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Abstract - Data Centers & cloud hosting services are critical for IT workload. Datacenter organizations need to equip them 

with the latest technologies to estimate the power usage efficiency (PUE) to cater to their hosting customers' requirements. 

Power usage efficiency is one of the major metrics to check how efficiently Data Center consumes their power. To better 

understand whether machine learning technology can forecast PUE with more accuracy, we have used multiple machine 

learning regression methods to predict the PUE in a data center and compared their accuracy. The research's originality 

resides in the fact that no previous research has examined the regression methods for PUE prediction in data centers. Once 

the accuracies are identified, future researchers can use the algorithm for effective PUE prediction. The experimental result 

shows that DT and KNN work effectively with the data center's PUE data in the research scope. Further, the analysis clearly 

shows that the Decision tree and KNN predict the PUE with 97% & 98% accuracy, respectively, compared with other 

regression techniques. 
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1. Introduction 
Cloud computing and Data Center hosting has grown 

over recent years as a significant technology supporting most 

enterprises' organizations that need their data hosting 

requirement. Due to the growth of data stored in data centers 

due to application needs, new bigger data centers are 

required to satisfy user expectations. In data centers, a lot of 

energy is consumed. Data Centers are expected to account 

for one-third of the world's total energy output and one-fifth 

of its total consumption by 2025, with a carbon footprint of 

5.5% of the total energy output. [1]. 

 

Because of the high demand for cloud services, Data 

Centers have to operate to provide application availability to 
their end-users continuously. As a result, they use a 

significant quantity of energy and usually have an adverse 

effect on the local power system. Additionally, energy costs 

have become a significant part of Data Center running 

expenditures [2].  

 

Because of numerous variables such as the hardware 

specifications, workload, cooling needs, application kinds, 

etc., the DC power consumption pattern cannot be accurately 

determined. Therefore, accurately modeling a DC's power 

consumption behavior is not as simple as one would think 

[3]. Data centers are expected to be the center of all Internet 

activity. Additional data centers will be needed in the future 

to sustain the global computer penetration expansion. On the 

other side, data centers consume a significant amount of 

energy due to their role as information infrastructure. For 

example, a typical data center may use the same amount of 
energy as 25,000 families and consume around 150 times the 

energy of a typical office of equal size [4]. Since power is 

now a major cost in modern data centers, the cost of running 

a standard data center increases each year. [5]. On the other 

hand, data center electricity use has many environmental 

issues. In 2010, data center energy usage was 1.5% of total 

worldwide electricity consumption and around 2% of total 

electricity consumption in the USA [6]. Data centers will 

become the biggest energy consumers globally, increasing to 

4.5% in 2025 [7]. Energy usage has become one of the most 

significant considerations when deciding where to locate a 

data center. 
 

Moreover, because the monitoring infrastructure 

integrates an overhead system, it is impossible to carry out 

comprehensive energy consumption assessments of all 

existing components [3], [8]. Therefore, power forecasting 
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techniques are designed which could estimate a data center's 

electricity consumption for a certain workload. Power Usage 

Efficiency (PUE) is a measuring tool that defines how 

effectively energy is utilized by a computer data center, 

especially how much energy is consumed by equipment. To 
improve data center energy efficiency, SPUE has been 

instrumental. Fig. 1 and 2 show the data center's historical 

and average PUE. [8], [9]. 

Fig. 1 Historical PUE data of a data center 

 
Fig. 2  Average PUE 

 

2. Pue of Data Centers  
Storing equipment, information management systems, 

climate control devices, electrical equipment, and other 

auxiliary equipment are the primary components of data 

centers [10]. Fig. 3 illustrates the energy consumption 

breakdown in a data center. 

 
Fig. 3  Energy consumption of a typical data center [9] 

It can quantify the amount of power used by data center 

equipment using the Power Usage Effectiveness (PUE) 

metric [11]. Power consumption in a data center is measured 

as a percentage of total power consumption for all of the gear 

in the data center. 

 

ITEqp
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P

P

powerEquipmentIT

powerTotal
PUE        (1) 

 

The amount of electricity devoted only to the data center 

is the total power. IT equipment power refers to the power IT 

equipment uses to process, analyze, maintain, or transmit 

data inside the compute area. 
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The PUE value is also defined by three major factors 

cooling, power loss, and miscellaneous power (other 

electricity consumptions). The additional value is divided by 

the value of IT equipment. This is a simple and accurate way 

of gauging a data center's total power and energy usage. If 

you want to reduce the PUE value of a data center, you need 

to address all of the variables that affect electricity 

consumption. 

 

The PUE values are influenced by the cooling of the 

infrastructure (PCooling), installed IT equipment (PITEqp), 

power loss through switches (PElec.Loss), and other 

electricity consumptions (PMisc) [12], [13]. Current data 

center refrigeration infrastructure management and control 

solutions do not address the real behaviors or offer control-

side coupling of the targeted fast-computing systems in the 

data centers. The cooling infrastructure is usually built for 

maximum power demands from deployed computer systems 

to respond poorly to the dynamic changes in the computer 

systems installed. 

 

3. Related Work 
Shoukourian et al. [12] utilized a neural network-based 

method to predict the performance ratio of a high-

performance data center. The Coefficient of Performance has 

been predicted for the data centers. Basha et al. [14] studied 

that the assessment is parametrized by outcomes related to 

the performance assessment indicators, which reduces the 

difference between the genuine evaluation and the machine 

learning prediction. The regression method aims to create a 

feasible plane whose equation yields a more accurate result. 

Balanici et al. [15] have utilized server traffic flow to 

enhance the PUE of the data center. The auto-regressive 

neural network approach has been utilized to forecast the 
flow of traffic in the server. 
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Moreover, optimizing the cooling system's control 

policy can decrease the data center's energy consumption. 

The cooling system of a data center might benefit from a 

reinforcement-learning method, according to Li et al. [16]. 

The new model has a higher power efficiency with an 11 
percent drop in cooling expenses. The energy consumption 

of huge data centers has also been decreased by Haghshenas 

et al. [17], who used a variety of agent reinforcement-

learning approaches. Kumar et al. [18] used a supervised 

machine learning method, linear regression, to model the 

data. The PUE falls when the temperature rises within the 

Uptime Institute and ASHRAE's allowed limits and 

standards. Apart from regulating the greater denomination of 

temperatures within the limitations as stated and intended for 

the IT Equipment, other ways can cover IT loads and dig 

further into the cooling infrastructure. 
 

Liu et al. [19] discussed that the polynomial fitting 

technique, which is dependent on the Romonet simulation 
method and the global data center traffic, which combines 

the PUE for the global dynamic and the PUE for the high 

latitude area, is used to estimate global data center energy 

consumption and CO2 emissions in various scenarios. In the 

future, data centers in the Pan-Arctic area will be able to 

handle climate and energy issues successfully. Gao [20] put 

in a lot of effort to forecast the PUE of a Google data center. 

This study aimed to demonstrate that current sensor data may 

be used to use machine learning to estimate data center 

effectiveness and improve energy efficiency. The model has 

been implemented in Google's data centers. The dataset 
included twenty variables. This customized model has 

reduced the overall cooling by 40% and power usage by 

15%, thereby improving the PUE. However, the sensor data 

contained various types of uncertainty due to faults and old 

sensors. While there are many complex AI-based 

approaches, plenty of simpler regression-based algorithms 

may be effective for optimizing the PUE. Hence regression-

based algorithms will be implemented and compared in this 

work. A comparison summary of the above-related research 

work is specified in Table 1 with adopted methods, goals, 

and weaknesses.  
 

Table 1. Comparison of related work 

Ref. Method Goal Weakness 

[12] ANN 

To predict the 

performance of 

the data center 

The model 

only explores 

the 

refrigeration 

point of view 

[15] 

Auto-

regressive 

neural-

networks 

A server's traffic 

flow is monitored 

to optimize the 

traffic flow.  

The results 

were not very 

effective. 

[16] 

Reinforcem

ent-

Learning 
algorithm 

To reduce cooling 

cost 

The demand 

response 

signals are not 
sufficient 

[14] 
Regression 

Model 

To forecast the 

cost imposed on 

the consumer 

based on their 

consumption 

The efficiency 

of the results 

can be 

improved 

[17] 

Reinforcem

ent 
Learning 

algorithm 

To mitigate the 

energy consumed 
by large data 

centers.  

VM migration 

is used, which 
is a 

complicated 

process. 

[18] 
Regression 

Model 

Shows how the 

temperature and 

the Data load 

affect the PUE to 

save cost and 

reduce energy 

usage 

The results 

were not very 

effective. 

[19] 
Regression 

Model 

Predicting global 

data center traffic 

growth 

The efficiency 

of the results 

can be 
improved 

[20] ANN 

To enhance the 

PUE of  data 

centers 

This has only 

been tested on 

Google 

Datacenter 

 

4. Regression Algorithms Tested 
There are many algorithms used for regression. Some of 

them can also be used for classification. Some of the 

regression algorithms are discussed in this section. 

 

4.1. Linear Regression 

This type of regression is a statistical approach for 

predictive modeling that is most elementary and often 

utilized [21]. It gives us an expression where the chosen 

characteristics are separate variables and rely on the target 
variables. 

nn XXXY   2211                  (3) 

y and x are dependent and independent variables, 

respectively, and the rest are the coefficients [22]. If just one 

independent variable is present, then it is labeled as simple 

linear regression, and if it has multiple independent variables, 

then it is considered multiple regressions. 

 

4.2. Ridge Regression 

Ridge Regression is a multicolor regression data analysis 

technique. When multi-linearity occurs, smaller square 
estimates are unbiased, but their discrepancies are substantial 

and thus far from real value [23]. The inverse ridge reduces 

normal inaccuracies when the reverse estimates add a degree 

of partiality. The net effect is expected to be more accurate. 

The existence of almost linear links between the separate 

variables is termed multi-linearity. This link results in a zero 
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partition during regression calculations, leading to a 

computational abortion [24]. There is no zero-division and 

computational abortion if the link is incorrect. The division 

still makes very few changes to the results. Therefore, one of 

the first phases in this approach is to check if multi-co-
linearity is a problem. 

 

By applying a penalty on the magnitude of the 

coefficients, Ridge regression overcomes some of the issues 

with Ordinary Least Squares. The ridge coefficients are used 

to minimize the penalty residue sum of squares: 

 
2

2

2

2
min wyXww                   (4) 

   
The degree of shrinkage is controlled by the complexity 

parameter α≥0: the bigger the value, the more shrinkage 

there is, and therefore the parameters become more resilient 

to co-linearity. 

 

4.3. Lasso Regression 

This regression is a kind of linear regression that utilizes 
shrinkage. Shrinkage is when data values are reduced, like 

the mean, to a core point. The lasso process promotes basic, 

sparse models which do not contain many parameters [25]. 

This kind of regression is ideal for approaches with higher 

multi-collinearity levels or when automating certain portions 

of selecting the models, like selecting the variables or 

removing the parameters [26]. 
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Thus the lasso estimation minimizes the least-squares 

penalties with α||w||1 added, where α subjects as constant 

and ||w||1 is represented as ℓ1-norm of the coefficient vector. 

The Lasso implementation employs coordinated descent as 

the algorithm to fit the coefficients. 

 

4.4. Decision Tree 

This approach is one of the supervised-learning 

approaches that include algorithms like C4.5, C5.0, CHAID, 
and CART algorithms. It works for both regression and 

classification applications. The algorithm is used to analyze 

the data gathered and draw patterns from the current shape of 

the tree. The module can be used to forecast the appropriate 

value type based on the requirement [27]. The decision tree 

is trained by transmitting root-node-to-leaf information. The 

data is constantly split by predictor variables to clean nodes 

for children. The data are predictor-sensitive. The root node 

begins with all the training information. The decision tree 

will split progressively into groups by selecting the one 

variable predictor to form the root partition. Now three 

children's nodes will be created. One with black casings is 
known as a node with leaves. Two more branches are split to 

create another four branches. Either every leaf has just one 

resulting class, or it is too small to split. A number of 

potential split sites are identified for each node for each 

predictor variable. The method estimates the increase in the 

data purity that each dividing point would produce [28]. The 
split with the greatest substantial improvement is chosen to 

partition data and generate children's nodes. 

 

Determining the characteristic of the root at each level of 

the Decision Tree is a major task. Attribute selection is the 

name given to this procedure. For deciding on attributes, 

there are two popular methods.: 

1. Information Gain 

2. Gini Index 

For information, Gain:  

The set of all potential values of A is called Values (A), 

and it is a subset of the larger set Sv, with A equal to v., then 

      

)(.)(),(
)( vAveValues

p
SEntropy

s

S
sEntopyASGain   

(6) 

The result is mostly represented as either yes orno in the 

decision tree. Entropy's formulae are given as follows: 

)()()()()( loglog)(   pPPPPSE                (7) 

Here P+ represents the probability of a positive class 

P is denoted as the probability of a negative class 

S is denoted as the subset of the training example 

For Gini Index :  

  The Gini Index is calculated using the formula listed 

below. 

 
2

1
jj

pIndexGini                            (8) 

4.5. Random Forest 

This algorithm consists of many individual decision 

trees, which act as a group. When a tree randomly spreads a 

class prediction, the one with the most votes is used to make 

the model's prediction. [29]. A simple yet powerful idea 

behind random forest is the knowledge value. The random 

forest approach works effectively since many substantially 

uncorrelated decision trees that work as a group will 

outperform each component's model. 
 

The little correlation of models is the greatest priority. 

Just as investments with low links come together to create 

more than the sum of their parts, uncorrelated models are 

more accurate than any of the individual forecasts to produce 

set predictions [30]. The explanation is that the trees shield 

one another from each other's mistakes. Although some trees 
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may be mistaken, many others will be accurate so that the 

trees can travel in the proper direction. 

 

In the Random Forest, the average of all trees is derived 

by dividing the total number of trees by a relevant feature's 

value.:    

T

normifi
RFfi

treesallj ij

i

 
                              (9) 

 RFfi sub(i)= the relevance of feature i is estimated 

from all of the trees in the Random Forest model. 

 normfi sub(ij)= the normalized feature importance 

for i in tree j 

 T is denoted as the total number of trees 

 

4.6. K-Nearest Neighbour 

K-Nearest Neighbour is a method of supervised 

learning. The new case/data assumes the comparability with 

the existing cases and places the new case in the most 
comparable category to the current categories. It groups and 

predicts the accessible data based on similarity [31]. This 

implies that the K-NN method can be readily categorized 

into a well-suited category if fresh data is present. It may be 

used for regression and grading but is mainly utilized for 

grading issues. It is a non-parametric method, such that the 

underlying facts are not assumed [32]. 

 

KNN regression is used to obtain the K nearest 

neighbor's quantitative output average. Another option is to 

use an inverse distance normalized average of the K nearest 

neighbors. In KNN regression, the distance functions are the 
same. 

Distance Function 

 

4.7. Support Vector Machine 

The SVM is a technique used for both regression and 

classification. Its concept is the limit fitting with the area of 
points, and they all belong to the same class. The insertion of 

additional points is categorized after the limit has been set on 

the sample (training). I must verify whether it falls inside or 

outside the border before categorization. Once the border is 

fixed, the training data are redundant. An essential set of 

points is needed to identify and define the border. Suppliers 

support a data point called a vector, which describes the data 

points supporting the border [33]. 

 

It is the updated version of the KNN from a memory-

based learning system to a real learning method [34]. Like 

the method k-Nearest Neighbour, SVM posits that the 

algorithm depends on the seen data given to the algorithm, 

while new invisible data are predicted. However, SVMs take 
further precautions by dividing the learning material into 

partitions. These partitions are constructed of more than three 

dimensions, using hyperplanes or lines. Use vectors are 

calculated to generate hyperplanes from learning data for 

each predictor variable. Comparable to other learning 

algorithms, such as neural networks, SVMs make predictions 

based on the position of fresh data; this is similar to the 

nearest k method. 

 

A training data set with the corresponding observed 

values yn could describe xn as a multivariate collection of N 

observations. 

Find f(x) with the lowest norm value (β′β) to check the 

linear function and ensure it is as flat as possible. This can be 

written as a convex optimization problem to reduce subject 

to all residuals with a value less than ε or as an equation: 
 

f(x)=x′β+b,                           (13) 
 

J(β)=12β′β                                (14) 
 

∀n:yn−(xn′β+b)≤ε .                       (15) 

No other function f(x) may exist to meet all of these 

requirements. Introduce slack variables ξn and ξ*n for each 

point to deal with the unsolvable constraints. 

 

4.8. MLP 

Multilayer perceptron (MLP) is a type of deep learning 

algorithm which consists of many perceptrons. They consist 

of an input layer for receiving the signal, a layer of output for 

deciding or predicting the inputs, and a random number of 

hidden layers in between, which are the actual working of the 
MLP [35]. MLPs with a hidden layer may estimate any 

permanent function. An MLP regression model is used in 

this study. Three convolution layers are used with activation 

functions 'ReLU' and Tanh (The hyperbolic tangent 

activation) on the hidden layers and softmax on the output 

layer. The Optimizer function used are 'adam (Adaptive 

Moment Estimation) & lbfgs (Limited-memory Broyden–

Fletcher–Goldfarb–Shanno). The early stopping technique is 

used to get better accuracy in a short period of time. The 

algorithm is frequently used to control supervised learning 

issues. The training set learns to predict the connection 
between these inputs and outcomes. It includes modifying 

the model's parameters or weights and biases to reduce the 

mistakes. Backpropagation is used for weighing and biasing 

the error, and error may be assessed by a wide range of 

methods such as Root Mean Square Error (RMSE) [36].  
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Hidden layer cells produce their output yj as a function f 

[13] of the original input multiplied by the weight wji with 

the threshold applied and calculated using the activation 

function.  

              iji
xwfYj                                       (16)  

There is a transfer function s such as linear, log-sigmoid, 

and tan-sigmoid. The activation function must be able to 

differentiate. 
 

 
 

5. Results and Analysis 
This research aims to demonstrate the cause-and-effect 

relationships between the variables. Since changes in one 

variable are directly responsible for changes in another 
variable, the optimization of certain parameters would assist 

in optimizing the final power and costs. In this research, the 

optimum PUE values are predicted using various regression 

algorithms to check the accuracy of each algorithm. Many of 

the regression methods outlined in the preceding section have 

been implemented, including linear regression, ridge 

regression; lasso regression; random forest; decision tree; 

SVM, KNN, and MLP. 

 

An Indian Tier-4 data center provides the data for the 

study. Tier 4 data centers are considered free of fault, and 

there is very less chance of data failure since the flow of data 
is maintained effectively. Despite this, there are still issues in 

the power efficiency which require further improvement. The 

data is directly obtained and collected from the data centers. 

Various power consumptions and losses, such as the cooling 

power required by the installed IT equipment, power loss 

through switches, and other miscellaneous electricity 

consumptions, are included in the gathered data. The 

variables in the dataset consist mainly of Total Load, IT 

Load, and PUE. The other variables considered for the 

analysis are HT Power, LT Power, UPS Power, DG Power 

Consumption, Power Distribution Units (PDU), HVAC 
consumption, PAC Consumption, and Chiller plants. The HT 

and LT power lines supply power to the data centers from the 

grid, while the DG power denotes the power from the diesel 

generator at the premises. UPS power is the power stored in 

case of power failure for a short period of time. The PDUs 

convert the power to the allocated voltage and current 

requirements and supply the power to each piece of 

equipment. PAC is the power consumed by Precision Air 

Conditioners in the datacenters, while HVAC represents 

power consumed by all refrigeration units.  

 

The data is analyzed, and the PUE is predicted for 

varying loads through regression approaches. The code for 
each algorithm is written and executed using Python 

Programming. The dataset is imported into the environment 

and then analyzed to predict the PUE by the model. The 

algorithms used in the comparison are linear regression, lasso 

regression, ridge regression, DT, SVM, KNN, random forest, 

and MLP. K-fold validation is performed for each of the 

regression approaches to attain accuracy. The predicted PUE 

is compared to each other to identify the algorithm with the 

highest accuracy.  

 

The scatter diagrams for the collected data are shown in 

Fig. 4 for different loads and PUE. In all scatter diagrams, it 
can be seen that the density of data is higher for the mid-level 

of Load. The density of data is less for lower and higher 

loads and PUE. This is suitable since, most of the time, the 

loads in actual data centers are neither low nor high.  

 
Fig. 4  Data Collected Scatter Diagrams 

 

The relation between the IT load and PUE is shown in 

Fig. 5. The PUE is higher at lower loads and decreases as the 

load increases. The PUE is the highest at 2.18 when the Load 

is at 10,500, the lowest above 50,000.  

 
Fig. 5. Relation between IT Load and PUE 

The relation between the Total Load and PUE is shown 

in Fig. 6. The PUE is higher at lower loads and decreases as 

the total load increases. The PUE is the highest at 2.19 when 

the Load is at 22,500, and it is the lowest at 59,000.  
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Fig. 6 Relation between Total Load and PUE 

 

The relation between the IT load and Total Load is 

shown in Fig. 7. The relation is mostly linear, and there are 
interdependent on one another. When the IT load is at 

10,000, the total Load is 20,000. This increases, and when 

the IT load corresponds to 50,000, the total Load corresponds 

to 78,000. 

 

 
Fig. 7 Relation between IT Load and Total Load 

 

 

Various algorithms are used for regression, and the 

results are obtained concerning PUE. The PUE is predicted 

using the algorithm and compared with the measured values. 

The relation for linear regression is shown in Fig. 8. The 

predicted value coincides with the measured value at lower 

values, but it does not coincide much at higher values. The 

accuracy obtained for this algorithm is 89.41% 

 
Fig. 8 Linear Regression 

 

The relation for ridge regression is shown in Fig. 9. The 

predicted value for the ridge regression coincides with the 

measured value at lower values, but it does not coincide 

much at higher values. The results are similar for linear 

regression and ridge regression and also had a similar 

accuracy of 89.41% 

 
Fig. 9 Ridge Regression 

 

The relation for lasso regression is shown in Fig. 10. The 

predicted value for the lasso regression coincides with the 

measured value at lower values to some extent, while most of 

the other lower values are very much accurate. The values at 

higher PUE are also skewed. The accuracy obtained for this 

algorithm is 80.85%. 

 
Fig. 10 Lasso Regression 
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The relation for the random forest is shown in Fig. 11. 

The predicted value for the random forest regression does not 

coincide with the measured value at both lower and higher 

values. The algorithm is comparatively higher than the 

general regression techniques at 91.07%  

 

 
Fig. 11 Random forest regression 

 

The relation for the decision tree is shown in Fig. 12. It 
is comparatively better than the predicted value for the 

random forest regression. The predicted PUE does not 

coincide with the measured value at higher values but with 

lower values. The algorithm predicts the PUE well and has a 

very high accuracy of 97.67%.  

 

 
Fig. 12 Decision Tree regression 

 

The relation for regression using SVM is shown in Fig. 

13. The predicted value for the SVM regression coincides 

with the measured value at lower values, but it does not 

coincide much at higher values. The results are similar to the 
results of linear regression and ridge regression and also had 

a similar accuracy of 89.47% 

 
Fig. 13 SVM regression 

 

The relation for regression using KNN is shown in Fig. 

14. The predicted value for the KNN regression coincides 

with the measured value at lower values and slightly at 

higher values. Findings are similar to the results of the 

decision tree algorithm and have a very high accuracy rate of 

98.29%. 

 
The relation for regression using MLP is shown in Fig. 15. 

The predicted value for the MLP regression coincides with 

the measured value at lower values and slightly at higher 

values. It is evenly scattered throughout the predicted line; 

however, the accuracy is the lowest among the other 

compared techniques. The obtained accuracy is 85.32%. 

Also, while calculating the accuracy with all types of ML 

regression techniques, few parameters are used, as shown in 

Table 2. 

 

 
Fig. 14 KNN regression 
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Table 2. Algorithm Parameters Comparison 

Algorithms  Parameters  

Linear  fit_intercept=True,positive=False 

Ridge  alpha=50, fit_intercept=True,solver='auto' 

Lasso fit_intercept=True,alpha=50, 

max_iter=10e5,selection='cyclic' 

RF n_estimators = 100, *,  

criterion='squared_error',max_depth=2, 

random_state=0 

Decision 

Tree 

splitter='best', 

random_state=0,criterion='squared_error' 

SVM degree=3,kernel='rbf',gamma='scale' 

KNN n_neighbors=2, weights = 'uniform', 
algorithm='auto', size=30 

MLP activation='relu', *, 

solver='adam',learning_rate='constant',rando

m_state=1 

 

 

 
Fig. 15  MLP regression 

 

Table 3 and Fig. 16 show the relative levels of precision 

achieved by the two methods under consideration. The KNN 

algorithm has the best accuracy, whereas the MLP approach 
has the lowest accuracy.  

 
Table 3. Comparison of accuracies 

Algorithms used  Accuracy  

Linear  0.8941287802093469 

Ridge  0.894128780828702 

Lasso 0.808549692228578 

RF 0.9107096822759171 

Decision Tree 0.9766873873835856 

SVM 0.8947861651310054 

KNN 0.9828547415799562 

MLP 0.8531681574753306 
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Fig. 16 Accuracy results of various ML regression techniques 

 

6. Conclusions and Future Scope 

One of India's Tier-4 data centers has tested machine 

learning algorithms and discovered that Decision Tree and 
KNN perform much better than other regression approaches, 

with 97 and 98 percent accuracy, respectively.  

 

The work has focused on the PUE calculation; however, 

it is not the only performance metric; other metrics are also 

involved. PUE only involves active Load and not reactive 

loads. Although reactive power does not do any real work, it 

must provide inductive or capacitive loads to ensure network 

voltage stability. Also, the author has advised this based on 

the data obtained utilizing the data center in scope. Still, it 

has to be worked on a variety of data across the different 
geo-located data centers to derive a generalization of 

regression algorithm, which would be better and can be done 

in the future. 
 

Typical inductive loads comprise cooling fans and 

computer server power units in a data center, whereas 

capacitive loads include computer server power supply units. 

If reactive power is not handled promptly at the Load that 

consumes it, it may result in significant network losses. It is 

also worth noting that non-linear loads like variable speed 

drives (VSDs), LED lights, UPS, and servers with SMPS use 

reactive power. How they consume electricity may lead it to 

be distorted. Harmonic is a reactive current component that 

exists alongside active current. Hence, other performance 

metrics must also be studied to calculate energy efficiency 

better. Hence, in the future, we can implement the above 
regression algorithms for other units and compare them.  

 

Also, future work would involve checking if both the 

suggested models can be checked in combination with 

different indirect variables. The data size will also be 
increased by considering more data centers to conduct more 

effective research.  
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