
International Journal of Engineering Trends and Technology Volume 70 Issue 5, 60-73, May 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I5P208 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Advanced Testing Effort Calculation Algorithm

Architecture using GA and Neural Network

Vikas Chahar1, Pradeep Kumar Bhatia2

1, 2Department of Computer Science & Engineering, G. J. University of Science & Technology, Hisar, India.

1vikas.chahar@gmail.com

Received: 31 January 2022 Revised: 13 April 2022 Accepted: 01 May 2022 Published: 19 May 2022

Abstract - Early effort estimation holds a significant role when a new project is planned. Otherwise, whenever some changes

are appended to the software system during the development phase, they need to be tested again to assure maintenance of

software quality. Thus, in both situations, effort estimation plays a key role in completing a project. The paper presents

improved software test effort estimations based on similarity analysis and metaheuristics. The designed model considers the

effort classification into three test effort classes, namely, low, moderate, and high effort. in the process, the Genetic

Algorithm (GA) is integrated for the attribute selection from NASA and Promise datasets used during the evaluation of the

proposed model. The three similarity analysis techniques, Cosine, Jaccard, and Euclidean distance, are integrated to find

the similarity in individual datasets fed to k-means cluster the data into three clusters. The test effort class prediction

performed based on the designed rule set is used to categorize the effort class based on MSE and SE as the validation

parameters in the presented work. The simulation analysis performed using two datasets shows the improved test effort

predictions by integrating the concept of metaheuristics.

Keywords - Test Effort Estimation, Genetic Algorithm, Cosine Similarity, Jaccard Similarity, Euclidean Distance.

1. Introduction
Effort estimation is one of the key activities performed

at the initial stages of project planning and management.

Numerous studies have associated the software development

process with effort and size estimation. [1,2] However, the

precise and accurate estimation remained an open challenge.

in Software Development Life Cycle (SDLC), software

testing is the mechanism used to analyze the difference

between the actual and the expected results. in simpler

terms, the goals of the software testing are straight and easy

to understand but very difficult to be met. Mere completion

of the project is not always sufficient, and it also requires

testing to assure that the project functions properly. The

primary objective of software testing is to remove bugs and

improve the enormous aspects of software like performance,

user experience, security, and so on. [3,4] The best deal of

testing can enhance the overall quality of the software,

which leads to great customer satisfaction.[5] The two broad

categories of software testing, namely, static and dynamic

testing, are described in Table 1 while highlighting the

major difference between them.

Table. 1 Major type of software testing techniques

Static Testing Dynamic Testing

in Static testing, testing is performed without the

execution of the program.

in Dynamic testing, testing is performed by the execution of

the program

It executed in the initial stage of software development It is executed at the later stage of software development.

This testing does the verification process.

This testing

 does the validation process.

The static testing is related to the defect prevention While dynamic testing is related to finding and fixing the

defects.

It provides an assessment of code and documentation. It produces bugs or bottlenecks in the software system.

for testing process, it involves a checklist. It comprises test cases for execution purposes.

The execution of this testing is done before the

compilation

Execution of this testing is done after compilation

It takes less time to find defects, and it is also cheap It takes more time as compared to static testing, and it is very

expensive

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

61

It completes 100% statement coverage incomparably less

time

Whereas this testing only accomplishes less than 50%

statement coverage.

This testing can discover a variety of errors. It can only expose the exportable bugs by execution, thus

discovering only a few kinds of bugs.

Although the tests are performed throughout the SCLC,

the software is produced component by component.

1.1. Test Effort Estimation

In test planning, the key element is tested effort

estimation, which requires will planned effort estimation to

schedule various testing activities. The test effort estimation

is usually performed using test estimation performed by

employing a work breakdown structure. The test effort

estimation engages the requirement analysis at the testing

stage. Before performing any sort of estimations, the

requirements of the product to be designed and tested need

to be clearly understood. This required a detailed review of

the application prototype. Depending on the complexity and

the size of the application involved, the effort of nearly 1 to

2 weeks is required by the tester to perform test effort

estimations. [6] Test effort is generally calculated in terms

of total consumed time to evaluate the outcome of the

software based on the supplied set of input. As the test effort

term appears in the dataset, a link has to be created between

the existing estimation methods for effort or quality. The

proposed algorithm architecture presents a novel method of

co-relating the test effort with the other effort measures and

is illustrated in the methodology section.

The rest of the paper is organized in the following

manner. The second section contains the literature survey,

whereas the proposed methodology is illustrated in section

3. The results are evaluated and are presented in section 4,

and the paper is concluded in section 5.

2. Literature Review
The section presents the literature review conducted for

effort estimation workaround NASA, PROMISE,

COCOMO, etc., as key terms. Yadav and Singh (2014) had

integrated the optimization concept of a nature-inspired

Genetic Algorithm (GA) to improve the effort estimation

performed using the COCOMO-II model. The comparative

analysis was performed using NASA and PROMISE project

data resulting in RMSE of 8.868 using the COCOMO-II

model after integration of GA for fine-tuning of parameters.

The resultant project-specific parametric values were 2.564

and 0.862. Overall, it was observed that the metaheuristics

significantly produced better results for both datasets. [7]

Shivakumar et al. (2016) suggested a non-algorithmic

method focused on adaptive neuro-fuzzy logic to resolve the

problem of accuracy and reliability in software effort

estimation models. The analysis showed that the model

produced efficient effort estimation using the NASA

dataset. The effort estimation accuracy was further

evaluated using MMRE and MRE to analyze the divergence

between the estimated and actual effort. The overall

evaluation showed that the hybrid neuro-fuzzy method

improved 11% in terms of MMRE. [8] Saljoughinejad and

Khatibi (2018) also proposed integrating three metaheuristic

algorithms to improve the accuracy of the estimations

performed using the COCOMO model. The main stress was

given to analyzing the cost drivers using metaheuristics. The

selection of the coefficients was performed, followed by the

reconstruction of the COCOMO. The resultant effort

estimations show that the integration of optimization

approaches, namely, PSO, GA, and Invasive Weed

Optimization (IWO), resulted in enhanced estimation

accuracy evaluated in terms of MMRE and PRED. [9] Sehra

et al. (2019) had proposed a hybrid approach that combines

a multi-criteria decision-making technique with the machine

learning algorithms to improve the accuracy of the project

effort estimations. The feature ranking was performed using

the Fuzzy analytic hierarchy process, and the generated

ranks were integrated into the least square support vector

machine to perform further effort estimations. The

evaluation was performed using MMRE and RMSE against

NASA and COCOMO datasets. [10] Attri and Bal (2019)

proposed an automated technique to estimate the size using

AI. The training and classification had been done using the

COCOMO model and evaluation in terms of MSE and size

considering the project samples. The study used to estimate

the size in three different parts, and the minimum error

computed was 0.0115. The results were further compared

for effectiveness in terms of TPR and MSE. [11] Kumar et

al. (2019) introduced the effort estimation performed using

Particle Swarm Optimization (PSO). The quantification of

the effort improvement is performed using the Kilo Line of

Code. The paper further investigates the effective

parameters for the effort estimation. The proposed model

resulted in better effort estimation with an MMRE of 56.57

compared to the COCOMO model with an MMRE of

245.39. [12] Chhabra and Singh (2020a) presented non-

algorithmic modeling using soft computing techniques using

COCOMO NASA dataset. The approaches implemented

were genetic algorithms and fuzzy logic that can handle

ambiguous definitions of the cost drivers. The fuzzy set

parameters were then optimized for the selection performed

using the GA fitness function. The evaluation showed a

25% improvement in terms of MMRE and PRED that was

achieved due to the stability of GA in optimizing the fuzzy

model. [13] Chhabra and Singh (2020b) had presented an

effort estimation model based on the Fuzzy Inference

System that could effectively compute the corresponding

effort multiplier. It was presented that the uncertainty

related to the intermediate COCOMO cost driver could be

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

62

addressed with FIS. The work involved the PSO as an

evolutionary optimization technique used to optimize the

fuzzy logic-based COCOMO model. The relative error

matrices associated with the effort estimation using NASA

and NASA2 datasets were used to validate the proposed

work. [14] Suresh & Behera (2020) presented a comparative

analysis of popular machine learning models, namely, SVM,

RF, NN, KNN, and backpropagation, in improving the

strength of software effort estimation. The orange data

mining tool was also integrated into the methodology to

evaluate the proposed work using the COCOMO’81 dataset

comprising 63 projects and the Desharnais dataset

comprising 81 projects. The comparative analysis showed

that among various ML techniques, the backpropagation

model achieved the most efficient effort estimation. [15]

Rhmann et al. (2021) presented a software effort

estimation based on weighted hybrid search algorithms. The

authors created the weighted ensembles using metaheuristic

algorithms, namely, black hole optimization, genetic

algorithm, and firefly algorithm. The evaluation of the

effectiveness of the ensemble of metaheuristics algorithms

to improve the ML-based prediction strength of effort

estimation models was evaluated using different datasets

present in the PROMISE repository. The R programming

language using RKEEL and Metaheuristics forms the basis

of the performed simulation analysis. The simulation

analysis showed that the metaheuristics-based prediction

demonstrated more realistic effort estimations. [16] Zakaria

et al. (2021) had optimized the COCOMO-II model using

PSO followed by the integration of machine learning

algorithms, namely, SVM, Linear Regression (LR), and

Random Forest (RF). The authors performed effort

estimation using NASA dataset. The comparative analysis

of the three algorithms showed that PSO with SVM

outperformed the other variations, namely PSO with LR and

PSO with RF. It was observed that PSO significantly

improved the estimation accuracy of the COCOMO model

by optimizing its parameters using the concept of

metaheuristic swarm intelligence. The parameters used in

evaluating the proposed work were correlation accuracy,

MMRE, and p-value. [17] Ardiansyah et al. (2022) had

proposed a modified chaotic PSO to overcome the

shortcoming of the traditional PSO. This improved PSO was

then implemented using three schemes, namely, chaotic

inertia mapping, uniform initialization, and stochastic

learning-based effort estimation models, to evaluate its

effectiveness over PSO. The detailed analysis showed that

the proposed chaotic PSO algorithm resulted in uniform

particle initialization while avoiding getting trapped in local

optimization solutions evaluated using three methods,

namely, COCOMO, Agile, and UCP. [18] Kaushik et al.

(2022) proposed a technique to address the effort estimation

challenges using combining Whale optimizations with a

deep belief neural network. Whale optimization is a

technique inspired by the social behavior of humpback

whales. The datasets used for the experimental evaluation of

the proposed work were COCOMO81, MAXWELL,

CHINA, and NASA93. It was concluded that the

involvement of the optimization technique resulted in fine-

tuning of the parameters and improved effort estimations

compared to the deep belief network backpropagation

model. [19] Ardiansyah et al. (2022) improved the

performance of the PSO using the case points COCOMO

model to avoid the trapping problem in local optima. The

authors worked in an explorative manner and generated the

solutions considering the inertia weight and software effort

estimation had been done using the uniform approach. The

outcomes were expressive and improvised with the

enhancement of PSO. [20]

The literature survey showed that testing effort

represents the total time consumed to test all the supplied

blocks to build a software product. [21] Further, the overall

computation time also depends upon the OOPM metrics,

which have significantly improved time by time with the

contribution of researchers. Numerous researchers have

integrated COCOMO into their research work due to

various features. for example, the COCOMO dataset

developed by NASA gets an upgrade in terms of storage

elements, and STO has been amended as a valid metric in

OOPM architecture. [22, 23, 24] The present research work

aims to compute the testing effort based on OOPM oriented

model.

3. Methodology
In addition to estimating the test effort, the proposed

design is also based on segregating and selecting the OOPM

metric system and labeling the data based on the similarities

calculated between project elements. The labeling of the

selected dataset is performed in the preliminary phase. The

overall work methodology is described in Figure 1.

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

63

Fig. 1 Work Methodology

3.1. Data Source

Two dataset sources have been utilized in the proposed

work and given similar treatment at each step.

3.1.1 Kaggle

The first dataset used to evaluate the proposed work is

obtained from the global kaggle repository. The dataset

covers more than 90 projects. It can be accessed at

Kaggle.com [25], which provides OOPM-based quantitative

and qualitative attributes covering various aspects of

software testing.

3.1.2 Promise

It is the second dataset that has also been popularly

used by various researchers in their effort estimation work.

[26, 27] The dataset comprises matrices from 93 software

projects labeled with actual effort and can be accessed at

PROMISE online repository. [28]

3.2. Model Development

The design of the proposed model is described in two

segments in which the first segment performs the data

labeling. in contrast, the second one is dedicated to the

training of the system to segregate supplied effort labels. in

the initial stage, the GA metaheuristics are used to select the

attribute set from the supplied dataset. The algorithmic

structure of the implemented GA is given below.

GA Metaheuristics Algorithm

Input Parameters:

 → Pre-processed Data

GA Options → Initialization of GA with basic operators and

functions like:

– Population Size (50) // According

to

– Selection Function (Sfcn)

– Mutation Function (Mfcn)

– Crossover Function (Cfcn)

Output Parameters: → Index of selected features

using an algorithm based on their fitness

 → Selected Features from

i) Start attribute selection

ii) for x in the range of

iii)

iv) // Average count of

non-zero features

v) End – for

vi) Define the fitness function of GA for selection,

vii) Compute threshold value as // having

more than 75% non-zero features compared to

Start

Kaggle

Dataset

Promise

Dataset

Apply

Metaheuristics

Genetic

Algorithm

Cosine

Jaccard

Euclidean

Load Datasets Apply Attribute

 Selection

For each set,

compute

similarity

assessment

Apply K-

means
Clustering

MSE, SE
Evaluate

Apply rule set

Predict test effort class

Low/Moderate/High

Stop

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

64

viii)

Where, FS represents the feature set selected for

evaluation from P-Data

ix) = [] // Initialize a empty matrix,

x) Count = 0

xi) // Calculate rows and

columns of pre-processed data

xii)

xiii)
xiv)
xv) //

e used to store the error value

xvi) Number of Variables = 1

xvii) Fit Val = GA (Fitness Function, Number

of Variables, Options)

xviii) If (Fit Val ==True)

xix)

xx)
xxi)
xxii)

The optimization offers tremendous problem-solving

options. The post-selection of the Genetic Solver further

provides an option to integrate fitness function and all the

rest of the required attribute constraints required for the

processing of GA. The proposed work architecture GA is

implemented by considering the attributes mentioned in

Table 2 as standards within the development. The Genetic

Algorithm is responsible for selecting the attributes

provided from the dataset. The genetic algorithm utilizes the

mutation behavior of the employed elements in the list. GA

performs crossover operations to justify the mutation

behavior.
Table 2. GA parameters

Selection Function

Mutation Uniform, Mutation value =

0.05

Crossover Intermediate, Crossover

value = 0.08

The algorithm describes how GA selects the attributes

based on progressions made in the fitness function discussed

in the pseudo-code. The fitness function takes three

parameters as input. The first parameter is the propagation

error generated through mutation and crossover interlink.

3.3. Similarity Measurement

The next step after attribute selection is similarity

analysis. The similarity measurement helps in settling down

the row elements more precisely. in addition to

conventionally used Euclidean distance, Cosine similarity

and Jaccard Similarity has been used in the present work.

3.3.1. Cosine Similarity

The similarity is a measure of alikeness. in cosine

similarity measurement, vectors compute the similarity

between two entities. A vector is a quantity that exhibits

both magnitudes as well as direction. It is computed as the

dot product of both attributes. By determining the cosine

similarity, the author will effectively try to find the angle

cosine between the two objects, as shown in the following

equation.

 (1)

Fig. 2 Cosine Similarity

Figure 2 illustrates the similarity measurement using

vectors. It is well-known that cosine0° is 1, and the vectors

will have the highest similarity. Further, the cosine90° has a

similarity of 0, which means that the two vectors are

independent of their magnitude and have a similarity of-1.

3.3.2. Jaccard Similarity

Jaccard similarity is measured based on the common

and non-common elements of a dataset value. The Jaccard

similarity of two subsequent rows can be computed using

the following relationship where rows are

represented .

 (2)

The combined similarity generation is performed using

the following algorithm.

A

B

X

Z

dist (A, B)

Cos Ɵ

Y

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

65

Similarity Measurement Algorithm

Input: dataset //attributes selected dataset

Output: //cosine similarity

 //Jaccard similarity

1. Initialize empty matrices

2.

3.

4. Initialize similarity count variable as

5. // Foreach row in the

dataset //

6. ; // Fetching current

row//

7. // Initiating

another loop that starts from 1 but goes till the

value of i.//

8. k2= |;

9. // Evaluate cosine similarity

10. k2= |;

11. ;0

12. ;

13. 1;

14. []=k2;

15. ;

16.

17.

18. Return ,

The similarity measurement is performed using the

above algorithm on both Kaggle and Promise datasets. The

output of this step is graphically illustrated in Figure 2.

Fig. 3(a) Cosine Similarity for Kaggle dataset Fig. 3(b) Jaccard Similarity for Kaggle dataset

Fig. 3 (c) Euclidian distance Similarity for Kaggle dataset.

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

66

In addition to the Kaggle dataset, the similarity is also computed for the PROMISE dataset. It is to be noted that there are

97 project records in the PROMISE dataset, as illustrated by the similarity analysis graphs shown in Figure 4.

Fig. 4 (a) Cosine Similarity for Promise dataset Fig. 4(b) Jaccard Similarity for Promise dataset

Fig. 4 (c) Euclidian distance Similarity for Promise dataset

The data is passed to the k-means algorithm containing

all these features, namely Cosine similarity, Jaccard

Similarity, and Euclidian distance. The k-means does not

opt for the labeling of the data, and therefore, statistical

architecture is integrated into the proposed work for the

purpose. The approaches used to design the if-then rule set

using Mean Squared Error (MSE) and Standard Error (SE).

3.4. A rule set design based on Validation Parameters

3.4.1 Mean Squared Error (MSE)

It is defined as the mean of the squares of the errors

incorporated in an estimation work. Mathematically, it can

be represented by the following equation in which a

number of predictions are performed on a sample

comprising of data points.

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

67

 (3)

3.4.2. Standard Error (SE)

It is a statistical term that defines accuracy associated

with the sample distribution representing a population using

standard deviation. It is computed using the following

relationship for a dataset comprising a number of samples

and as standard deviation.

 (4)

Fig. 5 Fuzzy inference engine with inputs, outputs, and membership functions

The process of statistical analysis has been performed

on both datasets, namely, Kaggle and PROMISE datasets.

Following this, MSE and SE are passed to the fuzzy

inference rule engine to create a ruleset for labeling the

clusters. The proposed work has opted Mamdani inference

engine due to its lower computation complexity. Figure 5

illustrates the sample, MSE, and SE as input and test effort

classes predicted as low, moderate, and high classes.

3.5. Ruleset

The membership function described in Figure 5 is used

to design 6 rule sets used for the creation and propagation of

the model.
Table. 3 Rule Sets

MSE SE Test Effort Class

Low Low Low

Low Moderate Low

Moderate Moderate Moderate

High Moderate High

High High High

Moderate High High

The validated data from each class category is passed to

the attribute set selection to the Cuckoo-Search algorithm.

Cuckoo search is a Swarm Intelligence (SI) algorithm

architecture that uses a Levy flight mechanism for the

processing. The selected data from the Cuckoo Search

Algorithm is passed to propagation-based learning behavior,

viz. Feed Forward Back Propagation Neural Network

(FFBPNN). The ordinal measures of FFBPNN are listed as

follows in Table 4.

Table. 4 The propagation architecture

Propagation model Levenberg

Propagation Type Linear/Polyspace

Number of propagation

layers

5-15 depending upon the size

of the data

Selection method Gradient-based

Validation type Mean Squared Error (MSE)

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

68

FFBPNN incorporates regression-oriented learning for

training and classification purposes. The categorization rule

is formed so that the testing effort would be below if the

classified ground truth label meets the test label. Else the

testing effort would be high. As explained even earlier, there

is also one more class called moderate testing effort. It

occurs when the difference between the classified target

class is either not too far from the original ground-truth

value or not too close to the categorization of other classes.

The FFBPNN performs three levels of regression, namely

the R for training, R-for testing, R-for validation, and R-

overall.

4. Results and Discussion
The results are evaluated based on the data division in

the separation mechanism containing two separation

windows, namely 70-30 ratio and 80-20 ratio. in the first

segment, 70% of the data will be considered training data,

and the rest of the 30% data will be considered test data. in a

similar proceeding, 80% of the data would be considered the

training data for the second window, and the rest of the 20%

data will be considered the test data. The results have been

evaluated based on the following parameters.

a) True positive rate: The total number of truly identified

objects against supplied ground-truth value

b) False positive rate: It is the total number of false

identified objects against supplied ground truth value.

c) Accuracy: The arithmetic means of the true positive rate

for all listed data labels.

MATLAB 2016, containing a Neural Network toolbox,

has been used to train the system. The training model is

illustrated in Figure 6(a). for this instance, 11 features have

been selected using GA, and each selected feature forms a

feature set when combined with other selected features. 25

layers are passed, and the Levenberg architecture propagates

the data through the validated gradient policy. The gradient

is also bounded with epochs which are in total supplied to

1000 iterations. If the gradient is not attained within 1000

simulation iterations, the training will stop and produce the

trained architecture. A total of 6 validation for each

propagation layer is imposed on the training mechanism. It

is necessary to overcome at least 3 validations. As it is clear

from Figure 6(a), 5 out of 6 validations are executed

successfully to produce the training architecture. Figure 6(b)

represents the regression architecture illustrated earlier in

the same section.

Fig. 6(a) The Neural Training

The value of R changes with the changes in the instance

values. The formation of GA and Cuckoo Search also

affected the overall evaluation of the regression values. The

rest of the evaluation parameters are listed in Tables 5 and

6.

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

69

Fig. 6(b) The regression analysis

As evident from Tables 5 and 6, the learning rate for

more projects is comparatively high compared to a low

number of projects. to append the data, 90 projects have

been listed from the PROMICE data set, whereas the rest of

the projects have been listed from Kaggle. The maximum

TPR for the proposed work is .95221695 for 1000 projects

for 80-20 distribution. The same data is then passed to 70-

30 distribution, and the results are slightly less but still high

compared to the other state of art techniques.

Table. 5 The 70-30 distribution result

Total

Number of

Projects

TPR

Proposed

TPR Without

GA

TPR

Varinder et

al. [20]

FPR

Proposed

FPR without

GA

FPR

Varinder et

al. [20]

10 0.902212 0.76614117 0.81549276 0.097788 0.23385883 0.18450724

20 0.90734326 0.76927859 0.81849662 0.09265674 0.23072141 0.18150338

30 0.90968826 0.77037303 0.82236947 0.09031174 0.22962697 0.17763053

40 0.91056093 0.77336635 0.82285533 0.08943907 0.22663365 0.17714467

50 0.91250108 0.77603793 0.82606708 0.08749892 0.22396207 0.17393292

60 0.91624772 0.7786901 0.82897132 0.08375228 0.2213099 0.17102868

70 0.91867988 0.78046197 0.83141249 0.08132012 0.21953803 0.16858751

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

70

80 0.92160854 0.78351338 0.83312001 0.07839146 0.21648662 0.16687999

90 0.92345481 0.7865408 0.83560802 0.07654519 0.2134592 0.16439198

100 0.93221 0.81205268 0.86019063 0.06779 0.18794732 0.13980937

200 0.9346799 0.83702165 0.88581887 0.0653201 0.16297835 0.11418113

300 0.9399875 0.86041754 0.90217016 0.0600125 0.13958246 0.09782984

400 0.94112 0.88629011 0.91001 0.05888 0.11370989 0.08999

500 0.94567 0.8911 0.921114 0.05433 0.1089 0.078886

700 0.943321 0.8987999 0.922449 0.056679 0.1012001 0.077551

1000 0.94221 0.90111 0.92788 0.05779 0.09889 0.07212

Table 5 shows the TPR and FPR computed using the

70:30 ratio. The analysis results show that the TPR of the

proposed model increases with an increase in the number of

projects, and FPR decreases. It is seen that TPR and FPR for

Varinder et al. [20] show 0.81 and 0.18 respectively for 20

projects and 0.76 and 0.23, using the GA. However, the

proposed model shows a TPR of about 0.90 and an FPR of

0.09. Similarly, TPR for 90 projects increases to 0.92, and

that of existing techniques and GA is 0.83 and 0.78,

respectively. The overall TPR and FPR for 1000 projects are

0.94 and 0.05 using the proposed approach and 0.92 and

0.07, respectively, using the Varinder et al. [20]. Thus, the

proposed technique shows better results in comparison to

existing techniques.

Table. 6 The 80-20 distribution result

Total

Number of

Projects

TPR

Proposed

TPR Without

GA

TPR

Varinder et

al. [20]

FPR

Proposed

FPR without

GA

FPR

Varinder [20]

10 0.90325093 0.76815558 0.81661566 0.09674907 0.23184442 0.18338434

20 0.90944227 0.77021591 0.81902469 0.09055773 0.22978409 0.18097531

30 0.91276608 0.77506919 0.82130693 0.08723392 0.22493081 0.17869307

40 0.91614222 0.77896306 0.82374494 0.08385778 0.22103694 0.17625506

50 0.91961234 0.78184222 0.82596965 0.08038766 0.21815778 0.17403035

60 0.92116638 0.78425299 0.82841232 0.07883362 0.21574701 0.17158768

70 0.92650087 0.78939136 0.83274246 0.07349913 0.21060864 0.16725754

80 0.9299947 0.79149856 0.83457478 0.0700053 0.20850144 0.16542522

90 0.93278673 0.79503425 0.83755162 0.06721327 0.20496575 0.16244838

100 0.93321592 0.82151814 0.86264824 0.06678408 0.17848186 0.13735176

200 0.93668071 0.8560542 0.88751949 0.06331929 0.1439458 0.11248051

300 0.94299042 0.86537892 0.90388464 0.05700958 0.13462108 0.09611536

400 0.94512834 0.89014087 0.91401356 0.05487166 0.10985913 0.08598644

500 0.95067387 0.89610207 0.92611913 0.04932613 0.10389793 0.07388087

700 0.95032782 0.9058004 0.92945552 0.04967218 0.0941996 0.07054448

1000 0.95221695 0.91111535 0.93788335 0.04778305 0.08888465 0.06211665

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

71

Table 6 shows the TPR and FPR computed using the

80:20 ratio. The analysis results show that the TPR of the

proposed model increases with an increase in the number of

projects, and FPR decreases. It is seen that TPR and FPR for

Varinder et al. [20] show 0.86 and 0.17, respectively, for

100 projects and 0.82 and 0.066, using the GA. However,

the proposed model shows a TPR of about 0.93 and an FPR

of 0.06.

 Fig. 7 TPR for different test effort class

Similarly, TPR for 400 projects increases to 0.94, and

that of existing techniques and GA is 0.91 and 0.89,

respectively. The overall TPR and FPR for 1000 projects are

0.95 and 0.04, respectively, using the proposed approach

and 0.93 and 0.06 using the Varinder et al. [20]. Thus, the

proposed technique shows better results in comparison to

existing techniques.

Figure 7 shows the Improvement analysis for TPR of

the proposed solution, which is compared when the Genetic

Algorithm is not directly applied. The proposed algorithm

architecture outcast the existing approach by 6-8%. This is

due to the sophisticated architecture presented by the

selection and propagation mechanisms. The propagation

mechanism filters the data, and the cuckoo helps organize

the categorized data. Looking at the overall accuracy, Fig. 9

represents the bar representation for the accuracies attained

against each proposed class.

Figure 8 shows the improvement analysis for FPR using

70:30 distribution and 80:20 distributions. A comparison

with GA has been presented for the effectiveness of the

proposed approach. The improvement analysis graph shows

that the proposed approach's average value is 0.07 and 0.17

without GA. The analysis results show that the proposed

technique using 80:20 and 70:30 has been improved by 6-

7% compared to without GA only. However, analysis

results compared to Varinder et al. [20] are around 5 -6%

using for 80:20 and 70:30 distribution.

Fig. 8 FPR for different test effort class

Fig. 9 Accuracy for different test effort class

As it is clear from Figure 9 and evident from the result

in Table 5 and Table 6, the proposed algorithm architecture

has a higher overall accuracy that lies between 91-93%

based on the training and test data samples, whereas if it is

passed without utilizing the selection algorithm, the

accuracy in test effort calculation or estimation will lie

under 88-89 % and utilizing Varinder et al. architecture, the

accuracy increases as compared to without GA architecture

but stays behind the proposed algorithm architecture. The

accuracy has been evaluated for all the classes listed in the

proposed methodology section.

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

72

5. Conclusion
Test effort estimation is a construct that can be

evaluated using a lot of software-oriented factors. This

article illustrates the evaluation of the test effort using other

effort measurement architecture. The proposed algorithm

architecture has utilized a Genetic Algorithm to process and

select the dataset, followed by the attribute set selection

method utilizing Cuckoo Search. The proposed algorithm

has divided the entire data into three categories, and

simulation behaviors have been tested against two data

separation segments, namely 70-30 and 80-20. The

separated classes were tested, and based on the rule set and

propagation mechanism, the classes were classified. The

proposed algorithm uses Levenberg's Feed Forward

Propagation mechanism for the propagation mechanism,

which is a gradient-based architecture. The proposed

algorithm is evaluated for three parameters, namely the True

Positive Rate, False Positive Rate, and Overall Accuracy.

Due to the sophisticated selection architecture of the

proposed algorithm, the proposed algorithm architecture

attains maximum accuracy of 93%, whereas for a similar set

of input parameters, the other state of art mechanisms lags

by 3-5%, which could be stated as a significant

improvement.

Conflicts of Interest
The authors declare that they have no conflict of interest.

Funding Statement
The author has received no funding.

References
[1] M. M. Asheeri, and M. Hammad, Machine Learning Models for Software Cost Estimation. in 2019 International Conference on

Innovation and Intelligence for Informatics, Computing, and Technologies (3ict): Ieee. (2019) 1-6.

[2] M. Dawson, and W. Christian, an Artificial Neural Network Approach to Software Testing Effort Estimation, Wit Transactions on

Information and Communication Technologies. 20 (1970).

[3] J. Singh, and B. Sahoo, Software Effort Estimation With Different Artificial Neural Network (2011).

[4] P. R. Srivastava, A. Varshney, P. Nama, and X. S. Yang, Software Test Estimation: A Model Based on Cuckoo Search, International

Journal of Bio-Inspired Computation, 4(5) (2012) 278-285.

[5] P. B. Nirpal, and K. V. Kale, Using Genetic Algorithm for Automated, Efficient Software Test Case Generation for Path

Testing, International Journal of Advanced Networking and Applications, 2(6) (2011) 911-915.

[6] L. P. Kafle, an Empirical Study on Software Test Effort Estimation, International Journal of Soft Computing and Artificial

Intelligence. 2(2) (2014) 109-125.

[7] C. S. Yadav and R. Singh, Tuning of Cocomo Ii Model Parameters for Estimating Software Development Effort Using Ga for Promise

Project Data Set, International Journal of Computer Applications. 90(1) (2014) 99-123.

[8] N. Shivakumar, N. Balaji, and K. Ananthakumar, A Neuro-Fuzzy Algorithm to Compute Software Effort Estimation, Global Journal of

Computer Science and Technology. 2(1) (2016) 232-243.

[9] R. Saljoughinejad, and V. Khatibi, A New Optimized Hybrid Model Based on Cocomo to Increase The Accuracy of Software Cost

Estimation, Journal of Advances in Computer Engineering and Technology, 4(1) (2018) 27-40.

[10] S. K. Sehra, Y. S. Brar, N. Kaur, and S.S. Sehra, Software Effort Estimation Using Fahp and Weighted Kernel Lssvm Machine, Soft

Computing. 23(21) (2019) 10881-10900.

[11] V. K. Attri, and J. S. Bal, an Advanced Mechanism for Software Size Estimation Using Combinational Artificial

Intelligence, International Journal of Intelligent Engineering and Systems. 12(4) (2019) 32-41.

[12] A. Kumar, B. D. Patro, and B. K. Singh, Parameter Tuning for Software Effort Estimation Using Particle Swarm Optimization

Algorithm, International Journal of Applied Engineering Research. 14(2) (2019) 139-144.

[13] S. Chhabra, and H. Singh, Optimizing Design Parameters of Fuzzy-Model-Based Cocomo Using Genetic Algorithms. International

Journal of Information Technology, 12(4) (2020a) 1259-1269.

[14] S. Chhabra, and H. Singh. Optimizing The Design of A Fuzzy Model for Software Cost Estimation Using Particle Swarm Optimization

Algorithm, International Journal of Computational Intelligence and Applications. 19(01) (2020b) 205-215.

[15] P. Suresh Kumar, and H. S. Behera, Estimating Software Effort Using Neural Network: an Experimental Investigation. in Computational

Intelligence in Pattern Recognition. Springer, Singapore. (2020) 165-180

[16] W. Rhmann, B. Pandey, and G. Ansari, Software Effort Estimation Using an Ensemble of Hybrid Search-Based Algorithms Based on

Metaheuristic Algorithms, Innovations in Systems and Software Engineering. (2021) 1-11.

[17] N. A. Zakaria, A. R. Ismail, N. Z. Abidin, N.H. M. Khalid, and A. Y. Ali, Optimization of Cocomo Model Using Particle Swarm

Optimization, International Journal of Advances in Intelligent Informatics, 7(2) (2021) 177-187.

[18] A. Ardiansyah, R. Ferdinand, and A. E. Permanasari, Mucpso: A Modified Chaotic Particle Swarm Optimization With Uniform

Initialization for Optimizing Software Effort Estimation. Applied Sciences. 12(3) (2022) 71-81.

[19] A. Kaushik, N. Singal, and M. Prasad Incorporating Whale Optimization Algorithm With Deep Belief Network for Software

Development Effort Estimation, International Journal of System Assurance Engineering and Management, 2(1)(2022) 1-15.

[20] A. Ardiansyah, R. Ferdinand, and A. E. Permanasari, Mucpso: A Modified Chaotic Particle Swarm Optimization With

Uniform Initialization for Optimizing Software Effort Estimation, Applied Sciences. 12(3) (2022) 72-81.
[21] D. B. Singh, D. A. Kumar, D. K. Sahni, D. Shree, A. Khushboo, K. Sirohi, D. Khurana. A Model to Measure Software Testing Effort

Estimation in The Integrated Environment of Ernn, Bmo & Pso, International Journal of Engineering Trends and Technology. 69(8) 81-

88.

Vikas Chahar & Pradeep Kumar Bhatia et al. / IJETT, 70(5), 60-73, 2022

73

[22] G. Somya, and A. Parashar, Machine Learning Application to Improve Cocomo Model Using Neural Networks, International Journal

of Information Technology and Computer Science (Ijitcs) 3 (2018) 35-51.

[23] P. Pandey, and L. Ratnesh, Fuzzy Ahp Based Identification Model for Efficient Application Development, Journal of Intelligent & Fuzzy

Systems. 38(3) (2020) 3359-3370.

[24] P. Singal, A. C. Kumari, and P. Sharma, Estimation of Software Development Effort: A Differential Evolution Approach. Procedia

Computer Science 167(2020) 2643-2652.

[25] Kaggle's Online Data Source Available At Https://Www.Kaggle.Com/Sayedmohsin/Sqa-Dataset
[26] A. Kaushik, and N. Singal A Hybrid Model of Wavelet Neural Network and Metaheuristic Algorithm for Software Development Effort

Estimation, International Journal of Information Technology. 3(1) (2019) 1-10.

[27] P. Singal, A. C. Kumari, and P. Sharma, Estimation of Software Development Effort: A Differential Evolution Approach, Procedia

Computer Science, 167(8) (2020) 2643-2652.

[28] Promise Repository Is Available At Http://Promise.Site.Uottawa.Ca/Serepository/Datasets-Page.Html.

https://www.kaggle.com/sayedmohsin/sqa-dataset
http://promise.site.uottawa.ca/SERepository/datasets-page.html

