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Abstract - Achieving higher classification accuracy using machine learning is a challenging process. It is important to 

understand each input variable's significance and contribution to the target class to accomplish this goal. Learning from the 

suitable representation of the original feature set also enhances the performance of the learning algorithms. This work 

proposes a framework based on the feature ranking and feature learning techniques for the prediction of Breast Cancer. The 

main components of the proposed framework include ranking the input variables using the Pearson Correlation method and 

feature representation of the dataset using Stacked Sparse Autoencoder. The experimental result shows that the proposed 

framework has achieved an accuracy of 98.42%. 
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1. Introduction  
Health risks related to the lives of patients suffering 

from chronic diseases can be reduced using reliable and 

accurate disease prediction systems. Extracting useful 

information from healthcare datasets is important for the 

diagnosis of diseases. Predictive analysis of chronic disease 

using machine learning techniques is a challenging process. 

The presence of many input variables brings additional 

complications in achieving accurate predictive results. The 

relationship between the input variables and the target 

variable is often complex. Intelligent methods and 

approaches are required to analyze the dependence of related 

factors responsible for causing the disease. Models and 

frameworks developed using machine learning techniques 

help predict various chronic diseases at an early stage [1,2]. 

The solutions provided by these techniques are inexpensive 

in terms of healthcare costs and require less computational 

time [3].   

 

The feature ranking method assigns values to the 

features of the input data according to an evaluation criterion 

[4]. A high score indicates high relevance of the attribute 

concerning the target class. Features with lesser scores share 

minimum contribution in the prediction of the disease and 

complicate the process of predictive analysis; hence can be 

removed from the dataset. The form in which the learning 

algorithms represent data plays a major role in classification 

problems. Machine learning offers many supervised and 

unsupervised feature learning techniques to determine the 

effective way of data representation [5]. The performance of 

learning algorithms can be improved using these techniques. 

The application of autoencoder (AE) as a feature learning 

and representing technique has gained popularity among 

researchers [6]. AE learns the input data representation using 

an unsupervised learning technique. This work proposes the 

combination of feature ranking and feature learning 

techniques to perform the accurate prediction of Breast 

Cancer. The work includes the application of Pearson 

Correlation (PC) to rank and eliminate the low scoring 

features of the original dataset, unsupervised learning-based 

feature learning of the new feature set using Stacked Sparse 

Autoencoder (SSAE) to obtain an improved feature space, 

and the final classification task is done using a softmax layer.  

 

2. Autoencoder  
       An AE is a feedforward neural network that encodes the 

original data using an unsupervised learning method [7,8]. 

Encoder and decoder are the two main components of AE, as 

shown in Fig. 1. The Encoder transforms the original input 

vector into code in the hidden layer, and the decoder 

reconstructs the input data with the help of code using (1) 

and (2), respectively. 

h(x) = f (W1 x + b1) = g                        (1) 

z(g) = f (W2 g + b2) = x´                        (2) 

 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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       Where x represents the input vector, f represents the 

activation functions used for the transformation, and [W1, W2, 

b1,b2] represents the weight matrices and the bias vectors of 

the neurons connected in the network. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The basic architecture of an Autoencoder 

 

       Multiple encoding and decoding layers can be added to 

the AE network but the des, but these layers' designs are 

retained symmetrically. However, the number of nodes in the 

code can be higher or lower than the encoding layer. AE can 

also suffer from merely copying the input data through the 

network. To avoid this problem, a restriction or sparsity is 

introduced, which is a small penalty added to the layers of 

AE. Weight regularization is also added to the AE network to 

avoid overfitting [9,10]. An AE can be used to achieve both 

linear and nonlinear transformations of the input data. 

 

2.1. Types of Autoencoders 

According to the type of functionality they offer [11,12], 

AEs are classified into the following main types: 

2.1.1. Denoising autoencoder (DAE) 

DAE purposely introduces noise in the original data to 

generate a corrupted copy of the data. The noise is created by 

setting the values of a few randomly selected input features 

to zero. The main purpose of corrupting the input is to obtain 

a robust representation suitable for recovering the original 

undistorted input. 

2.1.2. Sparse Autoencoder (SAE) 

 In SAE, sparsity is introduced by adding some 

regularization in the layers of AE to penalize the total cost 

function for certain behaviors. 

2.1.3. Variational Autoencoder (VAE) 

 It is a generative model which modifies the process of 

input encoding from a single-point approach to a probability 

distribution close to normal in latent space.   

2.1.4. Stacked Autoencoder (SA) 

 Multiple AEs are stacked together to design SA to add 

more hidden layers. Layer by layer pertaining to the SA is 

done, and the first layer is provided as input to the next layer. 

2.1.5. Convolutional Autoencoder (CAE)  

          This type of AE is specially designed to handle image 

data by replacing the densely connected layers of the 

network with the convolutional layers. 

 

       Different types of AEs can also be designed by using 

these basic functionalities as layers of the AE network. Many 

researchers have suggested the employment of AEs for 

resolving complications related to classification tasks in 

health care and other domains. Zenbout et al. [13] 

implemented SSAE to learn new feature representations from 

miRNA data set for the classification of 31types of cancer 

and achieved 95% of accuracy. Pathirage et al. [14] applied 

SAE to identify structural damage. A pertained Deep Neural 

Network is added to the SAE to extract useful relationships 

from different parameters. Wang et al. [15] used a 

combination of DAE and convolutional neural networks for 

the modulation classification of signals generated by the 

GNU radio toolkit. Law et al. [16] proposed using SA for 

extracting underlying properties of the original features and 

reducing the dimensions of the data. 

 The authors concatenated the SA network with another 

network of an extreme learning machine to enhance the 

performance of the multi-label classification tasks. Li et al. 

[17] developed a hybrid model for the diagnosis of faults 

occurring in the process of distillation and attained 92.20% 

of accuracy. The authors used a convolutional neural 

network for feature extraction and SAE for classification in 

the hybrid model. Lu et al. [18] proposed a multi-task 

learning model for sentiment analysis using VAE. The model 

employed long, and short-term memory as encoder and 

multilayer perceptron as the decoder. Chen et al. [19] pointed 

out the region of interest labeling problems and inadequacy 

of labeled medical computed tomography image data and 

proposed a solution based on CAE. The proposed solution 

required a large amount of unlabeled data for training and 

less labeled data for fine-tuning to predict the presence of 

pulmonary lung nodules. Farahnakian et al. [20] designed a 

DA-based intrusion detection system and evaluated the 

system using the KDD-CUP'99 dataset. The authors claimed 

to have obtained 94.71% detection accuracy using the 

proposed approach. Ng et al. [21] proposed a new method for 

handling the classification problem of imbalanced datasets 

using AE. Dual autoencoding features are created by 

combining different data characteristics obtained from two 

separate SA networks employing two different activation 

functions, tanh and sigmoid. The results so obtained are 

compared with resampling-based methods. Aslam et al. [22] 

proposed applying SSAE architecture for the early prediction 

and classification of gastric cancer based on breath analysis. 

The authors claimed to have achieved the accuracy of 98.7% 

for advanced classification of gastric cancer and 97.3% 

accuracy for early detection of gastric cancer. 
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3. Proposed Framework 
       In this study, a new framework has been developed 

using the feature raking technique and SSAE to predict 

breast cancer. The architecture of the proposed framework is 

presented in Fig. 2. 
 

 
Fig. 2 Architecture of the proposed framework 

 

       In the first step, the PC feature ranking technique is 

applied to the original dataset, and the input features are 

ranked according to the scores obtained. PC measures the 

correlation between the input variable x and the target 

variable y using             

(3) 

          

                                                                                   

                                                                                       (3) 

 

 

      

       Where n denotes the total number of samples, xi and yi 

are the sample points and x̄ and ȳ represent the mean values. 

The range of values obtained from PC lies between [-1, 1]. 

After calculating the correlation values between the input 

variables and the target classes using PC, some features with 

minimum correlation scores are dropped as they are the least 

contributing features in predicting the disease. SSAE is 

applied to the new dataset obtained from the previous step in 

the next step. Layer by layer pertaining to the SSAE is done 

using an unsupervised learning technique. The Encoder parts 

of two Sparse AEs are connected in succession to construct 

the SSAE network. The new dataset features created in the 

first step are given as input to the first SAE, as shown in Fig. 

3(a), and unsupervised training is done. The SAE1 

transforms the features of the new dataset into the feature set 

1. Then this feature set 1 is used as the input to the second 

SAE, as shown in Fig. 3(b), and again unsupervised training 

is done to reduce the reconstruction error. The SAE2 

transforms feature set 1 into the feature set 2. Fig. 3(c) shows 

the complete structure of the SSAE. A softmax layer is added 

to the framework for the final classification task. Minimizing 

the reconstruction error is achieved by optimizing the set of 

parameters for each SAE, which comprises the number of 

nodes in the layers, sparsity coefficient (β), regularization 

coefficient (λ), and sparsity proportion. 
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Fig. 3 (a) Sparse Autoencoder 1 (b) Sparse Autoencoder 2                                          

(c) Structure of the Stacked Sparse Autoencoder 
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       The supervised learning method is applied to fine-tune 

the entire framework for performance enhancement using the 

training data by minimizing the total error function given as: 
 

         ETotal = EMSE + β * ESpr + λ * ERglr            (4) 

 

       Where EMSE is the mean square error function, ESpr 

represents the sparsity factor, and ERglr represents the l2 

weight regularization factor calculated using (5), (6), and (7), 

respectively. 

                    
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       Where Yi is the observed value and Ŷi denotes the 

predicted value. 

 

        Kullback-Leibler (KL) divergence introduces sparsity to 

the cost function. 
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       Where k denotes the number of neurons in a layer, p and 

p̂i represent the desired and the average activation values of a 

neuron i in the network. 
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       In (7), h represents the number of hidden layers, n stands 

for the number of samples, f shows the number of features in 

the input data, and the term wjl
i represents the connection of 

the l-th neuron in (i-1) layer with an l-th neuron in i layer. 

ERglr is the weight regularization used to prevent overfitting 

by controlling the network's weights. 

 

4. Experimentation And Discussion 
4.1. Dataset and Experimental setup 

       This study used Wisconsin Diagnostic Breast Cancer 

Dataset (WDBC) obtained from the UCI Machine Learning 

dataset repository [23]. The dataset contains 32 attributes and 

569 entries with no missing values. Of these 32 attributes, 2 

attributes show the ID number and Diagnosis (Malignant 

(212 entries) and Benign (357 entries)) of each record. The 

mean, standard error, and extreme value of 10 real-valued 

attributes (radius, Texture, perimeter, area, smoothness, 

compactness, concavity, concave points, symmetry, fractal 

dimension) are evaluated from the digitized fine needle 

aspirate image of breast mass, representing the information 

related to cell nuclei, which results in other 30 attributes (in 

this study these 30 attributes are assigned names from V1 to 

V30 for convenience). The framework has been designed 

using Matlab 2018b environment running on Core(TM) i7 

processor, 3.40 GHz CPU, 4 GB RAM, and 64 bit Microsoft 

8.1 operating system. 

4.2. Evaluation Method 

       Precision, recall, f1-score, and accuracy values 

calculated from the confusion matrix are used to measure the 

overall performance of the models. The confusion matrix 

contains the values of True Positive, True Negative, False 

Positive, and False Negative. 

 

True Positive (α): Actual positive and predicted as positive. 

True Negative (γ): Actual negative and predicted as 

negative. 

False Positive (µ): Actual negative predicted as positive. 

False Negative (δ): Actual positive predicted as negative. 

 

 

Precision = α / (α + µ) 

 

Recall = α / (α + δ) 

 

F1-score = α / (α + 1/2 * (α + δ)) 

 

Accuracy = (α + γ) / (α + γ + µ + δ) 

 

4.3. Results and Discussion  

       The original dataset contained 32 features. The attribute 

ID number is dropped from the dataset as it is not important 

for predicting the disease, and the attribute Diagnosis is 

considered the target variable for the study. PC is applied to 

the remaining 30 attributes to calculate the correlation 

between the features and the class labels. Features obtaining 

low PC scores are dropped from the original dataset, 

generating a new dataset. Table 1 shows the correlation 

values attained by the features removed from the dataset. Fig. 

4 shows the ranking of the features in descending order of 

absolute values obtained using PC on all the features of the 

original dataset. Min-max normalization is used as a feature 

scaling method for rescaling the feature values [0, 1].  

      
Table 1. Set of features dropped from the original dataset using Pearson 

Correlation score 

Attribute Pearson Correlation score 

V10 0.0128 

V12 0.0083 

V15 0.0670 

V19 0.0065 

V20 0.0779 

 

       In the next step, the new dataset features are given as 

input to the rest of the framework for the prediction of breast 

cancer. K-fold cross-validation is used to validate the results, 

and the value of k is taken as 5. 
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                           Fig. 4 Features ranking in descending order of absolute values obtained using Pearson Correlation on the original dataset.

       The total number of Benign class and Malignant class 

samples allotted in the training set and the testing set of all 

the 5 folds are shown in table 2.  

 
Table 2. Total number of benign class samples and malignant class 

samples allotted in the training set and testing set of each fold 

Fold Number k = 1 k = 2 k = 3 k = 4 k = 5 

Benign class 

samples in 

the training 

set 

286 285 285 285 286 

Malignant 

class samples 

in the 

training set 

169 170 170 170 170 

Benign class 

samples in 

the testing set 

71 72 72 72 71 

Malignant 

class samples 

in the testing 

set 

43 42 42 42 42 

 

       The input features V10, V12, V15, V19, and V20 obtained 

the least PC scores. After removing these 5 features from the 

original dataset, the remaining 25 features are given as input 

to the SSAE. Different SSAE models with different 

configurations and hyper-parameters values are tested to 

obtain optimal results. Each setup that is SAE1, SAE2, and 

SSAE with supervised training runs for 450 epochs. Some of 

the tested models are shown in table 3. Model 1 acquired the 

lowest accuracy of 62.26 % when the values of  

4, 0.1, and 22 are applied as β, λ, and hidden layer nodes in 

SAE1, respectively. For SAE2 in Model 1, 5, 0.1, and 18 are 

used as β, λ, and the number of hidden layers nodes, 

respectively. 

       

In the final framework, the number of hidden layer 

neurons, β, λ, and sparsity proportion of 17, 2, 0.001, and 

0.15, respectively, are used for SAE1. Twelve nodes are used 

in the hidden layer, and the values of 2, 0.001, and 0.15 are 

used as the β, λ, and sparsity proportion, respectively, for 

SAE 2. Fig. 5 shows the confusion matrix generated in each 

fold of the 5-fold cross-validation step. The framework's 

performance is calculated based on the final confusion 

matrix, which is obtained by adding the values of the 

individual confusion matrix attained for each fold. Each of 

the folds 1, 2, 3, and 5 obtained a predictive accuracy of 

98.2%. The highest predictive accuracy of 99.1% is obtained 

for k = 4. The results acquired by the proposed approach are 

also compared with the performance of other classification 

techniques applied to the original dataset, as shown in table 

4. The decision tree attained 93.85%, and logistic regression 

attained 94.56% of accuracy. The lowest accuracy of 92.79% 

is achieved by Gaussian Naïve Bayes learning technique. 

The bagged tree, a bagging-based ensemble approach, 

achieved the highest precision, recall, F1-score, and accuracy 

of 0.949, 0.950, 0.949, and 95.25%, respectively, among all 

the classification techniques. The comparative analysis of the 

accuracy acquired by the machine learning algorithms and 

the proposed framework is shown in Fig. 6. The framework 

attained the precision, recall, F1-score, and accuracy of 

0.985, 0.981, 0.983, and 98.42%, respectively.  

        

Table 5 presents the comparative analysis of the 

proposed framework with the work done by other authors, 

employing k-fold cross-validation on the WDBC dataset. 
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Table 3. Comparative analysis of accuracy achieved by different Stacked Sparse Autoencoder models 

Model 

Sparse 

Autoencoder 

(SAE) 

Input layer 

nodes 

Hidden 

layer nodes 

Sparsity 

coefficient  

(β)  

Regularization 

coefficient 

 (λ) 

Accuracy    

(%) 

Model 1  
SAE 1 25 22 4 0.1 

62.26 
SAE 2 22 18 5 0.1 

Model 2 
SAE 1 25 17 1 0.01 

93.91 
SAE 2 17 14 4 0.001 

Model 3 
SAE 1 25 20 3 0.001 

94.70 
SAE 2 20 16 4 0.01 

Model 4 
SAE 1 25 15 4 0.003 

96.50 
SAE 2 15 10 2 0.002 

Final 

Model 

SAE 1 25 17 2 0.001 
98.42 

SAE 2 17 12 2 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
 

          

 

 

 

 

 

 
k = 1                                                                          k = 2                                                                            k = 3 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k = 4                                                                                   k = 5 

 
 

 

Fig. 5 Confusion matrix obtained for each fold of 5-fold cross-validation
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Table 4. Comparison of results achieved by various classification algorithms applied to the original dataset with the proposed approach 

Classification Algorithm Precision Recall F1-score Accuracy (%) 

Decision Tree .938 .930 .934 93.85 

Logistic Regression .941 .942 .941 94.56 

Gaussian Naïve Bayes .924 .922 .923 92.79 

Bagged Tree .949 .950 .949 95.25 

Proposed Framework .985 .981 .983 98.42 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Comparative analysis of the accuracy achieved 

 

 

 

Table 5. Comparison of work done by other authors with the proposed framework 

Name of the authors Techniques used and accuracy achieved 

Bennet et al. [24] 
Support vector machine (SVM) for Decision 

tree (DT) - 97.20% 

Prasad et al. [25] 

Ant colony optimization and SVM - 95.96 % 

Particle swarm optimization and SVM - 97.37% 

Genetic algorithm and SVM - 97.19% 

Lavanya et al. [26] Feature selection and Ensemble DT - 95.96% 

Mert et al. [27] 
Probabilistic neural network with feature 

reduction technique - 96.31% 

Peng et al. [28] 
Immune system and semi-supervised learning-

based approach - 98.00% 

Marandi et al. [29] Enhanced Artificial neural network - 96.19% 

Darapureddy et al. [30] 

Logistic regression - 88.39% 

DT - 90.70% 

SVM - 90.15%, 

k nearest neighbours (kNN) - 89.63% 

This Study 
Feature raking and stacked sparse autoencoder 

based approach - 98.42% 

 

5. Conclusion  
       Disease prediction systems based on techniques offered 

by data mining help reduce the health-related risks of 

patients suffering from life-threatening chronic diseases. 

Various methods are available in this domain to understand 

the contribution of every input variable toward the prediction  

 

of the disease. Data mining also provides many approaches 

which help find the appropriate form in which the data can 

be presented to the prediction systems. This paper proposes a 

new framework that employs the PC method for feature 

ranking and SSAE for feature learning. 98.42% of accuracy 

has been archived using the proposed setup. 
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