
International Journal of Engineering Trends and Technology Volume 70 Issue 4, 203-214, April 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I4P217 © 2022 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Criticality-cognizant Energy-efficient Task Scheduling

on Heterogeneous Multicore Processor

N. Gomathi1, K. Nagalakshmi2

1Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and

Technology, Chennai, Tamilnadu, India
2Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India

1nagulaxmi@gmail.com

Received: 02 February 2022 Revised: 27 March 2022 Accepted: 28 March 2022 Published: 26 April 2022

Abstract - Recently, scheduling mixed-criticality tasks on a common computational system has become an imperative study

in academia and engineering proposals. Since multicore processors are the main paradigm in mixed-criticality systems

(MCS), reliability and energy consumption are vital concerns. In modern MCS, increased peak power dissipation,

particularly in critical scenarios, may cause temperature issues, disturbing the system's consistency and timeliness. This

work proposes a criticality-cognizant energy-efficient scheduling approach (CESA) that concurrently provides reliability,

power management, and failsafe service level in MCS. The proposed approach decreases the system power dissipation as

far as achievable at runtime through the dynamic voltage and frequency scaling (DVFS) approach with laxity allocation.

CESA simultaneously accepts a number of tasks (i.e., workloads) and creates clusters with one high-criticality workload

and a set of low-criticality workloads. It calculates the available laxities effectively and finds the most suitable task cluster

to utilize that available laxity by considering its effect on the instantaneous power consumption and thermal issues. At the

same time, varying the core speed, assigning an appropriate cluster for remaining laxity, and selecting a suitable core for

task migration at runtime are arduous endeavors and lead to deadline defilement which is not acceptable for high-level

workloads. Hence, we propose an online scheduling approach with DVFS and task migration during runtime whenever

there is laxity. A cost function is defined as finding out the most suitable cluster to allot the laxities to reduce its V/F level

or transfer the task to a new processing element. We assess the performance of our approach in an asymmetric multicore

platform (i.e., ARM big. LITTLE processor) with several benchmark task sets. Empirical results demonstrate that the

proposed algorithm realizes up to a 6.76% drop in maximum power and a 26.17% drop in core temperature related to the

state-of-the-art method.

Keywords - ARM big.LITTLE, DVFS, Energy efficiency, Task scheduling, Mixed-criticality system, Multicore processors,

Laxity utilization.

1. Introduction
Following the unprecedented trend in the

semiconductor industry, the domain of embedded

electronics has faced an irreversible shift towards

assimilating multiple tasks on a common processing

platform [1]. Integrating more than one application on a

shared hardware platform brings innumerable

reimbursements to the safety-critical domains, allowing us

to execute more tasks simultaneously to increase the

reliability and resource utilization while minimizing size,

weight, and power dissipation [2]. A system is called

safety-critical, whose failure might cause a risk to human

life or severe environmental harm (e.g., automotive,

nuclear reactors, chemical plants, medical, avionics, etc.)

[3]. Tasks in such systems are generally pigeonholed by

the degree of criticality, called safety integrity levels (SIL)

[5] or design assurance levels (DAL) [4], which are

defined as the level of assurance needed against

malfunctions.

The workload with a higher degree of criticality

reflects that a greater level of assurance is mandatory for

reliable system functionality. For example, in the control

system of a flight executing surveillance operation, it is

required to provide more priority for the accuracy of flight-

critical tasks (e.g., tasks related to power system control,

actuation control, trajectory, computation, and flight

control) so that the aircraft does not crash, than for

mission-oriented tasks (e.g., tasks related to

reconnaissance purposes including navigation services,

tracking potential targets, video surveillance, power

steering, navigation services, weapons management, night

vision, and parking assistance) or non-critical tasks (e.g.,

tasks related to vehicular entertainment like music

streaming). Indeed, the flight-critical workloads must be

finished before the deadline, and significant mission-

critical workloads could be discarded in overloaded

conditions.

In an MCS, the worst-case execution time (WCET) is

an important parameter employed to ensure the correctness

of all workloads, particularly high-critical tasks. Every

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

204

high-criticality task is defined by two or multiple WCETs

[6], including a less conservative, low-level WCET (𝐶𝑖
1)

and a more conservative, high-level WCET(𝐶𝑖
2). The

larger 𝐶𝑖
2 is exploited to provide real-time assurance, and

the likelihood that the actual completion time of the

workload will be as large as 𝐶𝑖
2 is very low. As a result,

mostly, the computational capacity of the system is

unexploited since the completion time of workloads is less

than the 𝐶𝑖
2, which is estimated through various

approaches and techniques [7]. In the present work, we

consider a dual-criticality system in which Ci1and Ci2

define each high-level workload 𝐶𝑖
1and 𝐶𝑖

2. Each low-

critical workload is defined by 𝐶𝑖
1 only.

High-level workloads (𝜏𝑖
2) must be schedulable in

both low-criticality mode (𝑀1) and high-criticality

mode (𝑀2); however, the schedulability of low-level

workloads (𝜏𝑖
1) in 𝑀2 mode depends on the selected

scheduling algorithm. Some schedulers impose to drop all

𝜏𝑖
1 workloads, whereas the others provide the least possible

service level. Indeed, the system begins its operation with

𝑀1 mode, and it enters into 𝑀2 mode whenever an 𝜏𝑖
2

overruns its 𝐶𝑖
1. Now, the scheduler assumes 𝐶𝑖

2 for all the

residual workloads to ensure the system correctness, and it

continues in this mode until all the high-level workloads

are completed; now, the operation of all 𝜏𝑖
1 and 𝜏𝑖

2 tasks

demands heavy computation, which may surpass the

system’s capacity, and the processor becomes overloaded

[8].

In overrun mode, all the cores perform workloads

concurrently to ensure the timeliness of 𝜏𝑖
2 tasks, which

raises the processor's power consumption beyond its TDP

limit (thermal design power) [9]. TDP is the peak power

that a device can draw without any harm. The overall

power dissipation of the processor is the summation of

power dissipation of all processing elements irrespective of

the task criticality level. Therefore, even undervaluing the

power dissipation of a 𝜏𝑖
1 workload may disrupt the

system TDP, which produces a lot of heat beyond the

cooling capacity of the core. Hence, we need to restart or

halt the system to prevent permanent damage [10].

Consequently, the timeliness constraints of 𝜏𝑖
2 workloads

are violated, which causes jeopardizing effects in safety-

critical applications. Thus, it is essential to reduce the

power dissipation of workloads at any criticality mode.

Earlier studies have developed algorithms to execute

mixed-critical workloads in both 𝑀1 and 𝑀2 modes, but

most of them have focused on the average power

consumption of the system [11, 12]. These studies exploit

the DVFS method and discard low-level workloads in

𝑀2 to tackle average power dissipation, but no one has

attempted to control maximum instantaneous power

dissipation. In the chorus, some methods cannot be simply

implemented in 𝑀2 mode exclusively in the overloaded

scenarios since varying the V/F settings of cores enforces

increased timing complexity that may lead to timeliness

defilement of 𝜏𝑖
2 and therefore reduce the dependability of

the system. However, reducing only the average power is

not acceptable. Even though it reduces the system's total

power consumption, there is no assurance that the TDP is

not disrupted [9]. In this regard, we attempt to minimize

system peak power consumption and related thermal

issues. One increasing difficulty in performing MCSs is

providing fail-safe service levels for low-critical jobs in

overloaded scenarios.

This work proposes an energy-aware online

scheduling method, CESA, to control the peak power

dissipation of an MCS. To reach our goal, we calculate the

available laxity (i.e., the deviation between the WCETs

and their actual execution time of the workloads) in

consort with DVFS. We consider two modes of operation:

(i) Offline phase in which the workloads are clustered

using the approach given in our previous work [3] and

scheduled across cores using the earliest deadline first

(EDF) approach for both 𝑀1 and 𝑀2. Then, the resultant

scheduling plan is recorded as a static table. The low-level

 𝜏𝑖
1 workloads that have to be discarded in 𝑀2 are reduced;

consequently, the system performance is increased; and (ii)

online mode in which CESA analyzes the prevailing

clusters to find out the best one for execution. For selecting

the appropriate cluster, we consider the effect of the

workloads in the cluster on the maximum power

consumption and thermal profile of the system. Hence, the

core speed that executes the workload can be reduced

accordingly through scaling.

Moreover, along with the laxity utilization technique,

we develop a task migration method to enhance the

thermal profile of the system further. This work develops a

criticality-aware energy-efficient real-time scheduling

approach that reduces peak power dissipation of the

mixed-criticality tasks and ensures sufficient response time

for low-criticality workloads. The key contributions of our

work are five-fold.

• We propose a criticality-cognizant energy-efficient

scheduling approach that provides reliability, reduces

peak power consumption, and simultaneously enables

failsafe service levels for low-critical tasks.

• We generate an offline static scheduling table for both

𝑀1 and 𝑀2 modes.

• We develop a task migration method that utilizes the

laxity to migrate the workloads to other cores within a

core cluster to reduce the thermal issues in run time.

• We evaluate the performance of our scheduling

algorithm with DVFS controlling unit to deliver the

timeliness assurance of MCS.

• We also aim to provide an adequate service level for

low critical workloads without jeopardizing the

timeliness guarantee of the high-level tasks.

The remaining sections are structured as follows: We

review the most relevant studies in this domain in Section

II. We illustrate the processor, task, and power models

employed in Section III. The proposed criticality-cognizant

energy-efficient scheduling approach is given in Section

IV. We describe the empirical setup and results in Section

V. Finally, and Section VI concludes this work.

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

205

2. Related works
This section reviews some prior works which are related to our present study. Various earlier studies considered

mixed-criticality task scheduling in both design and runtime modes. Since we consider runtime mixed-criticality

scheduling to tackle power consumption and related thermal issues, we only focus on the methods developed for MCS with

related scope.

References
Techniques

/Methods used
Objective(s) Result Limitation

Singh et al. [13] A survey of dynamic

energy and thermal

management

approaches for

multicore mobile

platforms.

To provide useful

insights about dynamic

energy and thermal

management

approaches for

multicore mobile

platforms.

Upcoming

trends and open

challenges are

identified.

-

Guasque et al. [14] Energy-efficient

partition to CPU

allocation

To provide a set of pre-

calculated allocations

(i.e., profiles) so at run

time, the system can

switch to various

modes based on the

existing energy level.

Achieves energy

saving of up to a

5%.

It does not provide an

optimum solution; instead,

it delivers a faster feasible

solution.

Salami et al. [15] A heterogeneous

fairness-aware

energy-efficient

model

To meet fairness

constraints and provide

energy-efficient

scheduling.

Energy

consumption is

about 33% and

41% less than

Linux and Min-

Fair,

respectively.

Scheduling overhead is

high

Li et al. [16] Thermal and energy-

aware mixed-

criticality Fluid

Scheduling

To minimize the energy

consumption and

temperature while

providing a better

schedulability ratio.

Achieve a

considerable

amount of

energy saving

Reduce the energy

consumption and

temperature with loss of

schedulability

Moulik [17] A three-phase

hierarchical resource

allocation strategy

To schedule periodic

tasks with a bounded

number of migrations

and context switches.

Achieves 77%

success ratio

Resource contention leads

to a substantial variation in

memory access latencies.

Bao et al. [18] Online temperature

aware DVFS

technique to utilize

both dynamic and

static slack

To reduce energy

consumption and

temperature-related

issues

Achieves s an

energy reduction

of up to 39%

Not focused on runtime

complexities

Kannaian and

Palanisamy [19]

Fixed Window

dynamic reclamation

algorithm

To dynamically adjust

the slow-down factor of

the processor based on

the online task

requirements.

The energy

consumption of

the task set is

reduced by 50%

The algorithm is

particularly designed for

non-preemptive tasks.

Kang et al. [20] Dynamic scheduling

algorithms for

reallocating the

slack for future tasks

To reduce energy

and/or satisfy deadline

constraints

Reduces energy

up to 14% and

reduces deadline

miss ratio up to

80%

Not focused on

computational complexities

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

206

Zhang et al. [21] Joint optimization

schemes of energy

efficiency and

system reliability for

directed acyclic

graph (DAG) by

adopting the shared

recovery technique

To achieve high system

reliability and

noticeable energy

preservation

Reduces energy

consumption up

to 21.3%

High scheduling overhead

Zhu et al. [22] Power-aware

scheduling

algorithms to

reclaim the time

unused by a task

To reduce the

execution speed of

future tasks and reduce

the total energy

consumption of the

system

Save up to 44% overhead on energy-saving

ranges from 6% to 12%

Several researchers have assessed their proposed

approaches using simulators, and just considered energy or

temperature reduction, and are not focused on online

performance. They have not considered peak power or

related thermal issues, and also, their approach is not

appropriate for MCS in which workloads have diverse

levels of criticality. In this context, we propose an online

scheduling approach for dual-criticality workloads, which

are performed on a heterogeneous multicore processor to

reduce peak power dissipation and core temperature.

3. Description of System Modeling
The key objective of this work is to reduce peak

power dissipation and related thermal problems in an

MCS. Although several researchers attempt to tackle or

reduce the power dissipation of MCS, they do not focus on

peak power in both 𝑀1 and 𝑀2 modes. We developed an

online task scheduler to tackle instantaneous power and

related thermal issues. We use the DVFS technique with

laxity utilization at runtime to reach the goal. In this

method, the V/F setting of cores can be varied according to

existing laxity time to decrease the peak power dissipation.

However, the decisive research questions are (i) how to

find out a suitable workload to allocate the available laxity;

(ii) if it is feasible to migrate the workloads to other cores

for improved temperature control, when and where the

workloads are to be migrated; (iii) the computational

overhead should be measurable and be as simple as

feasible to circumvent intervention with the system

workloads; and (iv) the cost function employed to find out

suitable workload should not only be easy for estimation

but also better to consider other measures such as energy

and thermal profiles and calculate the potential effects of

the impending workload. This study attempts to explore

possible solutions to these issues.

3.1. Processor Model

The multicore system 𝜓 with heterogeneous

processing elements 𝜆 is represented as 𝜓 =
{𝜓0, 𝜓1, … . . 𝜓𝜆−1}. We use the DVFS-enabled ODROID

XU3 board, in which the processing elements can operate

with various V/F levels. Furthermore, we assume that the

resource distribution among the cores does not experience

any discrepancy among the workloads performing over the

cores. The ODROID XU3 contains two constellations with

four A7 (LITTLE) cores and four A15 (big) cores. Each

constellation can operate with various V/F levels and

process elements within a constellation run at the same

V/F level. The allowed voltage and frequency range of

cores is given in Table 1.

Table 1. Voltage-frequency range of cores in ODROID XU3

ARM cortex-

A7

ARM cortex-

A15

Voltage (V) [0.9, 1.3] [0.9, 1.3625]

Frequency

(GHz)
[0.2, 1.4] [0.2, 2.0]

3.2. Task model

Since our ultimate interest is in executing periodic

mixed-criticality workloads, we consider a finite set of

sporadic workloads scheduling across a heterogeneous

multicore system. In this work, we limit our focus to a

dual-criticality system where every workload is designated

as τ𝑖
𝓍 = (𝒫𝑖 , 𝒟𝑖 , 𝑥𝑖, 𝐶𝑖

1, 𝐶𝑖
2) with the following

semantics: 𝑖 ∈ 𝑁+ is a task index (i.e., 1 ≤ 𝑖 ≤ 𝑛).

𝒫𝑖 denotes the period, and 𝒟𝑖 represents the deadline of the

task τ𝑖
𝓍. Since we focused on implicit-deadline sporadic

workloads, every workload τ𝑖
𝓍 has a deadline equivalent to

inter-arrival time (i.e., for each τ𝑖
𝓍, 𝒫𝑖 = 𝒟𝑖). 𝓍𝑖 = {1,2} is

the criticality level of τ𝑖
𝓍. Correspondingly, workloads with

𝓍𝑖 ← 1 and 𝓍𝑖 ← 2 represent low- and high-criticality.

𝐶𝑖
1 ∈ 𝑁+ is the WCET of τ𝑖

𝓍 at a maximum frequency in

𝑀1 mode. 𝐶𝑖
2 ∈ 𝑁+ is the WCET of τ𝑖

𝓍 at a maximum

frequency in 𝑀2 mode. Each τ𝑖
2 task is defined by two

WCET values (i.e., 𝐶𝑖
2 and 𝐶𝑖

1). Also, for each τ𝑖
2, 𝐶𝑖

2 ≥
𝐶𝑖

1. Each τ𝑖
1 is described by 𝐶𝑖

1. The high-criticality

workloads must be completed before their subsequent

arrival. Our approach unwinds the service level restraint of

τ𝑖
1 workloads in which some degree of deadline failures are

acceptable.

3.3 Power dissipation model

The total power dissipation of the chip can be divided

into three measures [2] as given in Equation (1).

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐿𝑒𝑎𝑘 + 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑖𝑛𝑛𝑎𝑡𝑒 (1)

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

207

where 𝑃𝑇𝑜𝑡𝑎𝑙 is total power consumption, 𝑃𝐿𝑒𝑎𝑘 is

leakage or static power due to bias currents leakage.

𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 is dynamic power due to transistor switching.

𝑃𝑖𝑛𝑛𝑎𝑡𝑒 is an innate power of memory and I/O devices.

Typically, static power contributes 20–40% of [23].

The key source of power dissipation is the subthreshold

leakage current (𝐼𝑠𝑢𝑏), which can considerably upsurge

with adaptive body biasing.

𝑃𝐿𝑒𝑎𝑘 = 𝑉𝑆 × 𝐼𝑠𝑢𝑏 (2)

where 𝑉𝑆 is the supply voltage. Dynamic power is a

dominant element related to other power constituents in

Equation (1). It is a function of core frequency and supply

voltage and contributes to the greater part of 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 in

runtime. It can be calculated using Equation (3).

𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝐿𝑜𝑎𝑑 × 𝑉𝑆
2 × 𝑓 (3)

where 𝐶𝐿𝑜𝑎𝑑 represents the effective load capacitance, and

𝑓 is the frequency (speed) of the core. As stated earlier, the

V/F setting of a whole constellation in ODROID XU3 can

be varied. This indicates that the V/F setting of all

processing elements in a constellation is identical. This

work aims to decrease 𝑃𝐷𝑦𝑛𝑎𝑚𝑖𝑐 by utilizing the scaling

factor of voltage and frequency as given in Equation (4).

⟨
𝑓𝑚𝑖𝑛 ≤ 𝛼1 × 𝑓𝑚𝑎𝑥 ≤ 𝑓𝑚𝑎𝑥

𝑉𝑠_𝑚𝑖𝑛 ≤ 𝛼2 × 𝑉𝑠_𝑚𝑎𝑥 ≤ 𝑉𝑠_𝑚𝑎𝑥
 (4)

Where 𝛼1 and 𝛼2 are the scaling factors of speed and

voltage, the total power is calculated using Equation (5).

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑉𝑆𝐼𝑠𝑢𝑏 + 𝐶𝐿𝑜𝑎𝑑(𝛼2𝑉𝑠_𝑚𝑎𝑥)2𝛼1𝑓𝑚𝑎𝑥 + 𝑃𝑖𝑛𝑛𝑎𝑡𝑒

 (5)

In ARM big.LITTLE processor, some speed levels set

with the same voltage as given in Figure 1. Thus, 𝛼1 and

𝛼2 are not identical. Based on speed levels of A15 and A7

cores, 𝛼1 can be fixed in the range of [0.1, 1] for big cores

and [0.143, 1] for the LITTLE cores. Also, 𝛼2 is in

[0.6606, 1] and [0.692, 1] for big and LITTLE cores. Even

though the board is fabricated with power sensors, they

only calculate the power of the whole constellation, not of

each processing element. The energy consumption of cores

in ODROID XU3 for different frequency levels is given in

Figure 2.

Fig. 1 Different V/F settings of cores in ODROID XU3

Fig. 2 Energy consumption of cores in ODROID XU3 for different frequency levels

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

208

4. Proposed Scheduling Method
The key objective of CESA is to reduce the peak

power consumption and the related thermal issues of the

processing elements. We exploit the DVFS approach to

handle these measures. The objective function of CESA is

defined in Equation (6).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑ 𝑃𝜓𝑗
, 𝑇𝑚𝑎𝑥𝑗∈𝑐𝑜𝑟𝑒𝑠) , ∀ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 (6)

Decreasing the V/F level of a particular core during

task execution extends the task completion time and may

lead to deadline defilement. Additionally, the overhead of

varying V/F levels in the online phase leads to deadline

defilement. Equation (7) denotes that the summation of the

computation time of τ𝑖
𝓍 at V/F level ℓ on the core 𝜓𝑗 and

timing overhead of scheduling (𝒪𝑠) and varying V/F level

(𝒪𝑣) should not be surpassed the deadline (𝑑𝑖) of the task

in different criticality modes.

𝐶𝑖

𝑓𝜓𝑗ℓ
+ 𝒪𝑠 + 𝒪𝑣 ≤ 𝑑𝑖 {

𝐶𝑖 = 𝐶𝑖
1 𝑖𝑛 𝑀1𝑚𝑜𝑑𝑒

𝐶𝑖 = 𝐶𝑖
2 𝑖𝑛 𝑀2 𝑚𝑜𝑑𝑒

 (7)

Our CESA contains two operating phases such as

offline and online. It exploits the online mode for handling

instantaneous power and thermal issues; therefore, it is

impractical to apply optimization methods like the MINLP

(Mixed Integer Non-linear Programming) model due to its

increased time complexity. Therefore, we introduce a

heuristic-based approach. Figure 3 illustrates the overall

architecture of CESA. We employ the ODROID XU3

board for profiling the power consumption of the tasks (in

the offline phase) and for performing workload on cores

(in the online phase).

Fig. 3 Overview of the proposed approach

4.1 Offline Phase

In the offline phase, CESA accepts more tasks

simultaneously and generates task clusters using the

method employed in our previous work [3]. The power

consumption of each task can be calculated by executing

the benchmark tasks on the ODROID XU3 board. It is

noteworthy that managing an unspecified task is out of the

scope of our research. As we consider the safety-critical

domain, generally, the system architect recognizes the

workloads and their features at design time. Hence, two

scheduling and mapping tables are generated using the task

parameters for 𝑀1 and 𝑀2 modes. The EDF scheduling

strategy is applied to find out the schedule in 𝑀1 and 𝑀2

modes statically according to the WCETs of tasks, using

the method given in [24]. In mode 𝑀1, all the workloads

are performed with equal precedence; in 𝑀2 mode, 𝜏𝑖
2

workloads are executed with more priority. These

predefined tables are then employed to execute workloads

during runtime. This imposes a stringent ordering in

performing the workloads and assures that all the

timeliness constraints are satisfied as per design-time

exploration. As 𝐶𝑖
2 of 𝜏𝑖

2 is higher, not all 𝜏𝑖
1 workloads

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

209

may be executed in 𝑀2. CESA attempts to discard as few

 𝜏𝑖
1 workloads as possible in creating a table in 𝑀2 mode to

increase the service quality. Our approach utilizes these

tables and task parameters in the online phase to handle the

system.

4.2 Task Clustering

We defined the cluster as a crew of workloads

assembled. Each cluster contains a single 𝜏𝑖
2 and a set of

 𝜏𝑖
1 workloads in our method. The cluster is defined as 𝑆𝑖 =

{ 𝜏𝑖
2, 𝜏1

1, 𝜏2
1 … … 𝜏𝑛

1} where 𝜏𝑖
2(1 ≤ 𝑗 ≤ 𝑚) is the single

high-level workload and the tasks 𝜏𝑖
1(1 ≤ 𝑖 ≤ 𝑛) are low-

level. The base period (𝑃𝑆𝑖
) of 𝑆𝑖 is calculated as the

greatest common factor (gcf) of the period of all tasks in a

specific cluster, as given in Equation (8).

 𝑃𝑆𝑖
= 𝑔𝑐𝑓{ 𝑃(𝜏𝑖

2), 𝑃(𝜏1
1), 𝑃(𝜏2

1) … … 𝑃(𝜏𝑛
1)} (8)

Where 𝑃(𝜏𝑖
2) is the period of 𝜏𝑖

2 and 𝑃(𝜏𝑖
1) is the period

of 𝜏𝑖
1. The number of cluster budget replenishments in

 𝑃(𝜏𝑖
1) is defined by Equation (9).

 𝐿𝑂𝑖
𝑗

=
 𝑃(𝜏𝑖

1)

 𝑃𝑆𝑖

 (9)

 Also, the number of budget replenishments in 𝑃(𝜏𝑗
2) is

defined by Equation (10).

 𝐻𝐼𝑗 =
 𝑃(𝜏𝑗

1)

 𝑃𝑆𝑖

 (10)

The cluster 𝑆𝑖 needs to accumulate enough execution time

budget 𝐸𝑖 to ensure all of its tasks meet the schedulability

constraint. Our approach executes every cluster 𝑆𝑖 as a

regular workload with inter-arrival time 𝑃𝑆𝑖
 and budget 𝐸𝑖 .

Now, we can calculate the utilization of a cluster by 𝐸𝑖/
 𝑃𝑆𝑖

.

4.3 Online Phase

The online phase of CESA contains some function

controlling modules. The task scheduler is the most

important component collaborating with the other

modules. It is responsible for scheduling and mapping the

workloads. When there is any laxity in a core or a cluster

completes its execution earlier, the predictor finds the

more suitable task cluster. Suppose a suitable task cluster

is assigned for a processing element according to the

thermal profile of the current core and the thermal profile

of other processing elements. In that case, the task

migrator decides whether to transfer the cluster to another

core or not to minimize the core temperature. Then, the

designated V/F setting for the processing element is

tabulated. The DVFS controlling module exploits this

designated speed and voltage to execute the workload. The

DVFS controller is used to find an ideal V/F level for a

particular core constellation. Owing to mixed-criticality

performance, the system enters into 𝑀2 if the processing

time of anyone 𝜏𝑖
2 exceeds its 𝐶𝑖

1. The mode changer

should verify it. The processor changes its scheduling

strategy based on the scheduling table in this scenario.

4.4 Selecting the Appropriate Task to Assign Laxity

Our predictor module selects a cluster after calculating

laxity and maps that cluster on the core where the laxity

(ℒ) is observed. A cost function (𝜕𝑖) is defined for every

cluster, as given in Equation (11).

𝜕𝑖 = 𝜌𝐸𝑖 + 𝜎𝑃𝑖 (11)

where 𝐸𝑖 and 𝑃𝑖 are the cluster's maximum energy and

instantaneous power, correspondingly. The factors 𝜌 and 𝜎

are in [0, 1]. Indeed, a decrease in energy consumption

causes a drop in core temperature. It is noteworthy that if

we assume ⟨𝜌, 𝜎⟩ = ⟨1, 0⟩, then 𝜕𝑖 only focus on the power

consumption and not its energy. Therefore, the cluster with

the higher instantaneous power is selected to be performed

at a lower frequency to decrease the system's peak power.

If we select ⟨𝜌, 𝜎⟩ = ⟨0, 1⟩, 𝜕𝑖 only consider energy.

Therefore, the cluster with the highest energy consumption

is selected to be performed at minimum frequency, thus

decreasing the maximum energy consumption. After

choosing the cluster, the maximum power dissipation and

its WCET (𝐶𝑖
1 or 𝐶𝑖

2) are varied according to the size of

observed laxity and the V/F setting. Additionally, Equation

(11) is used to a task cluster that can initiate their process

early. A workload τ𝑖
𝓍 can execute earlier if it has arrived

before 𝑎𝑖 − ℒ; here, 𝑎𝑖 is the commencement of τ𝑖
𝓍. A new

workload can be issued when all its ancestors complete

their process. Hence, we form the following constraint.

𝑇𝑟𝑖 < 𝑎𝑖 − ℒ𝑖−1 (12)

In Equation (12), 𝑇𝑟𝑖 is the time of task release.

Assume the designated workload τ𝑖
𝓍 with deadline 𝑑𝑖 and

the start time 𝑎𝑖 that 𝑎𝑖 + 𝐶𝑖 ≤ 𝑑𝑖. Let us assume that we

have the laxity time, ℒ𝑖−1 produced by τ𝑖−1
𝓍 during

execution. To use this laxity for the suitable workload τ𝑖
𝓍,

generally, the task scheduler calculates the minimum

suitable core speed using Equation (13).

𝑓𝑖 = 𝑚𝑎𝑥 (𝑓𝑚𝑖𝑛 ,
𝐶𝑖

𝐶𝑖+ℒ𝑖−1
, 𝑓𝑚𝑎𝑥) (13)

This guarantees that only the commencement of the

workload is earlier by ℒ𝑖−1, and the deadline is kept

constant. Therefore,

 𝑎𝑖 − ℒ𝑖−1 +
𝐶𝑖

(
𝑓𝑖

𝑓𝑚𝑎𝑥
)

≤ 𝑎𝑖 + 𝐶𝑖 ≤ 𝑑𝑖 (14)

On the other hand, selecting an appropriate workload

and the processing element and varying the V/F setting

create overheads. If we neglect to select the optimal speed,

it may lead to deadline defilement. Consequently, ℒ𝑖−1 is

decreased by 𝒪𝑠 and 𝒪𝑣 . After finding the optimal speed,

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

210

the start time of the suitable cluster is updated for the static

schedule.

4.5 Task Migration Technique

CESA shifts the designated workload to the other

cores without altering its deadline for controlling the core

temperature. We define a cost function as given in

Equation (15) to decide about the migration and identify

the suitable processing element to migrate.

𝜕𝑐 = 𝛾 ∑ 𝐸𝑐
𝑡𝑐
𝑡=1 (𝑡) (15)

Here, the core temperature is calculated according to

the aggregated energy. We observed that a core is likely to

hoard a lesser temperature when its cumulative energy

consumption is lower than the others. Conversely, the

variation between the cumulative energy consumption of

the designated processing element to migrate and the

current processing element ought to be large enough.

Consequently, we introduce a parameter (𝛾) (in our

experiments, 𝛾 = 0.9). In Equation (15), 𝑡𝑐 is the

completion time of a specific workload. Also, do not

disturb the tasks' deadline scheduled on other processing

elements; they are studied for migrations that have laxity

to perform the apt workload. Since we employ an

asymmetric multicore system for our experimentation,

each task cluster's execution time and power dissipation

will be different when executing on different

constellations. Even though migration from an A7 to A15

core decreases the task's execution time, it causes

increased instantaneous power dissipation, which is not

suitable for safety-critical applications. Hence, we apply

the migration method within the constellation to retain the

peak power dissipation. Since the migration method is

used to a cluster that is not processed yet, the method is

implemented concurrently with different speeds, and the

relocation overhead does not disturb the timeliness

restraints. The reason is that the overhead of migration is

very low compared to the overhead related to varying the

core speed.

4.6 Update V/F Levels

After completing a workload, there might be a laxity

or a workload in the queue that is ready to start its

execution. All processing elements within a constellation

run at the identical V/F setting in a heterogeneous

multicore system. Since the V/F settings of both

constellations are not the same, it is checked on which

constellation the recently accomplished workload was

executing. Subsequently, we check the allocated V/F level

of executing or ready tasks on all cores of the

constellation. As cores within a constellation work with the

same frequency, we select the optimum speed for the

constellation. Choosing the greatest minimum speed is to

guarantee that all workloads are finished without violating

their deadline. Finally, if the selected speed is diverse from

constellation speed, we vary the speed of the constellation

by allocating the new frequency. It should be noted that by

varying the speed of a constellation, its voltage will

inevitably vary.

4.6.1 Evaluation

We carried out experiments on the DVFS-enabled

ARM big to assess our proposed approach.LITTLE

multicore system (ODROID XU3 board). Since it supports

different V/F levels, we analyze the impact of different

V/F settings by scaling the core speed within the given

range. We generate random tasks using the tool presented

in [24] to carry out experimentations. To achieve a feasible

range of power consumption, we execute numerous

benchmark tasks from the MiBench suite [25] on the

ODROID XU3 processor with higher speed and measure

the power consumption from sensors fabricated on the

panel. As the V/F scaling is used for the entire system, the

power dissipation at other lower speeds can be calculated

by scaling the system frequency [26].

Additionally, we studied the impact of the number of

cores by executing benchmarks on 1 to 8 cores. We

execute every task 1000 times with diverse parameters

(i.e., WCETs, actual execution times, and timeliness

constraints) and report the average results. We observed

the maximum power consumption of workloads in [0.492,

0.923] W in LITTLE cores and [2.986, 6.856] W in big

cores.

We assess the enactment of our method under three

different cases, as illustrated in Figures 4 - 6, wherein the

results are normalized to [24]. Generally, as the

applications become multifaceted (e.g., having several

workloads or maximum system utilization), it is very

difficult to realize the significant drop in maximum power,

core temperature, and energy. We can achieve reduced

maximum power consumption when the number of

processing elements increases. The proposed migration

method is used to redistribute the workloads more

uniformly to the cores at runtime according to their

cumulative energy.

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

211

Fig. 4 The varying number of cores

Since CESA only focuses on reducing peak power

consumption for each core independently, it is very hard to

achieve a similar reduction in power when fewer cores are

used. However, as shown in Figure 4, the variation in

maximum power is substantial by growing the number of

processing elements. Besides, as the adjacent elements

exaggerate the temperature of the individual element, the

maximum temperature drop is low by adding more

processing elements. By utilizing our proposed method,

the maximum power, energy, and temperature are

decreased by 6.315%, 16.271%, and 21.12%, respectively.

Fig. 5 The varying number of tasks

The efficiency of CESA hinges on the existing laxity

during runtime and the opportunity of allocating them to

the workloads. Hence, if there is small laxity observed due

to the application type concerning the number of

workloads and system utilization, maximum power, core

temperature, and energy reduction are less. In Figure 5,

when the utilization increases, the idle time of the

processing element between two successive workloads are

reduced. The workloads also tend to perform longer.

Consequently, the size of laxities that can be used at

runtime is restricted. In this scenario, our method achieves

a minimum of 4.215% and a maximum 8.719% drop in

maximum power dissipation.

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

212

 Fig. 6 Varying utilization bound

To study the system's temperature, we execute the workloads on Core 2 and 3 that generally realize maximum

temperature owing to their closeness to the memory and other elements. The board consists of sensing devices to measure

the temperature of every A15 core and measure the power consumption of each constellation. Hence, the power and

temperature values are measured from these sensing devices. Figure 7 illustrates the power trace of the constellation with

A15 cores during runtime using CESA and a state-of-the-art method [24].

Fig. 7 Power trace of the constellation with A15 cores

The temperature traces of Core 2 and Core 3 are illustrated in Figures 8 and 9, respectively. The core temperature has

been reduced by CESA significantly. After implementing our approach and decreasing the V/F values, the temperatures of

the cores are decreased. Thus, CESA will be more efficient and provide an important performance enhancement whenever

more workloads are executed with more cores.

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

213

Fig. 8 Temperature trace of A15-core2

Fig. 9 Temperature trace of A15-core3

5. Conclusion
This paper has developed a criticality-cognizant

energy-efficient scheduling approach for a dual-criticality

system on a heterogeneous multicore processor. The

proposed approach decreases the system power dissipation

as far as achievable during runtime using DVFS with

laxity allocation technique. In this method, each high-

criticality task is combined in a cluster with a set of low-

level workloads (to increase schedulability while

maintaining the timeliness guarantee). It calculates the

available laxity effectively and finds out the most suitable

task cluster to utilize the laxity by considering its effect on

the maximum power and thermal profile. At the same time,

varying the core speed, assigning an appropriate task

cluster for remaining laxity, and selecting a suitable core

for task migration at runtime are arduous endeavors and

lead to deadline defilement which is not acceptable for

high-level workloads. CESA exploits task migration and

DVFS during online mode whenever there is laxity. To

find an apt cluster to allocate the laxities to reduce its V/F

level or transfer it to another processing element, we

define two cost functions. We assess the performance of

our proposed approach in an asymmetric multicore

platform with several benchmark task sets. Empirical

results demonstrate that the proposed method realizes up to

a 6.76% drop in maximum instantaneous power and a

26.17% decrease in core temperature related to the state-

of-the-art method.

N. Gomathi & K. Nagalakshmi / IJETT, 70(4), 203-214, 2022

214

References
[1] K. Nagalakshmi and N. Gomathi, An Irreversible Transition towards Multicore Platform in Safety-Critical Domain for the Aviation Industries,

International Journal of Scientific Research in Science Engineering and Technology. 2(5) (2016) 345-359.

[2] K. Nagalakshmi and N. Gomathi, Analysis of Power Management Techniques in Multicore Processors, In proceeding of International

Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems, Advances in Intelligent Systems and Computing,
Springer. 517 (2017) 397-418.

[3] Nagalakshmi K, Gomathi, Criticality-Cognizant Clustering-Based Task Scheduling on Multicore Processors in the Avionics Domain,

International Journal of Computational Intelligence Systems. 11 (2018) 219–237
[4] ISO 26262, Road Vehicles - Functional Safety. (2011).

[5] RTCA. DO-178C/ED-12C Software Considerations in Airborne Systems and Equipment Certification. (2012).

[6] N. Srivastava, V. Pandey, R. Pathak, Abhishek Pandey, Multicore: Move to the Future, International Journal of Engineering Trends and
Technology. 4(2) (2013) 204-206.

[7] A. Kritikakou and S. Skalistis, Progress-aware Dynamic Slack Exploitation in Mixed-critical Systems: Work-in-Progress, 2020 International

Conference on Embedded Software (EMSOFT). (2020) 10-12.
[8] J. Simó, P. Balbastre, JF. Blanes, J-L.Poza-Luján and A. Guasque, The Role of Mixed-Criticality Technology in Industry 4.0 Electronics. 10(3)

(2021) 226.

[9] M, Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi and A. Ejlali, Peak Power Management to Meet Thermal Design Power in Fault-Tolerant
Embedded Systems, IEEE Transactions on Parallel and Distributed Systems. 30(1) (2019) 161-173.

[10] S. Hosseinimotlagh, A. Ghahremannezhad, and H. Kim, On Dynamic Thermal Conditions in Mixed-Criticality Systems, 2020 IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS). (2020) 336-349.
[11] H. Sobhani, S. Safari, J. Saber-Latibari, and S. Hessabi, REALISM: Reliability-Aware Energy Management in Multi-Level Mixed-Criticality

Systems with Service Level Degradation, Journal of Systems Architecture. 117(2) (2021) 102090.

[12] I. Ali, Y-I. Jo, S. Lee, and KH. Kim, Reducing Dynamic Power Consumption in Mixed-Critical Real-Time Systems, Applied Sciences. 10(20)
(2020) 7256.

[13] AK. Singh, S. Dey, KR. Basireddy, K. McDonald-Maier, GV. Merrett, and BM. Al-Hashimi, Dynamic Energy and Thermal Management of
Multi-Core Mobile Platforms: A Survey, IEEE Design & Test. 10(1) (2020) 335-367.

[14] A. Guasque, P. Balbastre, A. Crespo and S. Peiró, Energy-Efficient Partition Allocation in Mixed-Criticality Systems, PLOS ONE. 14(3) (2019)

e0213333.
[15] B. Salami, H. Noori and M. Naghibzadeh, Fairness-Aware Energy Efficient Scheduling on Heterogeneous Multi-Core Processors, in IEEE

Transactions on Computers. 70(1) (2021) 72-82.

[16] T. Li, T. Zhang, G. Yu, Y. Zhan and J. Song, Ta-mcf: Thermal Aware Fluid Scheduling for the Mixed-Criticality System, Journal of Circuits,
Systems and Computers. 28(2) (2019) 1950029.

[17] S. Moulik, RESET A Real-Time Scheduler for Energy and Temperature Aware Heterogeneous Multi-Core Systems, Integration. 77 (2021) 59-

69.
[18] M. Bao, A. Andrei, P. Eles, and Z. Peng, On-Line Thermal Aware Dynamic Voltage Scaling for Energy Optimization with

Frequency/Temperature Dependency Consideration, In Proc. ACM/IEEE DAC-2009. (2009) 490–495.

[19] V. Kannaian and V. Palanisamy, Energy-Efficient Scheduling for Real-Time Tasks using Dynamic Slack Reclamation, Turkish Journal of

Electrical Engineering and Computer Sciences. 27(4) (2019) 2746-2754.

[20] J. Kang and S. Ranka, Dynamic Slack Allocation Algorithms for Energy Minimization on Parallel Machines, Journal of Parallel and Distributed

Computing. 70(5) (2010) 417–430.
[21] L. Zhang, K. Li, K. Li, Y. Xu, Joint Optimization of Energy Efficiency and System Reliability for Precedence Constrained Tasks in

Heterogeneous Systems, International Journal of Electrical Power & Energy Systems. 78 (2016) 499–512.

[22] D. Zhu, R. Melhem and BR. Childers, Scheduling with Dynamic Voltage/Speed Adjustment using Slack Reclamation in Multiprocessor Real-
Time Systems, IEEE Transactions on Parallel and Distributed Systems (TPDS). 14(7) (2003) 686–700.

[23] D. Chinnery and K. Keutzer, Overview of the Factors Affecting the Power Consumption, In Proc. TTLPD-2007, Springer. (2007) 11–53.

[24] R. Medina, E. Borde, and L. Pautet, Availability Enhancement, and Analysis for Mixed-Criticality Systems on Multi-Core, In Proc. DATE-2018.
(2018) 1271–1276.

[25] MR. Gasthaus, JS. Ringenberg, D. Ernst, TM. Austin, T. Mudge, and RB. Brown, Mibench: A Free, Commercially Representative Embedded

Benchmark Suite, In Proc. WWC-4. (2001) 3–14.
[26] S.P Rahul Santosh, K. Somasekhara Rao, Design of Real-Time Interactive Data Acquisition and Control SystemUsing ARM, International

Journal of Engineering Trends and Technology (IJETT). 4(10) (2013) 4418- 4421

[27] M. Salehi and A. Ejlali, A Hardware Platform for Evaluating Low-Energy Multiprocessor Embedded Systems Based on Cots Devices, IEEE
Transactions on Industrial Electronics. 62(2) (2015) 1262– 1269.

