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Abstract - Early effort estimation holds a significant role when a new project is planned. Otherwise, whenever some changes 

are appended to the software system during the development phase, they need to be tested again to assure maintenance of 

software quality. Thus, in both situations, effort estimation plays a key role in completing a project. The paper presents 

improved software test effort estimations based on similarity analysis and metaheuristics. The designed model considers the 

effort classification into three test effort classes, namely, low, moderate, and high effort. in the process, the Genetic 

Algorithm (GA) is integrated for the attribute selection from NASA and Promise datasets used during the evaluation of the 

proposed model. The three similarity analysis techniques, Cosine, Jaccard, and Euclidean distance, are integrated to find 

the similarity in individual datasets fed to k-means cluster the data into three clusters. The test effort class prediction 

performed based on the designed rule set is used to categorize the effort class based on MSE and SE as the validation 

parameters in the presented work. The simulation analysis performed using two datasets shows the improved test effort 

predictions by integrating the concept of metaheuristics. 

Keywords - Test Effort Estimation, Genetic Algorithm, Cosine Similarity, Jaccard Similarity, Euclidean Distance.  

1. Introduction 
Effort estimation is one of the key activities performed 

at the initial stages of project planning and management. 

Numerous studies have associated the software development 

process with effort and size estimation. [1,2] However, the 

precise and accurate estimation remained an open challenge. 

in Software Development Life Cycle (SDLC), software 

testing is the mechanism used to analyze the difference 

between the actual and the expected results. in simpler 

terms, the goals of the software testing are straight and easy 

to understand but very difficult to be met. Mere completion 

of the project is not always sufficient, and it also requires 

testing to assure that the project functions properly. The 

primary objective of software testing is to remove bugs and 

improve the enormous aspects of software like performance, 

user experience, security, and so on. [3,4] The best deal of 

testing can enhance the overall quality of the software, 

which leads to great customer satisfaction.[5] The two broad 

categories of software testing, namely, static and dynamic 

testing, are described in Table 1 while highlighting the 

major difference between them. 
 

Table. 1 Major type of software testing techniques 

Static Testing Dynamic Testing 

in Static testing, testing is performed without the 

execution of the program. 

in Dynamic testing, testing is performed by the execution of 

the program 

It executed in the initial stage of software development It is executed at the later stage of software development. 

This testing does the verification process. 

This testing 

 does the validation process. 

The static testing is related to  the defect prevention While dynamic testing is related to finding and fixing the 

defects. 

It provides an assessment of code and documentation. It produces bugs or bottlenecks in the software system. 

for testing process, it involves a checklist. It comprises test cases for execution purposes. 

The execution of this testing is done before the 

compilation 

Execution of this testing is done after compilation 

It takes less time to find defects, and it is also  cheap It takes more time as compared to static testing, and it is very 

expensive 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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It completes 100% statement coverage incomparably less 

time 

Whereas this testing only accomplishes less than 50% 

statement coverage. 

This testing can discover a variety of errors. It can only expose the exportable bugs by execution, thus 

discovering only a few kinds of bugs. 

Although the tests are performed throughout the SCLC, 

the software is produced component by component. 

1.1. Test Effort Estimation 

In test planning, the key element is tested effort 

estimation, which requires will planned effort estimation to 

schedule various testing activities. The test effort estimation 

is usually performed using test estimation performed by 

employing a work breakdown structure. The test effort 

estimation engages the requirement analysis at the testing 

stage. Before performing any sort of estimations, the 

requirements of the product to be designed and tested need 

to be clearly understood. This required a detailed review of 

the application prototype. Depending on the complexity and 

the size of the application involved, the effort of nearly 1 to 

2 weeks is required by the tester to perform test effort 

estimations. [6] Test effort is generally calculated in terms 

of total consumed time to evaluate the outcome of the 

software based on the supplied set of input. As the test effort 

term appears in the dataset, a link has to be created between 

the existing estimation methods for effort or quality. The 

proposed algorithm architecture presents a novel method of 

co-relating the test effort with the other effort measures and 

is illustrated in the methodology section.  

The rest of the paper is organized in the following 

manner. The second section contains the literature survey, 

whereas the proposed methodology is illustrated in section 

3. The results are evaluated and are presented in section 4, 

and the paper is concluded in section 5. 

 

2. Literature Review 
The section presents the literature review conducted for 

effort estimation workaround NASA, PROMISE, 

COCOMO, etc., as key terms. Yadav and Singh (2014) had 

integrated the optimization concept of a nature-inspired 

Genetic Algorithm (GA) to improve the effort estimation 

performed using the COCOMO-II model. The comparative 

analysis was performed using NASA and PROMISE project 

data resulting in RMSE of 8.868 using the COCOMO-II 

model after integration of GA for fine-tuning of parameters. 

The resultant project-specific parametric values were 2.564 

and 0.862. Overall, it was observed that the metaheuristics 

significantly produced better results for both datasets. [7] 

Shivakumar et al. (2016) suggested a non-algorithmic 

method focused on adaptive neuro-fuzzy logic to resolve the 

problem of accuracy and reliability in software effort 

estimation models. The analysis showed that the model 

produced efficient effort estimation using the NASA 

dataset. The effort estimation accuracy was further  

 

evaluated using MMRE and MRE to analyze the divergence 

between the estimated and actual effort. The overall 

evaluation showed that the hybrid neuro-fuzzy method 

improved 11% in terms of MMRE. [8] Saljoughinejad and 

Khatibi (2018) also proposed integrating three metaheuristic 

algorithms to improve the accuracy of the estimations 

performed using the COCOMO model. The main stress was 

given to analyzing the cost drivers using metaheuristics. The 

selection of the coefficients was performed, followed by the 

reconstruction of the COCOMO. The resultant effort 

estimations show that the integration of optimization 

approaches, namely, PSO, GA, and Invasive Weed 

Optimization (IWO), resulted in enhanced estimation 

accuracy evaluated in terms of MMRE and PRED. [9] Sehra 

et al. (2019) had proposed a hybrid approach that combines 

a multi-criteria decision-making technique with the machine 

learning algorithms to improve the accuracy of the project 

effort estimations. The feature ranking was performed using 

the Fuzzy analytic hierarchy process, and the generated 

ranks were integrated into the least square support vector 

machine to perform further effort estimations. The 

evaluation was performed using MMRE and RMSE against 

NASA and COCOMO datasets. [10] Attri and Bal (2019) 

proposed an automated technique to estimate the size using 

AI. The training and classification had been done using the 

COCOMO model and evaluation in terms of MSE and size 

considering the project samples. The study used to estimate 

the size in three different parts, and the minimum error 

computed was 0.0115. The results were further compared 

for effectiveness in terms of TPR and MSE. [11] Kumar et 

al. (2019) introduced the effort estimation performed using 

Particle Swarm Optimization (PSO). The quantification of 

the effort improvement is performed using the Kilo Line of 

Code. The paper further investigates the effective 

parameters for the effort estimation. The proposed model 

resulted in better effort estimation with an MMRE of 56.57 

compared to the COCOMO model with an MMRE of 

245.39. [12] Chhabra and Singh (2020a) presented non-

algorithmic modeling using soft computing techniques using 

COCOMO NASA dataset. The approaches implemented 

were genetic algorithms and fuzzy logic that can handle 

ambiguous definitions of the cost drivers. The fuzzy set 

parameters were then optimized for the selection performed 

using the GA fitness function. The evaluation showed a 

25% improvement in terms of MMRE and PRED that was 

achieved due to the stability of GA in optimizing the fuzzy 

model. [13] Chhabra and Singh (2020b) had presented an 

effort estimation model based on the Fuzzy Inference 

System that could effectively compute the corresponding 

effort multiplier. It was presented that the uncertainty 

related to the intermediate COCOMO cost driver could be 
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addressed with FIS. The work involved the PSO as an 

evolutionary optimization technique used to optimize the 

fuzzy logic-based COCOMO model. The relative error 

matrices associated with the effort estimation using NASA 

and NASA2 datasets were used to validate the proposed 

work. [14] Suresh & Behera (2020) presented a comparative 

analysis of popular machine learning models, namely, SVM, 

RF, NN, KNN, and backpropagation, in improving the 

strength of software effort estimation. The orange data 

mining tool was also integrated into the methodology to 

evaluate the proposed work using the COCOMO’81 dataset 

comprising 63 projects and the Desharnais dataset 

comprising 81 projects. The comparative analysis showed 

that among various ML techniques, the backpropagation 

model achieved the most efficient effort estimation. [15] 

 

Rhmann et al. (2021) presented a software effort 

estimation based on weighted hybrid search algorithms. The 

authors created the weighted ensembles using metaheuristic 

algorithms, namely, black hole optimization, genetic 

algorithm, and firefly algorithm. The evaluation of the 

effectiveness of the ensemble of metaheuristics algorithms 

to improve the ML-based prediction strength of effort 

estimation models was evaluated using different datasets 

present in the PROMISE repository. The R programming 

language using RKEEL and Metaheuristics forms the basis 

of the performed simulation analysis. The simulation 

analysis showed that the metaheuristics-based prediction 

demonstrated more realistic effort estimations. [16] Zakaria 

et al. (2021) had optimized the COCOMO-II model using 

PSO followed by the integration of machine learning 

algorithms, namely, SVM, Linear Regression (LR), and 

Random Forest (RF). The authors performed effort 

estimation using NASA dataset. The comparative analysis 

of the three algorithms showed that PSO with SVM 

outperformed the other variations, namely PSO with LR and 

PSO with RF. It was observed that PSO significantly 

improved the estimation accuracy of the COCOMO model 

by optimizing its parameters using the concept of 

metaheuristic swarm intelligence. The parameters used in 

evaluating the proposed work were correlation accuracy, 

MMRE, and p-value. [17] Ardiansyah et al. (2022) had 

proposed a modified chaotic PSO to overcome the 

shortcoming of the traditional PSO. This improved PSO was 

then implemented using three schemes, namely, chaotic 

inertia mapping, uniform initialization, and stochastic 

learning-based effort estimation models, to evaluate its 

effectiveness over PSO. The detailed analysis showed that 

the proposed chaotic PSO algorithm resulted in uniform 

particle initialization while avoiding getting trapped in local 

optimization solutions evaluated using three methods, 

namely, COCOMO, Agile, and UCP. [18] Kaushik et al. 

(2022) proposed a technique to address the effort estimation 

challenges using combining Whale optimizations with a 

deep belief neural network. Whale optimization is a 

technique inspired by the social behavior of humpback 

whales. The datasets used for the experimental evaluation of 

the proposed work were COCOMO81, MAXWELL, 

CHINA, and NASA93. It was concluded that the 

involvement of the optimization technique resulted in fine-

tuning of the parameters and improved effort estimations 

compared to the deep belief network backpropagation 

model. [19] Ardiansyah et al. (2022) improved the 

performance of the PSO using the case points COCOMO 

model to avoid the trapping problem in local optima. The 

authors worked in an explorative manner and generated the 

solutions considering the inertia weight and software effort 

estimation had been done using the uniform approach. The 

outcomes were expressive and improvised with the 

enhancement of PSO. [20]  

 

The literature survey showed that testing effort 

represents the total time consumed to test all the supplied 

blocks to build a software product. [21] Further, the overall 

computation time also depends upon the OOPM metrics, 

which have significantly improved time by time with the 

contribution of researchers. Numerous researchers have 

integrated COCOMO into their research work due to 

various features. for example, the COCOMO dataset 

developed by NASA gets an upgrade in terms of storage 

elements, and STO has been amended as a valid metric in 

OOPM architecture. [22, 23, 24] The present research work 

aims to compute the testing effort based on OOPM oriented 

model. 

 

3. Methodology 
In addition to estimating the test effort, the proposed 

design is also based on segregating and selecting the OOPM 

metric system and labeling the data based on the similarities 

calculated between project elements. The labeling of the 

selected dataset is performed in the preliminary phase. The 

overall work methodology is described in Figure 1. 
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Fig. 1 Work Methodology 

 
3.1. Data Source 

Two dataset sources have been utilized in the proposed 

work and given similar treatment at each step.  

3.1.1 Kaggle  

The first dataset used to evaluate the proposed work is 

obtained from the global kaggle repository. The dataset 

covers more than 90 projects. It can be accessed at 

Kaggle.com [25], which provides OOPM-based quantitative 

and qualitative attributes covering various aspects of 

software testing.  

3.1.2 Promise 

It is the second dataset that has also been popularly 

used by various researchers in their effort estimation work. 

[26, 27] The dataset comprises matrices from 93 software 

projects labeled with actual effort and can be accessed at 

PROMISE online repository. [28] 

3.2. Model Development 

The design of the proposed model is described in two 

segments in which the first segment performs the data 

labeling. in contrast, the second one is dedicated to the 

training of the system to segregate supplied effort labels. in 

the initial stage, the GA metaheuristics are used to select the 

attribute set from the supplied dataset. The algorithmic 

structure of the implemented GA is given below. 

 

GA Metaheuristics Algorithm 

Input Parameters:  

 → Pre-processed Data 

GA Options → Initialization of GA with basic operators and 

functions like: 

– Population Size (50) // According 

to   

– Selection Function (Sfcn) 

– Mutation Function (Mfcn) 

– Crossover Function (Cfcn) 

 

Output Parameters:  → Index of selected features 

using an algorithm based on their fitness 

 → Selected Features from  

i) Start attribute selection 

ii) for x in the range of  

iii)  

iv)   // Average count of 

non-zero features                                       

v) End – for  

vi) Define the fitness function of GA for selection, 

vii) Compute threshold value as  // having 

more than 75% non-zero features compared to  

Start 

Kaggle 

Dataset 

 

Promise 

Dataset 

Apply 

Metaheuristics 

Genetic 

Algorithm 

Cosine 

Jaccard 

Euclidean 

Load    Datasets Apply Attribute    

         Selection 

For each set, 

compute 

similarity 

assessment 

Apply K-

means 
Clustering  

MSE, SE 
Evaluate 

 

Apply rule set 

Predict test effort class 

Low/Moderate/High 

Stop 
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viii) 
                                             

Where, FS represents the feature set selected for 

evaluation from P-Data 

ix)  = [] // Initialize a empty matrix, 

x) Count = 0 

xi)  // Calculate rows and 

columns of pre-processed data 

xii)  

xiii)  
xiv)  
xv)  // 

e used to store the error value 

xvi) Number of Variables = 1 

xvii) Fit Val = GA (Fitness Function, Number 

of Variables, Options) 

xviii) If (Fit Val ==True) 

  

  

xix)  

xx)  
xxi)  
xxii)    

The optimization offers tremendous problem-solving 

options. The post-selection of the Genetic Solver further 

provides an option to integrate fitness function and all the 

rest of the required attribute constraints required for the 

processing of GA. The proposed work architecture GA is 

implemented by considering the attributes mentioned in 

Table 2 as standards within the development. The Genetic 

Algorithm is responsible for selecting the attributes 

provided from the dataset. The genetic algorithm utilizes the 

mutation behavior of the employed elements in the list. GA 

performs crossover operations to justify the mutation 

behavior. 
Table 2. GA parameters 

Selection Function    

Mutation  Uniform, Mutation value = 

0.05 

Crossover Intermediate, Crossover 

value = 0.08 

 

The algorithm describes how GA selects the attributes 

based on progressions made in the fitness function discussed 

in the pseudo-code. The fitness function takes three 

parameters as input. The first parameter is the propagation 

error generated through mutation and crossover interlink. 

 

  

3.3. Similarity Measurement 

The next step after attribute selection is similarity 

analysis. The similarity measurement helps in settling down 

the row elements more precisely. in addition to 

conventionally used Euclidean distance, Cosine similarity 

and Jaccard Similarity has been used in the present work. 

3.3.1. Cosine Similarity 

The similarity is a measure of alikeness. in cosine 

similarity measurement, vectors compute the similarity 

between two entities. A vector is a quantity that exhibits 

both magnitudes as well as direction. It is computed as the 

dot product of both attributes. By determining the cosine 

similarity, the author will effectively try to find the angle 

cosine between the two objects, as shown in the following 

equation.  

     (1) 

 

Fig. 2 Cosine Similarity 

 
Figure 2 illustrates the similarity measurement using 

vectors. It is well-known that cosine0° is 1, and the vectors 

will have the highest similarity. Further, the cosine90° has a 

similarity of 0, which means that the two vectors are 

independent of their magnitude and have a similarity of-1.  

3.3.2. Jaccard Similarity 

Jaccard similarity is measured based on the common 

and non-common elements of a dataset value. The Jaccard 

similarity of two subsequent rows can be computed using 

the following relationship where rows are 

represented . 

 

   (2) 

 
The combined similarity generation is performed using 

the following algorithm.  

 

A 

B 

X 

Z 

dist (A, B) 

Cos Ɵ 

Y 
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Similarity Measurement Algorithm 

Input: dataset //attributes selected dataset 

Output:  //cosine similarity 

  //Jaccard similarity 

1. Initialize empty matrices  

2.  

3.  

4. Initialize similarity count variable as     

5.  // Foreach row in the 

dataset // 

6. ; // Fetching current 

row// 

7.   // Initiating 

another loop that starts from 1 but goes till the 

value of i.// 

8. k2= |;   

9. // Evaluate cosine similarity  

10. k2= |;   

11. ;0 

12. ; 

13. 1; 

14.  [ ]=k2; 

15. ; 

16.  

17.  

18. Return ,  

The similarity measurement is performed using the 

above algorithm on both Kaggle and Promise datasets. The 

output of this step is graphically illustrated in Figure 2.   

 
Fig. 3(a) Cosine Similarity for Kaggle dataset                                          Fig. 3(b) Jaccard Similarity for Kaggle dataset 

 
Fig. 3 (c) Euclidian distance Similarity for Kaggle dataset.  
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In addition to the Kaggle dataset, the similarity is also computed for the PROMISE dataset. It is to be noted that there are 

97 project records in the PROMISE dataset, as illustrated by the similarity analysis graphs shown in Figure 4.  

 
Fig. 4 (a) Cosine Similarity for Promise dataset                               Fig. 4(b) Jaccard Similarity for Promise dataset 

 
Fig. 4 (c) Euclidian distance Similarity for Promise dataset 

 

The data is passed to the k-means algorithm containing 

all these features, namely Cosine similarity, Jaccard 

Similarity, and Euclidian distance. The k-means does not 

opt for the labeling of the data, and therefore, statistical 

architecture is integrated into the proposed work for the 

purpose. The approaches used to design the if-then rule set 

using Mean Squared Error (MSE) and Standard Error (SE). 

3.4. A rule set design based on Validation Parameters 

3.4.1 Mean Squared Error (MSE) 

It is defined as the mean of the squares of the errors 

incorporated in an estimation work. Mathematically, it can 

be represented by the following equation in which  a 

number of predictions are performed on a sample 

comprising of data points.  
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 (3) 

3.4.2. Standard Error (SE) 

It is a statistical term that defines accuracy associated 

with the sample distribution representing a population using 

standard deviation. It is computed using the following 

relationship for a dataset comprising a number of samples 

and as standard deviation. 

 

      (4) 

 

 

 
Fig. 5 Fuzzy inference engine with inputs, outputs, and membership functions 

 

The process of statistical analysis has been performed 

on both datasets, namely, Kaggle and PROMISE datasets. 

Following this, MSE and SE are passed to the fuzzy 

inference rule engine to create a ruleset for labeling the 

clusters. The proposed work has opted Mamdani inference 

engine due to its lower computation complexity. Figure 5 

illustrates the sample, MSE, and SE as input and test effort 

classes predicted as low, moderate, and high classes. 
 

3.5. Ruleset  

The membership function described in Figure 5 is used 

to design 6 rule sets used for the creation and propagation of 

the model.  
Table. 3 Rule Sets 

MSE SE Test Effort Class 

Low Low Low 

Low Moderate Low 

Moderate Moderate Moderate 

High Moderate High 

High High High 

Moderate High High  

The validated data from each class category is passed to 

the attribute set selection to the Cuckoo-Search algorithm. 

Cuckoo search is a Swarm Intelligence (SI) algorithm 

architecture that uses a Levy flight mechanism for the 

processing. The selected data from the Cuckoo Search 

Algorithm is passed to propagation-based learning behavior, 

viz. Feed Forward Back Propagation Neural Network 

(FFBPNN). The ordinal measures of FFBPNN are listed as 

follows in Table 4. 
 

Table. 4 The propagation architecture 

Propagation model Levenberg  

Propagation Type  Linear/Polyspace  

Number of propagation 

layers  

5-15 depending upon the size 

of the data 

Selection method  Gradient-based  

Validation type Mean Squared Error (MSE) 
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FFBPNN incorporates regression-oriented learning for 

training and classification purposes. The categorization rule 

is formed so that the testing effort would be below if the 

classified ground truth label meets the test label. Else the 

testing effort would be high. As explained even earlier, there 

is also one more class called moderate testing effort. It 

occurs when the difference between the classified target 

class is either not too far from the original ground-truth 

value or not too close to the categorization of other classes. 

The FFBPNN performs three levels of regression, namely 

the R for training, R-for testing, R-for validation, and R-

overall. 

 

4. Results and Discussion 
The results are evaluated based on the data division in 

the separation mechanism containing two separation 

windows, namely 70-30 ratio and 80-20 ratio. in the first 

segment, 70% of the data will be considered training data, 

and the rest of the 30% data will be considered test data. in a 

similar proceeding, 80% of the data would be considered the 

training data for the second window, and the rest of the 20% 

data will be considered the test data. The results have been 

evaluated based on the following parameters.  

a) True positive rate: The total number of truly identified 

objects against supplied ground-truth value  

b) False positive rate: It is the total number of false 

identified objects against supplied ground truth value. 

c) Accuracy: The arithmetic means of the true positive rate 

for all listed data labels. 

MATLAB 2016, containing a Neural Network toolbox, 

has been used to train the system. The training model is 

illustrated in Figure 6(a). for this instance, 11 features have 

been selected using GA, and each selected feature forms a 

feature set when combined with other selected features. 25 

layers are passed, and the Levenberg architecture propagates 

the data through the validated gradient policy. The gradient 

is also bounded with epochs which are in total supplied to 

1000 iterations. If the gradient is not attained within 1000 

simulation iterations, the training will stop and produce the 

trained architecture. A total of 6 validation for each 

propagation layer is imposed on the training mechanism. It 

is necessary to overcome at least 3 validations. As it is clear 

from Figure 6(a), 5 out of 6 validations are executed 

successfully to produce the training architecture. Figure 6(b) 

represents the regression architecture illustrated earlier in 

the same section. 

 

 
Fig. 6(a) The Neural Training                                      

The value of R changes with the changes in the instance 

values. The formation of GA and Cuckoo Search also 

affected the overall evaluation of the regression values. The 

rest of the evaluation parameters are listed in Tables 5 and 

6. 
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Fig. 6(b) The regression analysis 

 

As evident from Tables 5 and 6, the learning rate for 

more projects is comparatively high compared to a low 

number of projects. to append the data, 90 projects have 

been listed from the PROMICE data set, whereas the rest of 

the projects have been listed from Kaggle. The maximum 

TPR for the proposed work is .95221695 for 1000 projects 

for 80-20 distribution. The same data is then passed to 70-

30 distribution, and the results are slightly less but still high 

compared to the other state of art techniques.

 

Table.  5  The 70-30 distribution result 

Total 

Number of 

Projects 

TPR 

Proposed 

TPR Without 

GA 

TPR 

Varinder et 

al. [20] 

FPR 

Proposed 

FPR without 

GA 

FPR 

Varinder et 

al. [20] 

10 0.902212 0.76614117 0.81549276 0.097788 0.23385883 0.18450724 

20 0.90734326 0.76927859 0.81849662 0.09265674 0.23072141 0.18150338 

30 0.90968826 0.77037303 0.82236947 0.09031174 0.22962697 0.17763053 

40 0.91056093 0.77336635 0.82285533 0.08943907 0.22663365 0.17714467 

50 0.91250108 0.77603793 0.82606708 0.08749892 0.22396207 0.17393292 

60 0.91624772 0.7786901 0.82897132 0.08375228 0.2213099 0.17102868 

70 0.91867988 0.78046197 0.83141249 0.08132012 0.21953803 0.16858751 
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80 0.92160854 0.78351338 0.83312001 0.07839146 0.21648662 0.16687999 

90 0.92345481 0.7865408 0.83560802 0.07654519 0.2134592 0.16439198 

100 0.93221 0.81205268 0.86019063 0.06779 0.18794732 0.13980937 

200 0.9346799 0.83702165 0.88581887 0.0653201 0.16297835 0.11418113 

300 0.9399875 0.86041754 0.90217016 0.0600125 0.13958246 0.09782984 

400 0.94112 0.88629011 0.91001 0.05888 0.11370989 0.08999 

500 0.94567 0.8911 0.921114 0.05433 0.1089 0.078886 

700 0.943321 0.8987999 0.922449 0.056679 0.1012001 0.077551 

1000 0.94221 0.90111 0.92788 0.05779 0.09889 0.07212 

 

Table 5 shows the TPR and FPR computed using the 

70:30 ratio. The analysis results show that the TPR of the 

proposed model increases with an increase in the number of 

projects, and FPR decreases. It is seen that TPR and FPR for 

Varinder et al. [20] show 0.81 and 0.18 respectively for 20 

projects and 0.76 and 0.23, using the GA. However, the 

proposed model shows a TPR of about 0.90 and an FPR of 

0.09. Similarly, TPR for 90 projects increases to 0.92, and 

that of existing techniques and GA is 0.83 and 0.78, 

respectively. The overall TPR and FPR for 1000 projects are 

0.94 and 0.05 using the proposed approach and 0.92 and 

0.07, respectively, using the Varinder et al. [20]. Thus, the 

proposed technique shows better results in comparison to 

existing techniques. 
 

Table. 6 The 80-20 distribution result 

Total 

Number of 

Projects 

TPR 

Proposed 

TPR Without 

GA 

TPR 

Varinder et 

al. [20] 

FPR 

Proposed 

FPR without 

GA 

FPR 

Varinder [20] 

10 0.90325093 0.76815558 0.81661566 0.09674907 0.23184442 0.18338434 

20 0.90944227 0.77021591 0.81902469 0.09055773 0.22978409 0.18097531 

30 0.91276608 0.77506919 0.82130693 0.08723392 0.22493081 0.17869307 

40 0.91614222 0.77896306 0.82374494 0.08385778 0.22103694 0.17625506 

50 0.91961234 0.78184222 0.82596965 0.08038766 0.21815778 0.17403035 

60 0.92116638 0.78425299 0.82841232 0.07883362 0.21574701 0.17158768 

70 0.92650087 0.78939136 0.83274246 0.07349913 0.21060864 0.16725754 

80 0.9299947 0.79149856 0.83457478 0.0700053 0.20850144 0.16542522 

90 0.93278673 0.79503425 0.83755162 0.06721327 0.20496575 0.16244838 

100 0.93321592 0.82151814 0.86264824 0.06678408 0.17848186 0.13735176 

200 0.93668071 0.8560542 0.88751949 0.06331929 0.1439458 0.11248051 

300 0.94299042 0.86537892 0.90388464 0.05700958 0.13462108 0.09611536 

400 0.94512834 0.89014087 0.91401356 0.05487166 0.10985913 0.08598644 

500 0.95067387 0.89610207 0.92611913 0.04932613 0.10389793 0.07388087 

700 0.95032782 0.9058004 0.92945552 0.04967218 0.0941996 0.07054448 

1000 0.95221695 0.91111535 0.93788335 0.04778305 0.08888465 0.06211665 
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Table 6 shows the TPR and FPR computed using the 

80:20 ratio. The analysis results show that the TPR of the 

proposed model increases with an increase in the number of 

projects, and FPR decreases. It is seen that TPR and FPR for  

 

Varinder et al. [20] show 0.86 and 0.17, respectively, for 

100 projects and 0.82 and 0.066, using the GA. However, 

the proposed model shows a TPR of about 0.93 and an FPR 

of 0.06. 

 
 Fig. 7 TPR for different test effort class 

Similarly, TPR for 400 projects increases to 0.94, and 

that of existing techniques and GA is 0.91 and 0.89, 

respectively. The overall TPR and FPR for 1000 projects are 

0.95 and 0.04, respectively, using the proposed approach 

and 0.93 and 0.06 using the Varinder et al. [20]. Thus, the 

proposed technique shows better results in comparison to 

existing techniques.  

Figure 7 shows the Improvement analysis for TPR of 

the proposed solution, which is compared when the Genetic 

Algorithm is not directly applied. The proposed algorithm 

architecture outcast the existing approach by 6-8%. This is 

due to the sophisticated architecture presented by the 

selection and propagation mechanisms. The propagation 

mechanism filters the data, and the cuckoo helps organize 

the categorized data. Looking at the overall accuracy, Fig. 9 

represents the bar representation for the accuracies attained 

against each proposed class. 

Figure 8 shows the improvement analysis for FPR using 

70:30 distribution and 80:20 distributions. A comparison 

with GA has been presented for the effectiveness of the 

proposed approach. The improvement analysis graph shows 

that the proposed approach's average value is 0.07 and 0.17 

without GA. The analysis results show that the proposed 

technique using 80:20 and 70:30 has been improved by 6-

7% compared to without GA only. However, analysis 

results compared to Varinder et al. [20] are around 5 -6% 

using for 80:20 and 70:30 distribution. 

 

 
Fig. 8 FPR for different test effort class 

 

 
Fig. 9 Accuracy for different test effort class 

 

As it is clear from Figure 9 and evident from the result 

in Table 5 and Table 6, the proposed algorithm architecture 

has a higher overall accuracy that lies between 91-93% 

based on the training and test data samples, whereas if it is 

passed without utilizing the selection algorithm, the 

accuracy in test effort calculation or estimation will lie 

under 88-89 % and utilizing Varinder et al. architecture, the 

accuracy increases as compared to without GA architecture 

but stays behind the proposed algorithm architecture. The 

accuracy has been evaluated for all the classes listed in the 

proposed methodology section. 
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5. Conclusion 
Test effort estimation is a construct that can be 

evaluated using a lot of software-oriented factors. This 

article illustrates the evaluation of the test effort using other 

effort measurement architecture. The proposed algorithm 

architecture has utilized a Genetic Algorithm to process and 

select the dataset, followed by the attribute set selection 

method utilizing Cuckoo Search. The proposed algorithm 

has divided the entire data into three categories, and 

simulation behaviors have been tested against two data 

separation segments, namely 70-30 and 80-20. The 

separated classes were tested, and based on the rule set and 

propagation mechanism, the classes were classified. The 

proposed algorithm uses Levenberg's Feed Forward 

Propagation mechanism for the propagation mechanism, 

which is a gradient-based architecture. The proposed 

algorithm is evaluated for three parameters, namely the True 

Positive Rate, False Positive Rate, and Overall Accuracy. 

Due to the sophisticated selection architecture of the 

proposed algorithm, the proposed algorithm architecture 

attains maximum accuracy of 93%, whereas for a similar set 

of input parameters, the other state of art mechanisms lags 

by 3-5%, which could be stated as a significant 

improvement. 
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