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Abstract - Internet of Things (IoT) plays a vital role in enhancing crop quality and productivity in the agricultural sector. 

Accurate and earlier detection of grape leaf diseases is important to control the spreading of diseases and safeguard the 

healthier growth of grape productivity. Since the traditional way of visual inspection is a difficult and laborious process, 

automated tools using computer vision and artificial intelligence (AI) approaches are essential. At the same time, the effective 

selection of hyperparameter values results in improved classification results. This study introduces a novel Equilibrium 

Optimizer with a Deep Convolutional Neural Network-based SqueezeNet Model for Grape Leaf Disease Classification 

(EOSN-GLDC) model in an IoT environment. The proposed EOSN-GLDC model focuses on recognizing and classifying grape 

leaf diseases. The presented EOSN-GLDC model initially employs the median filtering (MF) approach to remove noise. 

Followed by the EO algorithm with the SqueezeNet model is utilized as a feature extractor where the hyperparameters 

involved are adjusted by utilizing the EO algorithm. Moreover, an extreme learning machine (ELM) classifier is applied for 

allocating proper class labels to the input images. To demonstrate the improved performance of the EOSN-GLDC model, a 

comprehensive experimental analysis is made using a benchmark dataset, and the results indicate the betterment of the EOSN-

GLDC model. 

Keywords - Computer vision, Deep learning, Grape leaf diseases, Metaheuristics, Plant diseases. 

1. Introduction  
      In agriculture, the Internet of Things (IoT) permits 

gadgets across a ranch to gauge a wide range of information 

from a distance and give this data to the landowner 

continuously [1]. IOT gadgets can accumulate data like soil 

dampness, fertilizer application, dam levels, domesticated 

animals' wellbeing, and screen wall vehicles and weather. 

Indian Economy is profoundly subject to the agrarian 

efficiency of the country. Grape is an exceptionally business 

product of India. It can undoubtedly be filled in tropical, sub-

tropical, and calm climatic districts. India has various kinds 

of environment and soil in various pieces of the country [2]. 

This makes grapevines a significant vegetative proliferated 

crop with high financial significance. The grape plant will 

cause unfortunate yield and development when impacted by 

diseases. The diseases are expected to the viral, microscopic 

organisms, and growths contaminations brought about by 

insects, rust and nematodes, and so forth [3, 4]. The ranchers 

decide on these diseases through their experience or with the 

assistance of specialists through unaided eye perception, 

which isn't a precise and tedious interaction [5]. Fig. 1 

demonstrates the process of IoT in agriculture. 

 
Fig. 1 Role of IoT in agriculture  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Early discovery of disease is then a lot of required in the 

agribusiness and agriculture field to build the yield of the 

harvests [6]. A framework is proposed that can recognize and 

distinguish diseases in the leaves of the grape plants. 

Customarily, disease identification was done physically with 

the assistance of human specialists. For the most part, this 

approach is tedious, less practical, and more inclined to 

blunder [7, 8]. With the development of shrewd agribusiness 

and cultivating, more creative arrangements are expected to 

help before the location and grouping of assorted grape 

diseases and peats and the exact spreading of pesticides. 

Ongoing advancements in computerized reasoning and PC 

vision have tracked down different applications in savvy 

farming and grapevine [9]. There is a solid interest in wise 

disease discovery and grouping in future savvy agribusiness 

[10]. Computerized reasoning methods, particularly deep 

learning, empower the natural location and order of assorted 

grape diseases and vermin with a higher exactness rate. 

Liu et al. [11] proposed an effective grape leaf disease 

classification model using an improved CNN model. The 

Inception network is utilized to enhance the results of the 

feature extractor, and a dense connectivity policy is 

presented to reinforce the exhibition of complex feature 

extraction. In [12], the mixture of many CNNs permits the 

projected model to extract extra complex features. The 

delegate capability of the United Model has, in this way, 

been upgraded. The United Model was assessed on the Plant 

Village dataset and contrasted with other best-in-class CNN 

models. In [13], a grape leaf disease detection network 

(GLDDN) is presented, using a dual attention mechanism to 

evaluate, detect, and classify features. The experimental 

process is carried out during the validation process using a 

benchmark dataset to confirm the GLDDN model is 

effectively suitable compared to other models as it detects 

the affected areas. In [14], a united CNN model depending 

upon the DL concepts is presented. The presented CNN 

model can differentiate leaves with general grape leaf 

illnesses. The inclusion of many CNN allows the presented 

model to extract distinct features.  

Here a novel Equilibrium Optimizer with Deep 

Convolutional Neural Network is used based on SqueezeNet 

Model for Grape Leaf Disease Classification (EOSN-GLDC) 

model in an IoT environment. This model employs the 

median filtering (MF) approach to remove noise. The EO 

algorithm with the SqueezeNet model is utilized as a feature 

extractor where the hyperparameters are adjusted by utilizing 

of EO approach. Moreover, an extreme learning machine 

(ELM) classifier is applied for allocating proper class labels 

to the input images. To demonstrate the improved 

performance of the EOSN-GLDC technique, a 

comprehensive experimental analysis is made using a 

benchmark dataset, and the outcomes indicate the betterment 

of the EOSN-GLDC model. 

2. The Proposed Model 
In this study, a new EOSN-GLDC technique was 

developed to detect and classify grape leaf diseases in an IoT 

environment. The presented EOSN-GLDC model exploited 

the SqueezeNet model to extract the features where its 

hyperparameters are adjusted. Finally, an ELM classifier is 

applied to allocate proper class labels to the input images. 

2.1. Feature Extraction using SqueezeNet 

Once the input image is pre-processed, the SqueezeNet 

model is exploited to produce deep features. SqueezeNet is a 

convolution network that executes optimal efficacy than 

AlexNet with 50x lesser parameters [15]. It contains 15 

layers with 5 various layers as 8 fire layers, 1 output layer 

softmax, 2 convolution layers, 3 max-pooling layers, and 1 

global average pooling layer. In K×K, notations suggest the 

receptive field size of filters, 's' refers to the stride size, and l 

denotes the length of feature maps (FM), respectively. An 

input of network contains 227×227 dimensional with RGB 

channels. Fig. 2 illustrates the framework of the SqueezeNet 

Model. 

 
Fig. 2 Architecture of SqueezeNet Model 

The generalized input image with convolution as well as 

max-pooling layers is implemented. The convolution layer 

obtained convoluted among weight and lesser region from 

the input volume, with 3 × 3 kernels. Every convolution 

layer applies an elementwise activation drive as a positive 

part of its argument. The resultant tensor scale and input of 

fires are dependent upon everyone. The squeeze phase 

employs the filtering size of 1 × 1. However, the progress 
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employs the filtering size 1 × 1 and 3 × 3. Primarily, an 

input tensor 𝐻 × 𝑊 × 𝐶 allows the squeeze, and the count 

of convolution layers corresponds to 𝐶/4 of the amount of 

input tensor channels. 

Finally, the 𝑓{𝑦} of squeeze function with kernel 𝑤 is 

expressed as: 

𝑓{𝑦} = ∑ ∑𝑤𝑐
𝑓

𝑐

𝑐=1

𝐹𝑀

𝑓𝑚1=1

𝑥𝑐
𝑓𝑚1

                                (1) 

2.2. EO based Hyperparameter Optimization 

      Then, the EO algorithm is applied to fine-tune the 

hyperparameters involved in the SqueezeNet model. EO 

studies an active mass balance procedure that controls 

volume. The arbitrary population was initialized by the 

standard distribution depending on the dimensional and 

amount of particles as follows [16, 17]: 

𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐶min + 𝑟𝑎𝑛𝑑𝑖(𝐶max − 𝐶min)𝑖

= 1,2, … , 𝑛                                    (2) 

Whereas 𝐶𝑚𝑖𝑛 an+d 𝐶𝑚𝑎𝑥 indicates the lower and upper 

limits, 𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 characterizes the vector 𝑖𝑡ℎ particle 𝑛 

describes the size of the population, and 𝑟𝑎𝑛𝑑𝑖 indicates the 

arbitrary value within [0,1]. The exponential term 𝐹 

demonstrates that it assists EO in attaining the suitable 

balance between intensification and diversification. 𝜆 is an 

arbitrary number within [0,1] to control the turn-over speed 

from the real control volume. 

�⃑� = 𝑒−�⃑⃑⃑�(𝑡−𝑡0)                                                      (3) 

In which 𝑡 is represented by the function of the quantity of 

iteration (𝐼𝑡𝑒𝑟) as follows: 

𝑡 = (1 −
𝐼𝑡𝑒𝑟

Max−𝑖𝑡𝑒𝑟
) (𝑎2

𝐼𝑡𝑒𝑟

Max−𝑖𝑡𝑒𝑟
)              (4) 

Now, 𝐼𝑡𝑒𝑟 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, Max_𝑖𝑡𝑒𝑟 = 

maximal iteration, and variable 𝑎2 were applied to control 

the exploitation ability of 𝐸𝑂. To ensure convergence and 

improve local along with the global searching ability of 

method, expressed in the following: 

𝑡0⃑⃑⃑⃑ =
1

𝜆
𝑙𝑛 (−𝑎1𝑠𝑖𝑔𝑛(𝑟 − 0.5) [1 − 𝑒−�⃑⃑⃑�𝑡]) + 𝑡 (5) 

Whereas 𝑎1 and 𝑎2 are employed to manage local along 

with the global searching ability of the EO method. The term 

sign (𝑟 − 0.5) is accountable near the explorations route 

and exploitations. In 𝐸𝑂, the 𝑎1 and 𝑎2 values are 2 and 1. 

By replacing Eq. (5) in Eq. (3), the term is transformed into: 

�⃑� = 𝑎1𝑠𝑖𝑔𝑛(𝑟 − 0.5) [𝑒−�⃑⃑⃑�𝑡 − 1]                      (6) 

The generation rate in the EO method was employed to 

improve exploitation, i.e., applied to the function of time. 

The 1st order exponential decay process from the technique 

of generation rate of the multi-purpose method is defined by 

the following equation: 

�⃑� = �⃑�0𝑒
−�⃑⃑�(𝑡−𝑡0)                                                    (7) 

In which 𝐺0 = primary value, 𝑘 = decay variables. 

At last, the generation rate appearance considered 𝑘 = 𝜆 

was defined in the following: 

�⃑� = �⃑�0𝑒
−�⃑⃑⃑�(𝑡−𝑡0) = �⃑�0�⃑�0                                        (8) 

Here, 𝐺0 is evaluated by the following equation: 

�⃑�0 = 𝐺𝐶𝑃(𝐶𝑒𝑞 − 𝜆𝐶)                                           (9) 

𝐺𝐶𝑃 = {
0.5𝑟1, 𝑟2 ≥ 0
0, 𝑟2 < 0

                                    (10) 

In which  r1 and 𝑟2 represent the random number within 

[0,1], 𝐺𝐶𝑃 represents the variable control generation rate. 

With the formula mentioned above, the upgrade equation of 

concentration is described by the following: 

𝐶 = 𝐶𝑒𝑞 + (𝐶 − 𝐶𝑒𝑞)�⃑� +
�⃑�

𝜆𝑉
(1 − �⃑�)            (11) 

The upgraded formula comprises: the initial term is 

equilibrium concentration; the next term is applied for global 

searching. The last term is answerable for local searching to 

achieve an accurate solution. 

2.3. ELM based classification 

     In the final stage, the ELM model was utilized to assign 

proper class labels [18]. ELM is developed to prevent the 

iteration training process and increase the performance 

generality. The ELM encompasses 𝑛, 𝑙, 𝑎𝑛𝑑 𝑚 input, 

hidden, and 𝑚 output layer neurons. Initially, consider the 

trained instance {𝑋, Y} = {𝑥𝑖 , 𝑦i} (𝑖 = 1,2, … , 𝑄), and 

input feature 𝑋 = [𝑥𝑖1𝑥𝑖2 …𝑥𝑖𝑄] and outcome matrix 

y = [𝑦j1 𝑦j2 …𝑦jQ] comprises the trained samples, while 

the matrices 𝑋 and Y can be determined as follows: 
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                  𝑋 = [

𝑥11 𝑥12
⋯ 𝑥1𝑄

𝑥21 𝑥22
⋯ 𝑥21

⋮
𝑥𝑛1

⋮
𝑥𝑛2

⋱
⋯

⋮
𝑥𝑛𝑄

],          (12) 

 

𝑌 = [

𝑦11 𝑦12
⋯ 𝑦𝑚𝑄

𝑦21 𝑦22
⋯ 𝑦𝑚𝑄

⋮
𝑦𝑚1

⋮
𝑦𝑚2

⋱
⋯

⋮
𝑦𝑚𝑄

] , 

The parameters 𝑛 and 𝑚 represent the dimension of the 

input and output matrices. Then, the ELM fixed the weight 

among the hidden and input layers. 

𝑤 = [

𝑤11 𝑤12
⋯ 𝑤1𝑛

𝑤21 𝑤22
⋯ 𝑤2𝑛

⋮
𝑤𝑙1

⋮
𝑤𝑙2

⋱
⋯

⋮
𝑤𝑙𝑛

],                            (13) 

Now 𝑤ij signifies the weights among the 𝑗th and 𝑖th input 

and hidden layers. Next, the ELM considered the weights 

amongst the hidden and output layers as follows 

𝛽 = [

𝛽11 𝛽12 ⋯ 𝛽1𝑚

𝛽21 𝛽22 ⋯ 𝛽2𝑚

⋮
𝛽𝑙1

⋮
𝛽𝑙2

⋱
⋯

⋮
𝛽𝑙𝑚

],                               (14) 

Here 𝛽j𝑘  indicates the weights amongst the 𝑗th and 𝑘th 

hidden and output layers. Subsequently, the ELM executes 

the bias of hidden layers as follows: 

𝐵 = [𝑏1 𝑏2 …𝑏n]
𝑇                                                (15) 

Next, the ELM chooses the network activation function 

g(x), and the resulting matrix 𝑇 is associated with the 

following. 

𝑇 = [t1, t2, … , tQ]
𝑚×Q

.                                         (16) 

The column vector of the resulting matrix 𝑇 is associated by 

the following: 

𝑡𝑗 = [

𝑡1𝑗

𝑡2𝑗

⋮
𝑡𝑚𝑗

] =

[
 
 
 
 
 
 
 
 
 
∑𝛽𝑖1𝑔(𝑤𝑖𝑥𝑗 + 𝑏𝑖)

𝑙

𝑖=1

∑𝛽𝑖2𝑔(𝑤𝑖𝑥𝑗 + 𝑏𝑖)

𝑙

𝑖=1

⋮

∑𝛽𝑖𝑚𝑔(𝑤𝑖𝑥𝑗 + 𝑏𝑖)

𝑙

𝑖=1 ]
 
 
 
 
 
 
 
 
 

 (𝑗

= 1,2,3, …𝑄).                             (17) 

Considering the above two equations, it turns out to be 

𝐻𝛽 = 𝑇′,                                                                 (18) 

Now 𝑇′ denotes the transposition of 𝑇 and 𝐻 represents the 

outcomes of the hidden state.  

3. Performance Validation 
This section presents a comprehensive simulation 

analysis of the proposed model using a benchmark Plant 

village dataset from the Kaggle repository [19]. The dataset 

encompasses four classes of black rot (BR), black measles 

(BMEA), leaf blight (LB), and normal, with 300 images 

each. A few sample images are illustrated in Fig. 3. 

 
Fig. 3 Sample Images 
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Fig. 4 Confusion matrix of EOSN-GLDC technique  

Fig. 4 implies a set of three confusion matrices 

generated by the EOSN-GLDC model on the test dataset. On 

the entire dataset, the EOSN-GLDC model has recognized 

291 images under BR, 297 images under BMEA, 297 images 

under LB, and 298 images under Normal. Following 70% of 

the training dataset, the EOSN-GLDC approach has 

recognized 195 images under BR, 204 images under BMEA, 

216 images under LB, and 213 images under Normal. In 

addition, on the 30% of the testing dataset, the EOSN-GLDC 

methodology has recognized 96 images under BR, 93 images 

under BMEA, 81 images under LB, and 85 images under 

Normal. 

Table 1 exhibits detailed classifier results of the EOSN-

GLDC model on the test dataset under distinct class labels. 

The experimental values in the table implied that the EOSN-

GLDC model had resulted in ineffectual outcomes under 

every class.  
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Table 1. Result analysis of EOSN-GLDC technique with distinct 

measures and datasets 

Class 

Labels 

Accura

cy 

Precisi

on 

Reca

ll 

Specific

ity 

F-

Score 

Entire Dataset 

Black Rot 99.00 98.98 
97.0

0 
99.67 97.98 

Black 

Measles 
99.67 99.66 

99.0

0 
99.89 99.33 

Leaf Blight 98.92 96.74 
99.0

0 
98.89 97.86 

Normal 99.58 99.00 
99.3

3 
99.67 99.17 

Average 99.29 98.60 
98.5

8 
99.53 98.58 

Training (70%) 

Black Rot 99.17 99.49 
97.0

1 
99.84 98.24 

Black 

Measles 
99.52 99.51 

98.5

5 
99.84 99.03 

Leaf Blight 98.81 96.00 
99.5

4 
98.56 97.74 

Normal 99.64 99.53 
99.0

7 
99.84 99.30 

Average 99.29 98.63 
98.5

4 
99.52 98.58 

Testing (30%) 

Black Rot 98.61 97.96 
96.9

7 
99.23 97.46 

Black 

Measles 
100.00 100.00 

100.

00 
100.00 

100.0

0 

Leaf Blight 99.17 98.78 
97.5

9 
99.64 98.18 

Normal 99.44 97.70 
100.

00 
99.27 98.84 

Average 99.31 98.61 
98.6

4 
99.54 98.62 

 

Fig. 5 inspects comprehensive grape leaf disease 

detection outcomes of the EOSN-GLDC model on the entire 

dataset. The proposed EOSN-GLDC model has gained 

effective performance under each class. For instance, the 

proposed EOSN-GLDC model has identified BR class with 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒 of 

99.00%, 98.98%, 97%, 99.67%, and 97.98%, respectively. 

The proposed EOSN-GLDC algorithm has identified BMEA 

class with 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒 

of 99.67%, 99.66%, 99%, 99.89%, and 99.33%, 

correspondingly. Moreover, the proposed EOSN-GLDC 

technique has identified the LB class with 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 

𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒 of 98.92%, 96.74%, 

99%, 98.89%, and 97.86%, respectively. Eventually, the 

proposed EOSN-GLDC system has identified Normal classes 

with 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒s of 

99.58%, 99%, 99.33%, 99.67%, and 99.17%, 

correspondingly. 

 
Fig. 5 Result analysis of the EOSN-GLDC technique on the entire 

dataset 

Fig. 6 demonstrates comprehensive grape leaf disease 

detection outcomes of the EOSN-GLDC technique on 70% 

of the training dataset. The proposed EOSN-GLDC approach 

has gained effective performance under each class. For 

instance, the proposed EOSN-GLDC model has identified 

BR class with 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 

𝐹−𝑠𝑐𝑜𝑟𝑒 of 99.17%, 99.49%, 97.01%, 99.84%, and 98.24% 

correspondingly. Likewise, the proposed EOSN-GLDC 

technique has identified BMEA class with 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒 of 99.52%, 99.51%, 98.55%, 

99.84%, and 99.03%, correspondingly. Additionally, the 

proposed EOSN-GLDC model has identified the LB class 

with 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒s of 

98.81%, 96%, 99.54%, 98.56%, and 97.74% 

correspondingly. At last, the proposed EOSN-GLDC 

approach has identified the Normal class with 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒 of 99.64%, 99.53%, 

99.07%, 99.84%, and 99.30%, respectively. 
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Fig. 6 Result analysis of EOSN-GLDC technique on 70% of the training 

dataset 

Fig. 7 examines comprehensive grape leaf disease 

detection outcomes of the EOSN-GLDC model on 30% of 

the testing dataset. The proposed EOSN-GLDC model has 

gained effective performance under each class. For instance, 

the proposed EOSN-GLDC model has identified BR class 

with 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒 of 

98.61%, 97.96%, 96.97%, 99.23%, and 97.46% 

correspondingly. Also, the proposed EOSN-GLDC algorithm 

has identified BMEA class with 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 

𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒 of 100%, 100%, 100%, 100%, and 

100% correspondingly. Furthermore, the proposed EOSN-

GLDC method has identified the LB class with 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒s of 99.17%, 98.78%, 

97.59%, 99.64%, and 98.18%, respectively. Finally, the 

proposed EOSN-GLDC approach has identified the Normal 

class with 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 𝑠𝑝𝑒𝑐𝑦, and 𝐹−𝑠𝑐𝑜𝑟𝑒s 

of 99.44%, 97.70%, 100%, 99.27%, and 98.84%, 

correspondingly. 

 
Fig. 7 Result analysis of EOSN-GLDC technique on 30% testing dataset 

 

Fig. 8 Accuracy graph analysis of EOSN-GLDC technique  

Fig. 8 illustrates the training and validation accuracy 

inspection of the EOSN-GLDC approach on the applied 

dataset. The figure conveyed that the EOSN-GLDC model 

has offered maximum training/validation accuracy in the 

classification process. 

Next, Fig. 9 exemplifies the training and validation loss 

inspection of the EOSN-GLDC model on the applied dataset. 

The figure revealed that the EOSN-GLDC model had offered 

reduced training/accuracy loss in the classification process of 

test data. 
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Fig. 9 Loss graph analysis of EOSN-GLDC technique  

To exhibit the better outcomes of the EOSN-GLDC 

model, a comparative examination with recent methods is 

made in Table 2 and Fig. 10 [20]. The experimental values 

indicated that the GA-SVM, GA-BPN, and GA-Fuzzy 

models had showcased the least performance with 

𝑎 𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 81.16%, 81.38%, and 82.57%, 

respectively. The ResNet18 model has offered reasonable 

performance with 𝑎 𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 98.90%, 𝑝𝑟𝑒𝑐𝑛 of 

97.25%, and 𝑟𝑒𝑐𝑎𝑙  of 98.12%. In line with this, the VGG16 

model has accomplished considerable outcomes with 

𝑡ℎ𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 98.50%, 𝑝𝑟𝑒𝑐𝑛 of 98.52%, and 𝑟𝑒𝑐𝑎𝑙  

of 98.21%. However, the EOSN-GLDC model has achieved 

maximum 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 99.31%, 𝑝𝑟𝑒𝑐𝑛 of 98.61%, and 

𝑟𝑒𝑐𝑎𝑙  of 98.64%. From the detailed results and discussion, 

it can be clear that the EOSN-GLDC model has resulted in 

maximum performance over the other methods.  

Table 2. Comparative analysis of EOSN-GLDC technique with existing 

algorithms   

Methods Accuracy Precision Recall 

GA-SVM 81.16 81.07 80.74 

GA-BPN 81.38 80.95 80.10 

GA-Fuzzy 82.57 83.98 82.89 

ResNet18 98.90 97.25 98.12 

VGG16 98.50 98.52 98.21 

EOSN-GLDC 99.31 98.61 98.64 

 

 
Fig. 10 Comparative analysis of EOSN-GLDC technique with existing 

algorithms 

Therefore, the EOSN-GLDC technique appears as a novel 

method for grape leaf disease detection and classification. 

4. Conclusion 
 This study developed a novel EOSN-GLDC approach to 

detect and classify grape leaf diseases in an IoT environment. 

The presented EOSN-GLDC model has enabled IoT devices 

to collect grape leaf images and pre-process them. Then, it 

exploited the SqueezeNet model as a feature extractor where 

the hyperparameters involved are adjusted. Finally, an ELM 

classifier is applied to allocate proper class labels to the 

input images. To demonstrate the improved 

performance of the EOSN-GLDC model, a 

comprehensive experimental analysis is made using a 

benchmark dataset, and the outcomes indicate the 

betterment of the EOSN-GLDC model. In the future, 

the performance of the EOSN-GLDC model can be 

tuned by the hybrid DL classifiers. 
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