the 

designated V/F setting for the processing element is 

tabulated. The DVFS controlling module exploits this 

designated speed and voltage to execute the workload. The 

DVFS controller is used to find an ideal V/F level for a 

particular core constellation. Owing to mixed-criticality 

performance, the system enters into 𝑀2 if the processing 

time of anyone  𝜏𝑖
2 exceeds its 𝐶𝑖

1. The mode changer 

should verify it. The processor changes its scheduling 

strategy based on the scheduling table in this scenario. 

4.4 Selecting the Appropriate Task to Assign Laxity 

Our predictor module selects a cluster after calculating 

laxity and maps that cluster on the core where the laxity 

(ℒ) is observed. A cost function (𝜕𝑖) is defined for every 

cluster, as given in Equation (11). 

𝜕𝑖 = 𝜌𝐸𝑖 + 𝜎𝑃𝑖                                                               (11) 

where 𝐸𝑖 and 𝑃𝑖  are the cluster's maximum energy and 

instantaneous power, correspondingly. The factors 𝜌 and 𝜎 

are in [0, 1]. Indeed, a decrease in energy consumption 

causes a drop in core temperature. It is noteworthy that if 

we assume ⟨𝜌, 𝜎⟩ = ⟨1, 0⟩, then 𝜕𝑖 only focus on the power 

consumption and not its energy. Therefore, the cluster with 

the higher instantaneous power is selected to be performed 

at a lower frequency to decrease the system's peak power. 

If we select ⟨𝜌, 𝜎⟩ = ⟨0, 1⟩, 𝜕𝑖  only consider energy. 

Therefore, the cluster with the highest energy consumption 

is selected to be performed at minimum frequency, thus 

decreasing the maximum energy consumption. After 

choosing the cluster, the maximum power dissipation and 

its WCET (𝐶𝑖
1 or 𝐶𝑖

2) are varied according to the size of 

observed laxity and the V/F setting. Additionally, Equation 

(11) is used to a task cluster that can initiate their process 

early. A workload τ𝑖
𝓍 can execute earlier if it has arrived 

before 𝑎𝑖 − ℒ; here, 𝑎𝑖 is the commencement of τ𝑖
𝓍. A new 

workload can be issued when all its ancestors complete 

their process. Hence, we form the following constraint. 

𝑇𝑟𝑖 <  𝑎𝑖 − ℒ𝑖−1                                                             (12)                        

In Equation (12), 𝑇𝑟𝑖 is the time of task release. 

Assume the designated workload τ𝑖
𝓍 with deadline 𝑑𝑖 and 

the start time 𝑎𝑖 that  𝑎𝑖 +  𝐶𝑖 ≤ 𝑑𝑖. Let us assume that we 

have the laxity time, ℒ𝑖−1 produced by τ𝑖−1
𝓍  during 

execution. To use this laxity for the suitable workload τ𝑖
𝓍, 

generally, the task scheduler calculates the minimum 

suitable core speed using Equation (13).  

𝑓𝑖 = 𝑚𝑎𝑥 (𝑓𝑚𝑖𝑛 ,   
𝐶𝑖

𝐶𝑖+ℒ𝑖−1
, 𝑓𝑚𝑎𝑥)                                   (13) 

This guarantees that only the commencement of the 

workload is earlier by ℒ𝑖−1, and the deadline is kept 

constant. Therefore,  

 𝑎𝑖 − ℒ𝑖−1 +
𝐶𝑖

(
𝑓𝑖

𝑓𝑚𝑎𝑥
)

≤  𝑎𝑖 + 𝐶𝑖 ≤ 𝑑𝑖                               (14) 

On the other hand, selecting an appropriate workload 

and the processing element and varying the V/F setting 

create overheads. If we neglect to select the optimal speed, 

it may lead to deadline defilement. Consequently, ℒ𝑖−1 is 

decreased by 𝒪𝑠 and 𝒪𝑣 . After finding the optimal speed, 



N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022 

 

210 

the start time of the suitable cluster is updated for the static 

schedule. 

4.5 Task Migration Technique 

CESA shifts the designated workload to the other 

cores without altering its deadline for controlling the core 

temperature. We define a cost function as given in 

Equation (15) to decide about the migration and identify 

the suitable processing element to migrate. 

𝜕𝑐 = 𝛾 ∑ 𝐸𝑐
𝑡𝑐
𝑡=1 (𝑡)                                                          (15) 

Here, the core temperature is calculated according to 

the aggregated energy. We observed that a core is likely to 

hoard a lesser temperature when its cumulative energy 

consumption is lower than the others. Conversely, the 

variation between the cumulative energy consumption of 

the designated processing element to migrate and the 

current processing element ought to be large enough. 

Consequently, we introduce a parameter (𝛾) (in our 

experiments, 𝛾 = 0.9). In Equation (15), 𝑡𝑐 is the 

completion time of a specific workload. Also, do not 

disturb the tasks' deadline scheduled on other processing 

elements; they are studied for migrations that have laxity 

to perform the apt workload. Since we employ an 

asymmetric multicore system for our experimentation, 

each task cluster's execution time and power dissipation 

will be different when executing on different 

constellations. Even though migration from an A7 to A15 

core decreases the task's execution time, it causes 

increased instantaneous power dissipation, which is not 

suitable for safety-critical applications. Hence, we apply 

the migration method within the constellation to retain the 

peak power dissipation. Since the migration method is 

used to a cluster that is not processed yet, the method is 

implemented concurrently with different speeds, and the 

relocation overhead does not disturb the timeliness 

restraints. The reason is that the overhead of migration is 

very low compared to the overhead related to varying the 

core speed. 

4.6 Update V/F Levels 

After completing a workload, there might be a laxity 

or a workload in the queue that is ready to start its 

execution. All processing elements within a constellation 

run at the identical V/F setting in a heterogeneous 

multicore system. Since the V/F settings of both 

constellations are not the same, it is checked on which 

constellation the recently accomplished workload was 

executing. Subsequently, we check the allocated V/F level 

of executing or ready tasks on all cores of the 

constellation. As cores within a constellation work with the 

same frequency, we select the optimum speed for the 

constellation. Choosing the greatest minimum speed is to 

guarantee that all workloads are finished without violating 

their deadline. Finally, if the selected speed is diverse from 

constellation speed, we vary the speed of the constellation 

by allocating the new frequency. It should be noted that by 

varying the speed of a constellation, its voltage will 

inevitably vary. 

4.6.1 Evaluation 

We carried out experiments on the DVFS-enabled 

ARM big to assess our proposed approach.LITTLE 

multicore system (ODROID XU3 board). Since it supports 

different V/F levels, we analyze the impact of different 

V/F settings by scaling the core speed within the given 

range. We generate random tasks using the tool presented 

in [24] to carry out experimentations. To achieve a feasible 

range of power consumption, we execute numerous 

benchmark tasks from the MiBench suite [25] on the 

ODROID XU3 processor with higher speed and measure 

the power consumption from sensors fabricated on the 

panel. As the V/F scaling is used for the entire system, the 

power dissipation at other lower speeds can be calculated 

by scaling the system frequency [26]. 

Additionally, we studied the impact of the number of 

cores by executing benchmarks on 1 to 8 cores. We 

execute every task 1000 times with diverse parameters 

(i.e., WCETs, actual execution times, and timeliness 

constraints) and report the average results. We observed 

the maximum power consumption of workloads in [0.492, 

0.923] W in LITTLE cores and [2.986, 6.856] W in big 

cores. 

We assess the enactment of our method under three 

different cases, as illustrated in Figures 4 - 6, wherein the 

results are normalized to [24]. Generally, as the 

applications become multifaceted (e.g., having several 

workloads or maximum system utilization), it is very 

difficult to realize the significant drop in maximum power, 

core temperature, and energy. We can achieve reduced 

maximum power consumption when the number of 

processing elements increases. The proposed migration 

method is used to redistribute the workloads more 

uniformly to the cores at runtime according to their 

cumulative energy. 
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Fig. 4 The varying number of cores 

Since CESA only focuses on reducing peak power 

consumption for each core independently, it is very hard to 

achieve a similar reduction in power when fewer cores are 

used. However, as shown in Figure 4, the variation in 

maximum power is substantial by growing the number of 

processing elements. Besides, as the adjacent elements 

exaggerate the temperature of the individual element, the 

maximum temperature drop is low by adding more 

processing elements. By utilizing our proposed method, 

the maximum power, energy, and temperature are 

decreased by 6.315%, 16.271%, and 21.12%, respectively. 

 

 

 

 

 

 

 

 

 

Fig. 5 The varying number of tasks 

The efficiency of CESA hinges on the existing laxity 

during runtime and the opportunity of allocating them to 

the workloads. Hence, if there is small laxity observed due 

to the application type concerning the number of 

workloads and system utilization, maximum power, core 

temperature, and energy reduction are less. In Figure 5, 

when the utilization increases, the idle time of the 

processing element between two successive workloads are 

reduced. The workloads also tend to perform longer. 

Consequently, the size of laxities that can be used at 

runtime is restricted. In this scenario, our method achieves 

a minimum of 4.215% and a maximum 8.719% drop in 

maximum power dissipation. 
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        Fig. 6 Varying utilization bound 

To study the system's temperature, we execute the workloads on Core 2 and 3 that generally realize maximum 

temperature owing to their closeness to the memory and other elements. The board consists of sensing devices to measure 

the temperature of every A15 core and measure the power consumption of each constellation. Hence, the power and 

temperature values are measured from these sensing devices. Figure 7 illustrates the power trace of the constellation with 

A15 cores during runtime using CESA and a state-of-the-art method [24].   

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 7 Power trace of the constellation with A15 cores 

 

The temperature traces of Core 2 and Core 3 are illustrated in Figures 8 and 9, respectively. The core temperature has 

been reduced by CESA significantly. After implementing our approach and decreasing the V/F values, the temperatures of 

the cores are decreased. Thus, CESA will be more efficient and provide an important performance enhancement whenever 

more workloads are executed with more cores. 
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Fig. 8 Temperature trace of A15-core2 

 

 

 

 

 

 

 

 

 

Fig. 9 Temperature trace of A15-core3 

 

5. Conclusion 
This paper has developed a criticality-cognizant 

energy-efficient scheduling approach for a dual-criticality 

system on a heterogeneous multicore processor. The 

proposed approach decreases the system power dissipation 

as far as achievable during runtime using DVFS with 

laxity allocation technique. In this method, each high-

criticality task is combined in a cluster with a set of low-

level workloads (to increase schedulability while 

maintaining the timeliness guarantee). It calculates the 

available laxity effectively and finds out the most suitable 

task cluster to utilize the laxity by considering its effect on 

the maximum power and thermal profile. At the same time, 

varying the core speed, assigning an appropriate task 

cluster for remaining laxity, and selecting a suitable core 

for task migration at runtime are arduous endeavors and 

lead to deadline defilement which is not acceptable for 

high-level workloads. CESA exploits task migration and 

DVFS during online mode whenever there is laxity. To 

find an apt cluster to allocate the laxities to reduce its V/F 

level or transfer it to another processing element, we 

define two cost functions. We assess the performance of 

our proposed approach in an asymmetric multicore 

platform with several benchmark task sets. Empirical 

results demonstrate that the proposed method realizes up to 

a 6.76% drop in maximum instantaneous power and a 

26.17% decrease in core temperature related to the state-

of-the-art method. 
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