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Abstract - The design perspective of the memories and their implementation have become computational storage for all the 

different scenarios of applications governed by the current AI market. The feature of low latency devices or hardware for the 

application on Mobiles, laptops, etc., is implicated with AI technology with improved memory control and power modules 

encapsulating the output performance. One such model and structural changes have been implemented with the Hybrid model 

on low latencies with probabilities, also the memory bandwidth of the proposed controller and memory unit utilized in Wireless 

applications. With the feature of Area, power, and delay, our Design investigates the feature of reliability of the data storage 

on the memory model and its formulation approach for low latency. An intuitive approach to gate-level Design with flash 

memories is implicated with predictive memory array structures for the low area and power efficiency. 

 

Keywords - Built-in self-test (BIST), Computational Memory Architecture (CMA), Design for testability (DFT).Field-

programmable gate array (FPGA), Processing Elements (PEs). 

1. Introduction  
There was a huge growth in the want for laptop 

processing capability during the preceding decade. Because 

of the increasing need for computing capacity, heterogeneous 

systems, comprised of a range of high-performance 

processing devices, have been created in response to this 

demand. [1] Field-programmable gate array (FPGA) and 

other similar components are used with standard CPUs to 

create a high-speed network. It is possible to considerably 

increase the performance of computationally intensive 

applications by merging numerous Processing Elements 

(PEs), which provide a considerable speed boost. [2] When 

examining the numerous aspects of the design views and 

efficiency of the homogeneous system, the energy 

consumption of the homogeneous system would entail a 

significant application value. Reconfigurable computing has 

progressively risen in popularity since its introduction at the 

beginning of the previous decade to speed up 

computationally intensive applications. FPGAs are a 

particularly attractive choice if you're looking for a high-

performance solution for the implementation and realization 

of the hardware of computationally intensive applications. 

The ability to program or reconfigure a chip to perform a 

different function for each application distinguishes it as 

programmable or reconfigurable. When used in conjunction 

with FPGAs capable of executing specialized application 

processors, the flexibility of general-purpose processors may 

be increased. The hardware designer must map hardware to 

FPGAs to customize the hardware for a specific application. 

With the selection of various domains, FPGA has emerged as 

a key component of sleek Design and scalable architecture. 

FPGAs have become more popular due to their ability to 

include a large number of parallel arithmetic and logical 

units and their high memory bandwidth[3]. When a multi-

core CPU and FPGA devices [1–5] are combined, the goal is 

to increase the speed of computationally demanding 

applications. When developing FPGA-based total hardware 

accelerators, the construction of a reliable device for facts 

switch among the external memory and the hardware 

accelerator itself is the toughest task to deal with. Generally 

speaking, the time had to retrieve data from external memory 

is the important thing stumbling block in most FPGA-based 

systems.  

 

Machine learning, deep learning, photograph/video 

processing, and big data are all examples of compute-

intensive programs that need to be used when coping with 

big amounts of records (or facts). [4-5] Because FPGAs do 

not have sufficient on-chip memory to fulfil the workload, 

the records to be processed at the FPGA should be stored and 

retrieved from off-chip memory. It is much slower in the 

case of compute-extensive packages to get admission to 

information from external memory than utilizing FPGA-

based total hardware accelerators. Consequently, the 

confined memory bandwidth has a detrimental influence on 

the overall performance of hardware accelerators, as 

previously stated. 

https://www.internationaljournalssrg.org/
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2. Existing Model 
2.1 ASP-MC 

[16] This model from the design feature represents the 

specific scenario where a single application is only intended 

for the device. Considering the figure, we have the Read and 

write address feature with 64bits is the implication with the 

Data unit and control unit. To access the data governing the 

different process models with elements based on the 

condition aspects that interface the data and control unit. The 

process elements are key aspects for control and R/W 

operations for each set of core modules introduced for the 

application-specific processing. 

 
Fig. 1 ASP-MC operational diagram 

 

[17] The output memory keeps the consequences 

produced after the FPGA processes the information. In the 

case of reading controllers, they're in charge of transmitting 

the alerts required to read data from many input memory 

locations at an identical time from the equal area. In a similar 

vein, the write controller sends a signal to the write 

controller, teaching it to write data to several output memory 

locations simultaneously. The main controller is in charge of 

controlling the Read and write controllers, respectively. In 

the case of the basic and sophisticated cores, ASP 

demonstrates that they can process 32-bit data, but the 

memory on the FPGA board can process 64-bit data. When 

using a single input and output memory,  PE cores are had to 

method 64-bits of records from the input memory and write 

64-bits of records to the output memory, assuming that our 

structure contains simply one input and one output memory. 

As an effect, c cores will be needed to investigate the 

information for a total of m memories, resulting in a 

complete of m memories. In this example, it's possible to 

have a 2:2 Memory model on the same laptop (m should be 

even). Figure 2 depicts the memory structure we utilized in 

our studies, with two inputs and outputs (right). 

 
Fig. 2 Memory architecture that we used in our research 

 

The one-input, one-output memories structure is 

required to develop the multiple, two-data memory 

architecture [17]. Four Natural Logarithm function cores are 

contained inside the two-input, two-output memory 

architecture frame. There are many procedures performed by 

it, including taking four 32-bit floating-point values from the 
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input ram and, after they have been processed, outputting 

four 32-bit floating-point values to the output memory after 

they have been processed. 

 
Fig. 3 The traditional floating-point operation core 

 

[20] The consequence is that it is adept at accessing data 

from and into memory up to 128 bits in size. Compared to 

the one-input, one-output memory design, the multiple, 

separate memory architecture delivers two times the speed 

up. Specifically, data processing speed is doubled when a 

memory architecture with two inputs and two outputs is used 

compared to a system with one input and one output. The 

four-core architecture requires twice the amount of hardware 

to execute all memory interfaces and lower overall 

processing time by a factor of two. With a floating-point 

value of 1, the traditional floating-point operation core is 

shown in Figure 3. 

 

 

[21] The functionality of the design model where our 

feature has one or more floating-point inputs of single 

precision and one or more floating-point outputs of single 

precision; is true for all of the functions in our project. The 

Enable and Done pins provide a basic structured control 

interface that is easy to use. The ASP can communicate with 

any of the cores with relative ease. When valid data is 

available on the inputs, the Enable Pin indicates this, and 

when valid data is present on the outputs, the Done Pin 

indicates this. The rudimentary floating-point arithmetic 

function cores are concatenated together to form more 

advanced floating-point arithmetic function cores. It is 

possible to produce a basic netlist that defines the 

connections between the primitive function cores by using a 

tool called FUNCOREGEN, which was developed in our lab 

and is available online. Using a set of input parameters, Fun-

core-gen automatically creates the hardware description of 

basic function cores that could be directly built from the 

hardware description generated by the software. 

2.2 DDR-RAM 

[22] The data rate doubling of the synchronous dynamic 

ram memory is emphasized in this design model, which 

utilizes low power and high-speed requirements to achieve 

this. To work on such a unique model design, it was 

necessary to address certain requirements for the design 

circuit to function at low power and high speed 

independently. In accordance with the complexity of the 

designed controller, encoder, and decoder used on the 

suggested design model, as indicated in the figure, the 

condition would vary. 

 
Fig. 4 Representing the Component Diagram for initiating the Low power model for DDR RAM 
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2.3 Design Units Description For The SRAM-Memory Design Model 

 
Fig. 5 SDR SDRAM controller design block diagram 

The SDR SDRAM Controller comprises four main 

modules: the SDRAM controller, the control interface, the 

direction, and the information interface modules. The 

SDRAM controller module is the highest-level module, and 

it is responsible for launching the three lower-level modules 

and bringing the whole plan together. Directions and 

associated memory addresses are acknowledged by the 

control interface module from the host, disentangling the 

order and forwarding the request to the order module. In 

response to directions and addresses received from the 

control interface module, the direction module generates the 

best feasible directions to the SDRAM. During the WRITEA 

and READA directions, the information interface module is 

in charge of handling the specified information tasks. 

2.4 Low Power Analysis on DDR_SDRAM 

• To provide perfect synchronization on the design 

Unit to impart better data synchronization. 

 

• Efficient decoder scheme to provide less time to 

execute the command and perform synchronization 

and fast data transfer 

As a result, our Design uses three different techniques to 

initiate the low-power synchronized model to analyze the 

instability observed as a result of the use of synchronization 

based on Toggle, Gray, and FIFO Synchronizer, all of which 

have an impact on the relationship of Metastability. Since 

our Design understands that Metastability is directly related 

to the meantime failures, which can be predicted accurately 

depending on the Flip flop utilized, we can leverage this 

knowledge. Compared to conventional FF, the Design 

focuses on Dual-D FF, which has superior and higher PAD 

parametric criteria than the Design. 
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2.5 Flow Diagram for Simplest Memory Controller 

. 
Fig. 6 The Simplest Memory Controller Flow Diagram 

Because of this, the Design utilized a finite state model 

to represent the LP-DDR RAM in accordance with the 

design requirements. It is anticipated that our proposed study 

would offer outstanding performance opportunities in both 

Design and the algorithms used to enhance the low-power 

capabilities. In this case, the DDR RAM would store the 

controlling changes seen from the control signals used in 

modelling the state diagram changes to take advantage of 

better and quicker reaction times produced on each cycle of 

the program's execution. 
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3. Proposed Memory Control Architecture with 

Low Latency 
The design estimation and its features on control 

architecture are estimated with different performance factors, 

and one such factor is Low latency. This factor majorly 

controls the design access speed from memory to bus and 

other related subsystems that are interlinked. Low latency 

implicates less delay and hence better speed. On the contrary, 

multiple algorithms have been established implicating the 

design aspects of the controller for high speed and low power 

applications. In the case of understanding the low latency 

problem, our model has been improvised with a predictive 

heuristic approach on the data path and data bus for each set 

of communication processes leading to memory output 

bandwidth. This model consists of four modules that are 

implemented and scaled with 8 bit, 16 and 32 

simultaneously, as mentioned in figure 7. 

 

 

 
Fig. 7 Representing the Proposed Block diagram for the control process architecture for memory 

 

Figure 7 comprises the control unit, memory process, 

direct access, data acquisition, with a process control 

scenario where the design platform for the working scenario 

is controlled with MCU (memory control unit) designed 

using HFSPM (hybrid finite-state predictive memory). This 

predictive concept of the memory consists of the concurrent 

FSM with predictive algorithms for state analysis and state 

control data. These two features are estimated by implicating 

the algorithm as mentioned below: 

 

3.1 Procedure 

• Initiate the MPC (model process control) satisfying set 

of constraints as low latency for the memory 

controller.  

• Implement the process architecture for Memory 

operations with commands and data feature 

initialization 

• Acquire a new set of specifications according to the 

access for different external devices. 

• Encapsulate the different input commands and data 

sequences for memory and bus operations. 

3.2 Algorithm1 

• Input and output width of 16 bits is initiated to process 

the two-stage address and data transfer. 

• Bus width of 24 bit is chosen for direct data transfer. 

• To initiate the input and output criteria with a Write 

address, read address, enables, busy, ready, bank 

address, clocks and its enables, data-padding with low 

and high values. 

• An improved interface model is implemented with 

both manual and auto features for real time 

applications 

3.3 PSEUDO Code for Commands and Address 

Sd_ram_bank_addr=(state[4])? Sd_ram_bank_addr_r : 

command[2:1]; 

Addr_main  = (state[4] | state == INIT_LOAD) ? addr_read : 

{ {SDRADDR_WIDTH-11{1'b0}}, command[0], 10'd0 }; 
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4. Flow Diagram for Proposed Memory Fifo Model 

 
Fig. 8 Representing the Dual-FIFO model and its implementation using read-write conditions 
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4.1 Algorithm2 

1. Input and output widths of 16, 32 and 64 bits are 

initiated to process the two-stage address and data 

transfer. 

2. Bus width of 48 bit is chosen for direct data transfer. 

3. To initiate the input and output criteria with a Write 

address, read address, enables, busy, ready, bank 

address, clocks and its enables, data-padding with 

low and high values. 

4. The hybrid Predictive Model interface model is 

implemented with manual and auto features for real-

time applications. 

4.2 Hybrid Predictive Algorithm 

4.2.1 RFR 

A technique that uses "boosting" (adjusting the weight 

of an observation ) (which creates subsets of data from 

training samples, chosen randomly with replacement). 

Bagging is a method that Random Forest employs. 

 
Fig. 9 Representing the RFR algorithm for implementing the Training 

models and test 

4.3 K-Means 

One of the most popular high-speed algorithms is K-

means, which finds data points based on similarities and 

places them in distinct groups. This method is used in the 

clustering algorithm. K-means attempts to identify and group 

the common features among all the people and groups. This 

is extremely tough to accomplish with one million 

individuals. 

 

Pseudo code: 

Input: 

  

              
Output: 

Initiate values for m1,m2,m3---mk defining the centroids 

of  each element Estimate the distance d for each element 

and centroid based on the distance algorithms 

Finally, compare the distance of each element and centroids 

based on the proposed threshold values. 

 

4.4 Probability Solution 

On this predictive logic, our Design has to estimate the 

latency of each of the modules and its functional capacity 

that governs the Design. The functional features are 

estimated with the modules utilized and implemented based 

on Algorithms such as RFR and Kmeans, implicating the 

mathematical formulations for calculating predictive latency 

values estimated based on the formula as mentioned below: 

4.4.1 Formulations 

Let a random probability function (RPF) govern the 

latency property as defined by the processing time for each 

module governing the Design. Let P(M)  defines the RPF for 

each module utilzied as: 

 

      (1) 

Here implicating the modules 

and their probabilities as the additive function. To calculate 

the module's latency and features, our Design has presented 

the controller, read and Write modules, Temporary storage 

(Dual-FIFIO), and a predictive interface for latency 

calculation from the perspective of in and out of the counters 

for data initializations. 

 



Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022 

 

368 

 
Fig. 10 Representing the Block diagram for Memory controller based on Hybrid Predictive algorithm 

 

 

 

 

 

 

     
    (2) 

  
     (3) 

The value defines the output time probability, which 

will be dependent on each module connected to the interface. 

These formulations have been improvised with a probability 

factor between the 

K-means and RFR conditions mentioned above based on 

pseudo-code. 

 

 

 

 

4.5 PSEUDO Code 

 

Fig. 11 Representing the PSUEDO code for IDLE state 
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Fig. 12 Representing the States for Refresh for 6.5 us as per the design characteristics 

5. Simulation Results 
5.1 Data Reading 

 
Fig. 13 Representing the Data reading for the input sequence value 
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Fig. 14 Representing the data written for the input sequence 

 

Figures 13 and 14 implicate the data reading and writing 

for the different sequences of the input that have been 

implicated in the figure representing the model sim output. 

For each address, our Design was estimated with input 

values from the test bench as represented with the pseudo-

code: 

 
Fig. 17 Representing the pseudo-code for the Proposed Controller 

model 

6. Systhesis Results 
6.1 Area 

 
Table 1. Representing the Area report for the proposed memory 

controller (two algorithms) 

Resource Utilization Available Utilization 

% 

LUT 235 133800 0.18 

FF 201 267600 0.08 

IO 26 500 5.20 

BUG 1 32 3.12 
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6.2 Delay 
 

Table 2. The timing report for the design unit for worst slack for both setup and hold times 

7. Comparition Results 
 

Table 3. Representing the overall comparison report with the proposed 

two algorithms and with the existing Design of the progressive 

algorithm 

S.n

o 

Paramete

rs 

Existing 

Design 

with a 

progressi

ve 

algorithm 

Proposed 

algorithm

1 for 

memory 

control 

Proposed 

algorithm

2 for 

memory 

control 

1 AREA 22.56 8.32 8.9 

2 POWER 3.345 2.43 1.153 

3 DELAY 286 (ns) 187 (ns) 148 (ns) 

4 LATENC

Y 

128 ns 65ns 58 ns 

 

From a design perspective, our Design has depicted 

different scenarios of the algorithms and their procedure to 

implicate the Area, power, and delay with latency using 

hybrid prediction algorithms as mentioned in section 4. As 

Table 3 provides the comparison table, 61% of the area 

improvement has been observed with the proposed 

algorithms. As per the power factor, there is not much 

difference since the Design desires high-speed configurations 

with delay and latency. Since employed with machine 

learning predictive models, algorithm 2 provides maximum 

performance factors for delay and latency. 

 

8. Conclusion 
This Design on the memory controller provides a new 

step-up challenge to implicate the low latency for each 

module, and its overall factor based on the circuitry 

developed. Both algorithms have proved a consistent change 

to implicate a test and train scenario for the control and 

latency factors that govern the design performance. Each 

algorithm representation and its implementation with PADL 

factors are mentioned in Table 3. Algorithm 1 has better 

features in all aspects compared to Existing for the area only, 

even though for algorithm 2, the Design implicates a hybrid 

predictive approach based on RFR and K-means for 

calculating latency for each module. 

 

SCOPE 
The implementation of the Memory controller is a 

Hybrid approach to the two scenarios of the Design, which 

full-fills  

 

The design latency only while the other factors of 

performance aren’t considered. With design structure 

accuracy, routing models, place,ment features, an FPGA 

would require a deep learning approach for each set of 

memory control. 
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