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Abstract - Due to the increased frequency of cyber-attacks with various targeted objectives, cyber security has become a 

major concern for society. Android phones being the most widely used devices, they are targeted in most of the attacks with 

malware. So, it is vital to explore innovative ways of identifying Android Malware attacks. Machine learning and deep 

learning have been employed to develop classifiers to determine if an app is malware or benign. Android apps are represented 

by a set of attributes that can describe their behaviour. This paper proposes a stacking ensemble model for detecting Android 

malware. The proposed framework is designed with two variants of stacking ensemble: blending and stacking. The dex files of 

android apps are extracted and translated into images. Later, a stacking ensemble is applied to the image dataset. 

Convolutional Neural Networks are used as base learners, and a Support Vector Machine is used as a meta learner. The 

experimental results of modelling with blending and stacking showed 99% and 98.3% accuracy, which advocates support of 

the proposed framework for Android malware detection. 
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1. Introduction 
The number of attacks on mobile devices appears to 

increase unprecedentedly. More than 14.4 million attacks on 

mobile phones were recorded worldwide in the second 

quarter of 2021 only from a single antivirus (Kaspersky 

reports) firm [1]. Android has a dominant position in the 

smartphone market. However, this success has a downside as 

more per cent of mobile malware targets Android phones for 

stealing money or personal information. Attackers could use 

various Android development platforms to create malicious 

mobile apps. Infecting users' mobile devices with malicious 

software might have severe implications. Despite Google 

Play's numerous measures to keep dangerous apps out, 

attackers continue to find their way onto the mobile devices 

and penalize unsuspecting victims. Therefore, Android 

malware is becoming a growing threat to businesses and 

individuals. Machine Learning is a field of computer science 

that deals with developing intelligent systems by integrating 

prior examples and making forecasts of future occurrences. 

Because of these properties are widely used in cybersecurity, 

such as intrusion detection and malware detection. Anti-

malware solutions have focused on signature-based 

recognition, which requires prior knowledge of the malware 

in the form of a signature. Early identification of Android  

 

 

 

Malware is essential to limit the negative effects. 

Malware analysis techniques are classified into static 

Analysis and dynamic Analysis. Static Analysis is the most 

frequently used and preferred method by many researchers 

due to its low computation complexity and ease of 

implementation. This method analyses the application's 

source code without running it on an emulator or a real 

device. The APK archive is first unpacked to collect 

methods, manifests, meta-data, and media assets to perform 

this. The app's source code format at this point is dex 

bytecode, which is difficult to work with. Therefore it can be 

decompiled to java code/Smali code to make it more 

readable and process-able. After the extraction of the mobile 

app, several static features can be extracted. Static features 

include android app permission features, opcode sequences 

in the apk, strings, Method API features, Component 

features, intent features, and system command features. The 

extracted app does not contain all these features directly. 

Various tools can be used to extract all these features. In 

dynamic Analysis, the app is run in an isolated environment 

where it is feasible to obtain as much data as possible on the 

app's activity. In this method, additional features are 

extracted from the app's network traffic, sequence of events 

happening in the app execution, log behaviours, API 

monitoring etc. The authors proposed a stacking ensemble 

model with Convolutional Neural Networks and a Support 

Vector Machine for malware detection. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.1 Ensemble Learning 

In machine learning, ensemble learning is a generalized 

meta-approach that aims to improve prediction accuracy by 

combining the predictions of several models. Ensemble in 

machine learning can be done differently, but the three 

important ensemble techniques are bagging, boosting, and 

stacking. Although all three methods have their advantages 

and limitations, the suitability of a specific approach 

depends on model expansions and associated procedures. 
 

1.1.1 Bagging 

Bagging integrates the outcomes of numerous models of 

the same type, for example, decision trees, to produce a 

more generalized result. From the original dataset, many 

sample subsets are produced by replacing observations. A 

basic model (weak model) is generated on each of these 

sample subsets. The models are independent of one another 

and run in parallel. The final predictions are calculated by 

combining all of the models' predictions. Random forest is a 

commonly used bagging technique. In bagging, the resulting 

model can have a lot of bias if the proper learning procedure 

is not followed. 

 

1.1.2 Boosting 

Boosting is a sequential mechanism in which each 

consecutive model seeks to rectify the prior model's 

mistakes. The models that follow are reliant on the prior 

model in the sequence. From the original dataset, sample 

subsets are produced. At first, all training data points are 

given equal importance for getting selected in the sample. 

On this subset, a base model is built. This model is applied 

to the dataset to predict the class labels of known 

observations, and errors are determined. Accordingly, in the 

next iteration, higher weights are assigned to the wrongly 

predicted observations, and a new sample data is generated 

to build the next base model. Based on this model's (wrong) 

predictions, subsequent base models are built in the same 

way, each one fixing the deficiencies of the earlier models. 
 

1.1.3 Stacking 

Stacking ensemble builds a separate learning model, 

possibly with a different algorithm, on top of the base 

learners to combine their predictions. In other words, a 

stacking ensemble adapts a two-fold learning strategy that 

involves multiple simpler models in the first fold whose 

predictions would be further processed by a separate 

learning model at the next fold to make more accurate 

predictions. The stacking ensemble differs from the bagging 

and boosting ensemble as it applies an adaptive approach 

rather than a static approach for combining the predictions 

made by the base classifiers. Learning algorithms used to 

train the multiple base models in the first fold are often 

different from those used in the second fold. On the test set, 

this ensemble model is applied for making predictions. The 

structure of the stacking model is shown in figure-1. 

 

 

 

 

 

 

 

Fig. 1 Stacking Ensemble 
 

The rest of the paper is organized in the following 

sections: Section 2 describes previous work done on android 

malware detection. Section 3 discusses the proposed 

methodology, Section 4 presents experimentation and results, 

and Section 5 concludes and provides an outlook for future 

work 

 2. Related Works 

Various researchers use machine learning and deep 

learning methods to detect malware in android apps. In [2], a 

framework using static Analysis has been utilized. Each of 

the used permissions, susceptible APIs, observed event logs, 

and permission rate is used as features for the classifier. Sen 

Chen[3] et al. discussed various issues where malware 

detection techniques failed. The challenges associated with 

the failure of conventional ML algorithms are also 

discussed. Shabtai [4] et al. Information Gain was used to 

select permission features and code features. Using a mix of 

permissions and code features, an accuracy of 93% was 

achieved. Li et al. [5] developed a permission-based 

malware detection method to distinguish between malware 

and legitimate apps. In [5], the authors used three stages of 

filtering with rule-based associated mining to discover 

important permissions. The machine learning model with 

filtered permissions achieved 96% accuracy for detecting 

malware apk. A. Lakshmanarao [6] et al. applied CNNs for 

android malware classification. Android apps are converted 

to images in two variants. The entire apk images and dex 

part images of apks were created. Later, Deep Learning 

CNN was applied and achieved good accuracy with dex 

images. T Chakraborty [7] et al. utilized a method for 

classifying malware samples into various malware families. 

The model used static features and built an ensemble that 

combines classification and clustering techniques. In [8], the 

authors applied de complication to obtain all API calls in the 

dataset with 516 non-malware apps and 528 malware apps, 

then computed and prioritized the risk associated with these 

APIs using a mutual information model. In [9], static 

features are generated by extracting android manifest files, 

and an ensemble XGBoost was then used to detect malware 

apps with 95.25% accuracy. Ji Wang [10] proposed a 

selective ensemble learning model for android malware 

detection and achieved a recall of 98%. 
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Mahindru [11] et al. applied a Neural Network model 

with Principal Component Analysis for malware detection 

on a dataset of 1,20,000 mobile apps and achieved an 

accuracy of 94%. Zhu et al. [12] used a stacking ensemble to 

detect malware. The proposed system employs a two-way 

architecture, with the ensemble of the base learner using 

MLP and finally the output of base learners being merged 

using SVM. In the initial stage, the twofold disruption of 

features ensures the diverseness of the train subsets, & PCA 

is performed separately. MLP is run on each set, retaining 

principal components determined through PCA but changing 

the entire train dataset into a completely new set to ensure 

the base learner accuracy. The next step, called the fusion 

step, involves learning implicit supplemental data from base 

learner output to maximize classification performance. In 

this paper, the authors also used the stacking ensemble 

approach. Still, convolutional neural networks are used as 

base learners, and SVM was used as a meta learner for final 

predictions. Eslam Amer [13] et al. applied an ensemble-

based machine learning model for malware detection. As an 

initial step, a random forest was used for feature selection. 

Later, an ensemble learning algorithm, "Extra Tree 

Classifier", was applied to selected features and achieved 

better results. R. S. Arslan[14] et al. proposed an ensemble 

ML model for malware classification. Four types of 

malware, namely ransomware, adware, scareware, and 

ransomware, are classified with an accuracy of 90.4% with 

an ensemble approach. Altyeb      

  

Taha [15] et al. proposed a novel technique that utilizes 

permission features of android apps and aggregates the 

classification results of multiple classifiers, including Light 

GBM, Adaboost, XGBoost, Random Forest, Decision Trees, 

by utilizing the Choquet fuzzy integral function. Choquet's 

fuzzy integral is based on fuzzy measures computed using 

the significance level of the base classification model or a 

subset of classifiers. The fuzzy measure was fine-tuned with 

two different factors, the confidence of each classifier's 

classification results and the consistency of each classifier's 

classification results. The classification outcome with a large 

choquet integral was considered for final predictions. Potha 

et al. [16] investigated the impact of using external instances 

(benign or malware) of various sizes and types while using 

an ensemble model. The output of numerous base models, 

including Logistic Regression and MLP, is combined in this 

innovative ensemble model called ERBE (Extrinsic 

Random-based Ensemble). The findings showed that 

ensemble models with a larger and perhaps more 

homogeneous length of instances are far more successful 

than those with smaller and more diverse instances sizes. 

They also looked at the impact of employing either the 

complete feature set or a random subspace comprising 

instance features. They discovered that the latter helps an 

extrinsic ensemble model perform better. Christianah[17] et 

al. proposed an ensemble approach for android malware 

detection. Permission features from 952 non-malware and 

952 malware apks are extracted. Three base learners support 

vector classifier-nearest neighbours, random forest is used as 

base learners, and a majority voting mechanism is employed 

for making final predictions. The final ensemble model 

achieved an accuracy of 98% for malware detection. 

Kouliaridis et al. [18] presented a simple ensemble malware 

detection approach. The result of numerous base models 

based on static or hybrid Analysis is averaged to form the 

ensemble model. APIs, Permissions, java classes, network 

traffic, and intents are used as features. The performance is 

measured against three different datasets using various 

classifiers, including Naive Bayes, Logistic Regression, 

Random Forest, k-NN, AdaBoost, SGD, and SVM. The final 

model achieved an AUC score of 97%. Rana[19] et.al 

proposed an ensemble technique with SBFS(substring-based 

feature selection)strategy.The string features of the apps are 

extracted, and a subset of features was selected in the final 

dataset. Later various classifiers, Random Forest, Decision 

Trees, ERT, GB, and SVM, are applied as base learners for 

ensemble, and an accuracy of 97.6% is achieved for malware 

detection. A. A.Lakshmanarao[20] et al. extracted opcode 

sequences from android apks, and an RNN is deep learning 

model was proposed on opcode sequences. As a single 

android app contains several opcode sequences, all the 

sequences are labelled with the same class label (for 

example, if an apk is malware, all opcode sequences from 

that malware apk are labelled as malware). 

3. Research Methodology 

The Android app is an archived file with an apk 

extension. Extraction of an android app produces other files, 

including meta-inf, manifest file, and classes.dex file, assets, 

res, and lib. Meta inf is a directory with app metadata. The 

manifest file contains the app's name, apk version, and 

permissions information. 'assets' is a directory of app assets. 

Res contains app resource information. The compiled native 

libraries are stored in the 'lib' directory. Classes.dex contains 

application code index format. The Java compiler converts 

Java source code into dot class files. The dx (dexter) tool, 

part of the Android SDK, converts the dot class files into the. 

Dex (dalvik executable) file. So, the code part of the android 

app is stored in classes.dex file. The proposed architecture is 

keen on the creation of images with minimal overhead. As 

classes. dex files are enough for differentiating malware and 

non-malware apps[6]; the authors extracted android apps 

images from classes.dex files using the image generation 

algorithm developed by the authors discussed in [6]. The 

width of images varies in the range of 32 KB-1024 KB 

depending on the size of apk. 
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Fig. 2 Proposed Methodology 

The authors proposed a stacking ensemble architecture 

with Convolutional Neural Networks (CNN) followed by a 

Support Vector Machine to process the image dataset once 

the Android apk dataset is converted into image form. The 

proposed framework is shown in Fig.2.  

3.1 Stacking Ensemble 

In the stacking ensemble framework, the system takes 

the outcomes of sub-models as inputs and tries to figure out 

how to combine the input predictions in the best way 

possible to get a better output prediction. Fig. 4 depicts the 

stacking ensemble with 2 levels: level-0 has base models & 

level-1 has the meta-model. 

 

The steps involved in building the stacking ensemble 

are: 

• Divide the given data set into training data and testing 

data. 

• Initialize the appropriate hyperparameters to configure L 

base learners at Level-0 and build the base models using 

the training dataset. During training, observe the 

accuracy of base learners and adjust the parameters to 

get better accuracy. 

• Train the Meta Model at the next level, Level-1, using 

predictions made by the base learners on a separate set 

of training observations. 

Stacking ensembles can be trained in either blending mode or 

stacking mode.  

3.1.1 Blending 

Blending is a specific way to train the stacking ensemble 

that uses a holdout approach for dataset division. First, the 

dataset is divided into training and testing sets. Later, the 

training dataset is further divided into training_sub and 

holdout sets. Level-0 models are trained using training_sub. 

At Level-1, meta learner is trained using the holdout set. 

Later, the test set is used to make final predictions and assess 

the framework's generalization performance.  

 

3.1.2 Stacking 

In stacking also, train and test sets are created from the 

dataset. The base learners are trained on the complete set of 

training data. For training meta learners, a k-fold cross-

validation technique is used. The training data is divided into 

k folds. All L base learners are applied on k-folds in the 

training data separately, producing (n x L) number of 

predictions where n is the number of samples in the training 

set. Later, the meta learner is trained, taking these predicted 
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labels as input and the true label of the corresponding 

training samples. Finally, the testing dataset makes final 

predictions and assesses the framework's generalization 

performance.  

  

 The authors applied both stacking ensemble and 

blending ensemble models for malware in this paper. 

Convolutional neural networks are used as base learners in 

level-0, and Support Vector Machine is used as meta learners 

in level-1. In level-0, ten CNNs are trained with different 

hyperparameter settings regarding #layers, optimizers, 

number of epochs, etc.  

3.2 Convolutional Neural Networks 

Yann LeCun [21] introduced convolutional neural 

networks (also known as ConvNets) in the 1980s. In CNN, 

images are reduced to a form that can be processed more 

easily, but important features are not lost during image 

reduction. Convolutional layers are followed by an activation 

function, a pooling layer, and a fully connected layer in the 

CNN architecture. The model can contain any number of 

convolutional layers depending on the dataset's 

characteristics. The architecture of CNN is shown in fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Architecture of CNN 

3.2.1 Convolutional Layer 

This is also called as kernel layer. The Kernel/Filter is 

the first component in a Convolutional Layer that performs 

the convolution operation. The use of appropriate filters by a 

CNN can effectively capture spatial & temporal 

dependencies in an image. The output of this layer is called 

convolved feature. An activation function is applied at the 

end of the convolution layer. 

 

3.2.2 Pooling Layer 

The pooling layer takes care of reducing the size of the 

Convolved Feature, thereby reducing the complexity of the 

model. There are several variations in pooling, but max 

pooling is the most widely used technique. It preserves 

important features and reduces the size. 

 

 

3.2.3 Fully Connected Layer 

The output from the last pooling layer is flattened and fed 

through the fully connected layer. This is similar to a feed-

forward network. From this stage, CNN works like an ANN 

only. 

3.3 Support Vector Machine 

Both classification & Regression problems are solved 

with SVM. The main goal of the algorithm is to find the best 

decision boundary (optimum hyperplane) for dividing data 

samples into different classes. Multiple separating planes 

may exist between the training samples of different classes, 

which are referred to as hyper-planes. The hyper-plane that 

partitions the data samples of different classes more 

efficiently is the one that has maximum margin between the 

training data points identified as support vectors as it results 

in minimal test error and hence is selected as the optimal 

hyperplane. Learning such an optimal hyper-plane often 

involves setting hyperparameters such as tolerance 

thresholds, kernel function, etc., to handle non-linearly 

separable data space. 

4. Experimentation and Results 

4.1 Details of Dataset 

2511 malware apps are gathered from the site 

"virusshare.com" and 2508 benign apps from the play store, 

apkpure and CICAndMal2017[22]. Table-1 shows details of 

the dataset collected. 
 

Table 1. Details of Dataset 

Number of malware apks 

(virusshare.com) 

2511 

Number of Benign apks 

(Play store, apkpure, CICMAL2017) 

2508 

 

Total 

    

   5019 

4.2 Applying the Stacking Ensemble Framework 

All the collected android apps (both benign and 

malware) are converted into images using the algorithm 

developed by the authors in [6]. Later, blending and stacking 

are applied to the image dataset.  

 

4.2.1 Experiments with Blending 

The architecture of the proposed blending framework is 

shown in fig. 4. The steps in the blending model are: 

 

• Dataset division: First, the dataset is divided into the 

full-training set and the testing set. The division is done 

with a 75%,25% ratio. The dataset contains 5019 

images. So, the full-training set contains 3764 images, 

and the testing set contains 1255 images. The next full-

training- set is further divided into the training set and 

holdout set with a 75% (2823 images) and 25% (941 

images) ratio. 
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Table 2. Base Learners architecture 

Base 

Learner 

Number of 

convolutional layers 

Number of Neurons (layer-wise) Optimizer Number of epochs 

CNN1 4 250,200,150,100 adam 50 

CNN2 3 150,70,30 sgd 60 

CNN3 4 500,360,240,160 adam 50 

CNN4 3 450,350,200 adam 100 

CNN5 4 250,150,120,100 RMSprop 70 

CNN6 4 200,180,150,70 adam 100 

CNN7 3 160,120,100 adam 100 

CNN8 2 160,100 sgd 120 

CNN9 4 220,170,140,65 adam 120 

CNN10 4 280,150,110,85 adam 125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Architecture of proposed blending model 
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Fig. 5 Architecture of proposed stacking model

• Training base learners (CNNs): Base learners are trained 

on a training dataset (2823 images). Ten different CNNs 

are trained with different hyperparameter settings, 

shown in Table-2. RELU is used as an activation 

function in hidden layers for all base learners, the 

Sigmoid function is used as the output function, and 

'binary_cross-entropy' is used as the cost function. 

• Training meta-model (Training SVM): The meta learner 

used in the proposed architecture is SVM. SVM is 

trained on a holdout set. First, the base learner's 

predictions are calculated on a holdout set. The 

predictions and holdout set class labels to become a new 

dataset for training SVM. The reason for selecting a 

holdout set is to reduce overfitting. If both base learners 

and meta-learners were trained on the same dataset, 

there might be a possibility of overfitting. 

• Testing performance of proposed model: The final 

model is tested on the testing set. First, the base learners 

apply, and predictions are stored. The predictions and 

the class label are fed through the proposed model to 

make final predictions. The proposed blending model 

achieved an accuracy of 99% with the testing dataset. 

 

 

4.2.2 Experiments with Stacking 

The architecture of the proposed stacking framework is 

shown in fig. 5. 

The steps in the proposed staking model are: 

• Dataset division: First, the dataset is divided into 

two parts: the training and testing sets. The division 

is done with a 75%,25% ratio. The dataset contains 

5019 images in total. So, the full training set 

contains 3764 images, and the testing set contains 

1255 images. Next, the training set is further 

divided into 5 folds. 

• Training base learners (CNNs) and meta learners: 

Base learners are trained on 5 folds with a testing 

set of 753 images and a training set of 3011 images. 

So each base learner trained 5 times. The 

predictions of the training set (753 * 5 times =3765 

predictions) are preserved for all base learners, and 

models are discarded. The architectures of base 

learners (ten CNNs) are shown in table-2. (Same ten 

CNN architectures used for blending). So, ten 

columns of predictions are preserved. These 

predictions, along with actual class labels, form a 

new dataset. A meta learner (SVM) has been trained 
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with this new data set. That means the meta learner 

is trained with cross-validated predictions of base 

models. Finally, all base learners are trained with 

the entire training set (3764 images).  

4.3 Comparison with previous work 

 The performance of the proposed model was compared 

with previous work (Table-3). In [22], the authors applied the 

voting classifier and achieved 89.7% accuracy. In [8], the 

authors proposed ensemble learning on sensitives api's and 

achieved 94% accuracy. In [23], the authors proposed a 

hybrid deep learning technique and achieved 96.8% 

accuracy. The authors [12] applied a stacking ensemble with 

ANNs as base models and SVM as a meta-model and 

achieved 94.92% accuracy. This paper applied ensemble 

learning techniques with CNNs as base models and SVM as 

a meta-model. The stacking ensemble framework is applied 

in two different ways, namely blending and stacking and 

achieved an accuracy value of 99% and 98.3%, 

respectively(figure-6). The base models and meta-models 

were trained on different datasets in both techniques. So, 

there is no overfitting. Since the model's accuracy is very 

high on the new dataset (testing set), it is concluded that the 

proposed model is capable of efficiently classifying new 

samples of malware and benign. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Accuracy Comparison 

 

 

 

Table 3. Details of Dataset 

  

5. Conclusion  
In this paper, a stacking ensemble model was proposed 

for Android malware detection and accordingly, a framework 

was developed to investigate the efficiency of the proposed 

model. Malware and benign Android apps are collected and 

classes.dex files are extracted from apks and converted to 

images. The image dataset is then processed in two different 

ways of stacking ensemble framework: blending and 

stacking. The meta-model was trained with a holdout dataset, 

while the base models were trained with a training dataset. 

The proposed blending model achieved an accuracy of 99%. 

The meta-model was trained with a cross-validated training 

set, while the base models were trained with a training set. 

The proposed stacking model achieved an accuracy of 

98.3%. CNNs are used as base models in blending and 

stacking, and SVM is used as the meta-model. Experimental 

results have shown that the proposed stacking ensemble 

framework outperforms conventional machine learning/deep 

learning models for Android malware detection. 
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