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Abstract - A quantum k-means clustering algorithm is introduced by integrating the quantum paradigm to enhance the 

efficiency of the classical k-means algorithm. Firstly, each vector and k cluster centers are prepared to be in a quantum 

superposition, then utilized to compute the similarities in parallel. Secondly, the quantum amplitude estimation is applied to 

convert the similarities into the quantum bit. Finally, the most similar center of the vector is obtained from the qubits by using 

the quantum algorithm with the help of tomography to determine the minimum distances. Using the IBMQ simulator, 

completed the performance analysis for air pollution, which involved a two-dimensional dataset. The paper discussed a qk-

means quantum clustering algorithm, which first maps the classical data into quantum states and performs distance 

calculation and updation using the quantum circuits. The paper proposed a general, parallelized, and competitive version of 

qk-means clustering, observing the outcomes of this performance analysis for multiple combinations of quantitative data 

series. Results show that the IBMQ simulator can overcome the classical k-means clustering problem of completion time and 

accuracy. 

 

Keywords - Quantum Clustering, Quantum Machine Learning, Incremental Learning, Quantum Incremental learning, qk-

means Algorithm. 

1. Introduction  
Artificial Intelligence (AI) is a wide-range domain of 

Computer Science that makes machines act like a human 

brain. AI is apart from programming a Computer, but also 

about training it. Suppose there is a room, and a certain 

sensor is installed. The sensor analyzes the temperature and 

gives the output as an exact room temperature [1]. This is the 

way that confirms the system is artificially intelligent. 

Machine Learning (ML) comes like making ability without 

explicit programming. The model gives a certain threshold 

value, which proves the artificial working of the system [2]. 

In a different situation, where various attributes and aspects 

may arise, the machine has to do the analysis and provide 

accurate results. That means the machine can learn from its 

environment and get trained to work. If the environment has 

been altered, the model needs to put more attributes to 

training data. This type of attribute involves further 

knowledge, learning, and adequate action to enhance the 

device's intelligence. Certain kind of a structure of an animal 

comprises its shape, color, and different kind of curvatures in 

the interior. First, it should be attempted to discover features 

before their extraction, which may count on an individual's 

learning [2]. 

 

Fig. 1 Intelligent process using AI and ML for clustering the animals 
 

ML offers solutions to several classes of problems 

intractable through conventional computing means. For 

example, solutions to classification problems and regression 

of large datasets based on ML techniques are more powerful 

than earlier solutions. These algorithms suffer in that they 

grow polynomial-wise with the size and dimension of the 

data, which leads to substantial run times when dealing with 

large datasets, coined "Big Data ."The capacity of data to be 

more capably stored and deployed in quantum states has 

recently led to the proposal of several quantum algorithms 

for ML [1],[4],[5],[9]. 

This paper discussed the advancement of a quantum k-

means (qk-means) clustering algorithm with the help of 

tomography to classify clusters in data and compare them 

with analogous, not required, classical algorithms. The 
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algorithm counts on a distance measure, which has been 

taken to be Euclidean square distances. As shown in this 

paper, this distance can be calculated resourcefully on a 

quantum simulator to accelerate the algorithm as a whole. 

Tasks performed by information processors in ML [1],[10] - 

• Sorting 

• Assembling  

• Assimilating  

• Classifying information [2] 

 

In unsupervised learning, the model attempts to discover 

the concealed pattern in untagged data. The current studies 

emphasize specifically highlighting complications of large-

scale Big Data, where the number of features is large for 

analysis [11]. Quantum information processors are used to 

accomplish the following to achieve results in Quantum 

Machine Learning (QML) - 

• ML tasks  

• Similarities in complex patterns [3] 

• Adequate Learning process [4] 

• Feedback Learning for Measurement [5] 

• Classifiers [6] 

• Quantum Support Vector Machines (QSVM) [8] 
 

Illustration in the proposed paper-This paper shows that: 

• QML can provide exponential speedups over 

classical computers for various learning tasks.  

• ML is about deploying and categorizing an 

enormous size of data.  

• Inner product, distance estimation, and sampling 

between vectors are exponentially hard in classical 

computers compared to the quantum platform. 

• Tomography is used to find the correct state at the 

time of measurement to improve the accuracy of a 

cluster [4],[16]. 

• The problem of assigning N-dimensional vectors to 

the cluster of C states takes time O(log(MCN)) on a 

quantum simulator.   

• QML can offer an exponential speedup for problems 

concerning big quantum data.  

• Quantum version of k-means using adiabatic 

algorithm analyze V vectors into C clusters in 

O(ClogCVN).  

 

Algorithm Implementation of the algorithm through 

quantum circuits can offer improved outcomes on the IBM 

quantum simulator. Considering the difficulty of execution, it 

is measured as the total number of quantum gates that are 

essential for circuit building [3]-[4]. The proposed paper 

discovers the quantum implementation of k-means clustering 

on the IBM Q simulator. This paper proposes the following 

contributions:  

1) An algorithm calculates distances from a 

combination of quantum gates and updates the 

clusters as per the requirement. 

2) Cluster assignment is done with the quantum circuit. 

And measurement is analyzed by the look of 

tomography to achieve high efficiency and 

accuracy. 

3) The result shows that the tomography is also useful 

for achieving a benchmark completion time of the 

quantum algorithms. 

 

2. Background 

2.1. Quantum Computing Basics 

Every qubit is initialized in a  state. Applying 

operations to process initial state quantum has various single 

and two-qubit gates. The measurement is required to fetch 

the results. The measurement interacts with a quantum 

simulator which has classical input/output, and then it throws 

the output as a bit string [12]. The block sphere is used to 

represent qubit as a vector which can be at any point on the 

block sphere [18]. The quantum gates can be used to rotate 

the qubits on the block sphere. The basic principle of 

quantum mechanics is a superposition (also known as a 

linear combination of quantum states) which is represented 

by Dirac notation (See Equation (1)). 

 

          | ψ⟩ =   ------------- (1) 

 

Where | ψ⟩ is an arbitrary state vector in Hilbert space. A and 

B are probability amplitude (See Equation (2)). The basis 

state is | 0⟩ and | 1⟩. |0⟩ state represents the spin up, and |1⟩ 
state represents the spin down.  

 

| ψ⟩ = |A|2 + |B|2 ---------- (2) 

 

Where Equation (2) shows probabilities (|A|2   and |B|2) of 

quantum measurement for coming to a state, due to the 

quantum mechanics principle, any particle can be in a single 

state or multiple states simultaneously. The following (See 

Equation (3)) probability amplitude in the matrix represents a 

qubit.  

 ----------------------------(3) 

A Series of qubits can be shown in the following form (see 

Equation (4)) 

 

   
 -------   ------------(4) 

 

Moreover, the state  can represent by bit form in a 

matrix (See Equation (5)) 
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      =  ----------(5) 

 

The 00101101eight bit string can be represented in the 

following way (See Equation (6)) 

 

 -----------(6) 

 

2.2. Quantum Machine Learning 

Use of Machine Learning in the extensive fields- 

• The cumulative accessibility of data sets and the 

prerequisite of extracting patterns from data that 

has propagated the advantage of learning in the 

extensive fields [19].  

• Its comprehensive mathematical foundations have 

accepted the expansion of dependable applications 

in diverse problems, in academic and commercial 

applications.  

 

Benefits of Quantum methods application- 

• The merging of learning algorithms with quantum 

models has highlighted extensive applications in 

every sector [18]. 

• Some recent works have analyzed quantum 

methods' provision of alternative learning 

representations. 

• The computational speedup of the ML algorithm 

gives accurate predictions [20]. Fig2 and Fig3 show 

the workflow of stages of models. Classical ML and 

Quantum ML have different modes of input data. 

The Quantum model needs to have a compatible 

data format. The quantum data is to be preferred by 

the QML model. Then the input data is allocated to 

the quantum state and processed on a quantum 

circuit. But starting phase in most models followed 

a downgrading of the computational complexity. 
 

These different types map to quantum processes in 

general and the suitability of each kind of learning to 

different environments [5],[7], [9][22],. There have been a lot 

of works in that I used classical ML to solve certain 

challenging quantum problems. For example, in quantum 

chemistry, the trained graph neural networks predict the 

property of a molecule, resulting in 105 times speedups. In 

quantum physics, solving the ground state of local 

Hamiltonian using the restricted Boltzmann machine. 

Classical ML is used to forecast and simulate the chaotic 

behavior that results in billion times of speedup. However, 

all the works are mostly heuristic to apply classical ML to 

the quantum data and then analyze the results. The Quantum 

model has input x on the classical vector. Encode x into the 

quantum state, then apply unitary applications. After 

applying unitary operations, measure some observables [22]. 

It is a model that takes a classical vector and produces a real 

number as an output. This corresponds to all the 

computations that can be done on quantum platforms. Fig3 

process shows the theory of knowledge discovery phases of 

the QML model from Encoding to Measurement. 

 
Fig. 2 Workflow of classical machine learning model 

 

 

Fig. 3 Workflow of quantum machine learning model 

2.3. Quantum Clustering 

The field of Quantum Information Processing (QIP) 

comprises an extensive process known as Quantum 

Clustering [23],[29]. Purpose of introducing Physics 

intention of Quantum and accomplishment of quantization of 

the classical clustering algorithm made efficient clusters. The 

idea is to process the classical data in a classical-quantum 

hybrid way to achieve the clustering in the benchmarking 

time. The paper shows the dynamic data is analyzed with the 

help of a quantum model to know the hidden patterns.  

Function of the QC method [21],[26][31] 
 

• Schrödinger equation for clustering of high 

dimensional data. 

• Grover search algorithm from the collection of the 

quantum algorithm has the potential to speed up the 

overall performance of the QC.   
 

The fundamental idea of this mapping- 

• The distance between the data point and the random 

cluster is calculated using the unitary operations. 

• The quantum system's state is signified by a 

function ψ (x) that rests on the value x to analyze 

the results. [29].  

Two additional advantages of the probabilistic approach  – 

1)  To observe the cluster probability to identify the 

outliers. 

2) QC is to be correlated with the Jaccard Score method to 

assess the unsupervised structure of the data.  

3) A Quantum algorithm analyzes the high-dimensional 

data with fewer qubits with the help of quantum logic 

operations. Following Figure 4 gives the methodology 

details of the three different mythology conceptual 

papers [12],[18],[22]. 
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Fig. 4 The sketch shows three types of Unsupervised Quantum Clustering algorithms. The quantum version of Hierarchical, k-means, nearest 

neighbor is briefly explained 

3. Experimental Implementation  
This section talks about implementation, calculating the 

distance measured between arbitrary-dimensional feature 

vectors in the proposed clustering algorithm, and comparing 

to similar classical algorithms using the open-source IBMQ 

simulator (qasm simulator) for creating and running quantum 

circuits. The results achieved this stage by utilizing the 

Python module Qiskit developed by IBMQ, injecting it into a 

rudimentary k-means algorithm, and coding a modular 

quantum algorithm for distance calculation and cluster 

updation. The Qiskit module offers the ability to execute 

circuits on quantum computers operated by IBM built with 

superconducting transmon qubits and Josephson junctions 

and on IBM's high-performance quantum simulator Designed 

for the accurate simulation of typical noisy transmons. As in 

[29], the experimental error associated with remotely 

executing circuits on the real devices offered by IBMQ was 

too high to extract significant results. Due to this, along with 

qubit restrictions and long queue times, executed the 

proposed algorithm on the simulator to analyze its 

performance in an unrestricted and less noisy environment, 

similar to [20] and [30]. Note that while using a 

superconducting processor, additional qubit devices 

demonstrate promise for ML applications, such as optical 

systems [21] and trapped-ion processors [32]. Quantum 

simulators are optimized with gates, topology, and error rate, 

and finally, the schedules come into the picture to build a 

qasm program. Following are the quantum simulators 

advances compared to the classical platform [33]-[34]: 

• Quantum circuit: User Input 

• Pulse schedule: User Input + Device Scheduling 

• Processors: Device Scheduling  + Processor specific 

compilation 
 

Table 1. The generalized stages of the quantum circuit to calculate 

distance between data point and centroid 

 

Step 1: Initial Stage   

 

Step 2: Apply Hadamard gate, 

H =   

H =  

 

Step 3: Apply SWAP 

SWAP  =  

 

Step 4: Again, apply the H gate, 
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H =  

 

H =  

Step5: After that, apply measurement, 

 

It performs the inner product between P0 and P1, 

Where P0 and P1 are of getting  State and  state. 

Where P0 is the outcome of Mod Square of all the 

states except  State and P1 is the outcome of Mod 

Square of all the states except  State. 

 

P0 =  *  

 

P0 =   

 

  

 

Finally, remove  from , so the output is 

the inner product . i.e.   

 

 

Table 1concisely outlines the used approach of distance 

calculation using the quantum method. One of the new 

quantum clustering algorithms is discussed in [29]-[31]. The 

implementation uses the following subroutines to perform 

the qk-means clustering as follows: 

• Swap Test 

• Distance Calculation  

• Tomography: The idea of tomography is that, rather 

than measurements directly, first see how the state 

overlaps with many different states that create a 

form of basis state. Then use those output statistics 

to reconstruct the original state. 

 

Purpose/Process: 

• To accomplish optimization and implement the qk-

means algorithm.  

• A swap Test [9] calculates the distance between 

vectors or data points.  

• The assignment of clusters stage uses the wheels of 

quantum gates and assigned data points to clusters. 

• The mod square of all the vectors is used to find the 

exact probability of the result (i.e., exact quantum 

state) 
 

The distance calculation is performed using the inner 

products of the two probabilities. The (See Fig5) shows the 

quantum circuit used to perform the inner product. The 

Hadamard gate and SWAP test are applied to the  state. 

And  are the features of the data points which helps to 

calculate the accuracy to maintain the efficiency of the given 

data points. The measurement of the inner product of 

and throws the nearest value from the selected centroid 

point. The operation is shown in Table and Figure (See Fig5) 

is performed throughout the experiment on the data point and 

specified centroid. 

 

Fig. 5 Pictorial representation of quantum circuit using Hadamard gate 

and SWAP gate to calculate distance between  and 

Verification process- 

• The random air pollution dataset aids in the 

verification of the execution of the qk-means 

clustering algorithm available in this paper. 

• Two dimensions randomly generated 100 input 

vectors with 2 dimensions.  

• In the initial stage, input vectors are subjectively 

allocated to a respective group.  

• Then there is the standardization of the dataset to 

have unit variance, and zero mean.  

• Pre-processing is a subsequent step to control the 

input data into an encoding phase. 

• The discussed technique is used in a learning model 

where the two input vectors are vital to discriminate 

between diverse clusters. 
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Fig. 6 Cloud structure shows the qk-means algorithm steps using the 

tomography 

 

3.1. IBM Qiskit: Simulator  

 Quantum computing requires quantum hardware to 

produce the measurement. IBM Quantum Experience various 

types of quantum simulators are available. Qiskit grants 

access to all IBM's quantum simulators on a cloud service 

and local device or classical computer. For experimental 

purposes, the Qasm simulator has been used without adding 

the noise into the simulator [12],[22][34]. Qasm simulator 

provides ideal results while running quantum circuits because 

of their noise-free quality. The addition of a noise model 

provides the potential for a quantum computer in a quantum 

simulator to mimic. Noise-free simulators help check the 

imprecision in the output, which leads to knowing whether 

the circuit implementation is correct and not exactly checking 

the noise in the quantum simulator [32]. The measured 

probabilities of the quantum simulator are the theoretical 

predictions of the result from the noise-free quantum 

simulator [27]. 

 

4. Result and Discussion 
A Quantum algorithm requires the coordination of 

classical and quantum parts of the computation. The 

execution phase involves a quantum algorithm, transforming 

the algorithm into the executable format, running the 

simulation or experiment, and finally analyzing the outcome. 

The basic implementation is performed using the standard 

classical k-means algorithm with k=2. The random air 

pollution dataset is used (with 100 data points) to test the 

performance for implementation purposes. The result shows 

the formation of two clusters as defined (k=2), which has an 

expected result for centroid C. The simulation results of 

classical k-means and qk-means algorithms are shown in the 

table (See Table2). As shown (See Fig7 and Fig8), the 

quantum circuit performed efficiently and accurately in two 

clusters that match the theoretical predictions and are 

superior to the classical k-means algorithm. The 

implementation starts with using the 20 data points, and 

every time it adds new data series to check the accuracy of 

the qk-means algorithm. Showing simulation results as up to 

the mark, the accuracy of the clusters from the qasm 

simulator are 60.45%, 98.30%, 97.67%, and 93.70% for 20, 

50, 80, and 100 data points, respectively. Coherence time is 

advantageous to the number of vectors for the assignment of 

cluster 0. The qubit collapsed to its state when the 

coherence time was over, which ultimately made it difficult 

to reach the higher probability for cluster 1. The estimating 

distance for the proposed algorithm is executed using the 

quantum SWAP gate, which shows identical results for the 

execution of the qk-mean algorithm.  

 
Table 2. Completion time of the classical k-means and qk-means using 

the number of data points. 8219 shots are used to execute the quantum 

circuit 

 

Data points Completion time (k=2) 

  

Classical 

Platform  

Quantum  platform 

(shots= 8219) 

20 1.2ms 0.23ms 

50 2.3ms 0.3ms 

80 2.5ms 0.367ms 

100 2.9ms 0.5ms 

120 2.9ms 0.58ms 
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Fig. 7 The accuracy of the classical k-means and qk-means 

incrementally increases as the number of data points increases 

 

The quantum algorithms start with the conversion of 

classical data into quantum data. In the execution, amplitude 

encoding techniques have been used to convert classical 

input data into quantum input data. The completion time of 

the qk-means algorithm includes the encoding stage of the 

input data. The quantum circuit passes the amplitude values, 

and the SWAP test performs the distance calculation between 

the data point and the centroids. Finally, measurement is 

done to see the cluster assignment of the processed data 

point. It is shown that when the appropriate ML algorithm is 

used with exact quantum circuit depth, it ultimately leads to 

getting higher prediction accuracy (See Table 2 and Fig7).  

 

 

 
Fig. 8 Result of quantum clustering using the qk-means algorithm on various data point combinations 

 

5. Conclusion  
The proposed paper is acquainted with a quantum 

algorithm for k-means clustering. It is grounded on the 

average classical clustering algorithm and a novel quantum 

technique for the computation of Euclidean distance. The 

algorithm thoroughly accords with the classical k-means 

algorithm precision on clustering problems. When run on a 

quantum simulator, it displays the potential advances in 

cluster assignment performance. This marks another step in 

the field of QML in designing and implementing quantum 

algorithms. They surpass their classical counterparts in 

accuracy and speed. Quantum computing is in its initial 

phases of development. The investigation of the prevailing 

limitations concerning non-trivial problems is vital. Those 

move beyond fundamental algorithm proofs-of-concept. 

Countless industrial applications operate clustering and 

distance estimation expansively. This proves that quantum 

technology is perpetually rising. Researchers expect that as 

NISQ-era quantum computers mature, these analyses and 

industry-driven use-case studies will be obligatory. Those 

will develop cherished outlooks to bring out their utilization 

in real-life applications. Though this presented work 
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contributes to enhancing the quantum clustering algorithm 

with the help of quantum tomography for industrial use-

cases, there are still unreciprocated queries. Incremental 

learning is needed when new data series will arrive so that 

the advancement in classical and quantum clustering 

algorithms is the future work. Many algorithms undeniably 

involve a distance calculation step recurrently. Accordingly, 

benchmarking their quantum efficiency paves the way 

toward numerous opportunities such as Quantum 

Incremental Learning for future work. 
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