
International Journal of Engineering Trends and Technology- May to June Issue 2011

ISSN:2231-5381 - 52- IJETT

Resource Overbooking: Using Aggregation Profiling
in large scale Resource Discovery

1Dr.M.Helda Mercy, 2C.Anand, 3 T.S. Suganya
1Faculty, M.C.A, Panimalar Engineering College, Chennai
2PG Scholar, M.C.A, Panimalar Engineering College, Chennai

3Faculty, M.C.A, Panimalar Engineering College, Chennai

Abstract

 Resource discovery is an important process for
finding suitable nodes that satisfy application requirements in
large loosely coupled distributed systems. Besides inter node
heterogeneity, many of these systems also show a high degree
of intra node dynamism, so that selecting nodes based only on
their recently observed resource capacities can lead to poor
deployment decisions resulting in application failures or
migration overheads. However, most existing resource
discovery mechanisms rely mainly on recent observations to
achieve scalability in large systems. In this paper, we propose
the notion of a resource bundle—a representative resource
usage distribution for a group of nodes with similar resource
usage patterns—that employs two complementary techniques
to overcome the limitations of existing techniques: resource
usage histograms to provide statistical guarantees for resource
capacities and clustering-based resource aggregation to
achieve scalability. Using trace-driven simulations and data
analysis of a month-long Planet Lab trace, we show that
resource bundles are able to provide high accuracy for
statistical resource discovery, while achieving high scalability.
We also show that resource bundles are ideally suited for
identifying group-level characteristics (e.g., hot spots, total
group capacity).

I. INTRODUCTION

 RECENT years have seen increasing use of loosely
coupled distributed platforms for scientific computation data
sharing and dissemination and experimental test beds.
Examples of such large-scale platforms include volunteer
computation grids such as SETI@home (over 3.6 million
participant machines), P2P systems such as Kazaa (over 30
million users) and Kad networks (over 2 million users). While
such platforms are highly attractive due to their low
deployment cost and inherent scalability, they are also highly
heterogeneous and dynamic. The nodes participating in such
platforms differ widely in their resource capabilities such as
CPU speeds, bandwidth, and memory capacity. As a result,
resource discovery is often used in such large-scale systems to
find suitable nodes that satisfy application requirements.
Many existing resource discovery systems rely on the recently
observed resource capacities of individual nodes to make their

deployment decisions. However, resource allocation decisions
based on current status of nodes have severe limitations in

these systems, because of the presence of intranode dynamism
in addition to the internode heterogeneity. Individual nodes
can have widely varying resource capabilities due to varying
loads, network connectivity, churn, or user behavior. For
instance, a resource usage study of PlanetLab has shown that
node resource capabilities fluctuate on the order of about 30
minutes.

Fig. 1. Mapping a statistical requirement to a resource
capacity distribution.

II. EXISTING

 RECENT years have seen increasing use of loosely
coupled distributed platforms for scientific computation, data
sharing and dissemination, and experimental test beds.
Examples of such large-scale platforms include volunteer
computation grids such as SETI@home (over 3.6 million
participant machines), P2P systems such as Kazaa (over 30
million users) and Kad networks (over 2 million users). While
such platforms are highly attractive due to their low
deployment cost and inherent scalability, they are also highly
heterogeneous and dynamic. The nodes participating in such
platforms differ widely in their resource capabilities such as
CPU speeds, bandwidth, and memory capacity. As a result,

International Journal of Engineering Trends and Technology- May to June Issue 2011

ISSN:2231-5381 - 53- IJETT

resource discovery is often used in such large-scale systems to
find suitable nodes that satisfy application requirements. Many
existing resource discovery systems rely on the recently
observed resource capacities of individual nodes to make their
deployment decisions.

Disadvantage

 However, resource allocation decisions based on
current status of nodes have severe limitations in these
systems, because of the presence of intra node dynamism in
addition to the inter node heterogeneity. Individual nodes can
have widely varying resource capabilities due to varying
loads, network connectivity, churn, or user behavior.
Dynamism in node-level resource capacities makes it difficult
to deploy long-running services and applications that need
consistent resource availability to ensure desired performance
and avoid disruptions or migration overheads.

III. PROPOSED

 We propose the notion of a resource bundle—a
representative resource usage distribution for a group of nodes
with similar resource usage patterns. A resource bundle
employs two complementary techniques to capture the long-
term resource usage behavior of a set of nodes: 1) resource
usage histograms to provide statistical guarantees for resource
capacities, and 2) clustering-based resource aggregation to
achieve compact representation of a set of similarly behaving
nodes for scalability. To handle the parameterization of the
clustering algorithm, we present an adaptive algorithm to
detect the amount of heterogeneity in the system and show its
ability to adjust to fluctuations in an online fashion. Besides
providing a scalable resource discovery mechanism to achieve
stable application deployment, resource bundles can also be
used for several other purposes in a large distributed system.
Resource bundles can be used to easily find a group of nodes
satisfying a common requirement. Resource bundles can also
be used to find load hot spots: geographical regions in the
distributed system with several nodes experiencing overloads
due to reasons such as heavy demand for a popular resource in
that region or locality-based application stresses. The
identification of such hot spots can be used to inform
decisions about application deployment or load balancing.
Finally, resource bundles can also be used for auditing and
accounting purposes, e.g., to determine the resource
assignment of a distributed application running on multiple
nodes, or to determine the spare capacity in an administrative
domain.

Advantage

 Resource bundles are able to provide high accuracy
for resource discovery through the use of resource usage
histograms, while achieving high scalability through
aggregation.

IV. ALGORITHM

• Bundling algorithm
• Adaptive algorithm

(a) Bundling Algorithm

 Once the input profiles have been used to create the
graph, the bundling algorithm uses the graph to put the
files into bundles. The algorithm works as follows:

1. Initially, each file is put in a separate bundle.
2. Edges whose weight is less than the minimum edge

weight are discarded.
3. The edges are sorted according to the edge

comparator.
4. The edges are processed one at a time, in the order

determined in step 3. For each edge, if the files
connected by the edge are not already in the same
bundle, and if the number of files in the resulting
bundle would not exceed the maximum bundle size,
and if the resulting bundle would not exceed the
maximum bundle spread, then the bundles containing
the files are combined into a single bundle.

5. After all the edges have been processed, the files
within each resulting bundle are sorted according to
the bundle sort comparator.

 Once the contents of the bundles have been
determined, they are combined and compressed
cumulatively. We evaluated both zlib (at the highest
compression level) and Pack as compressed formats for
the bundles.

(b) Adaptive Algorithm
 An adaptive algorithm is an algorithm that changes
its behavior based on the resources available. For
example, stable partition, using no additional memory is
O (n lg n) but given O (n) memory, it can be O (n) in
time. As implemented by the C++ Standard Library,
stable partition is adaptive and so it acquires as much
memory as it can get (up to what it would need at most)
and applies the algorithm using that available memory.
Another example is adaptive sort, whose behavior
changes upon the presorted ness of its input.

V. MODULE DESCRIPTION

 Main Module
 Node Module

MAIN MODULE

 Main module contains a login page for authentication
purpose. This module provides facilities for the following:

International Journal of Engineering Trends and Technology- May to June Issue 2011

ISSN:2231-5381 - 54- IJETT

 Emptying clusters table
 Inserting cluster details into clusters table
 Search functionality to identify the node to identify

prospective nodes and clusters they present in.
 Introspection functionality.

 When search functionality is performed for a
resource request is send to nodes of all clusters for that
resource. Clusters, of which, the node(s), having the said
resource is added in the search table along with the
resource detail. When the search functionality is
performed for a resource for a consecutive time, the
request is sent to the clusters against the said resource in
the search table to confirm the status of the resource in the
clusters under scope. In both the cases, the resource
details (content) are displayed in the system that is
running the main module. The introspection functionality
checks the status of a resource in the clusters in the search
table and also additional clusters in the clusters table and
accordingly updates the search table for the resource
under inspection.

NODE MODULE

 The node module represents node(s) of a cluster. The
node module receives request from the main module for a
resource and updates the status of the resource that is
whether the resource is available in the node or not and if
available it returns the detail of the resource to the Main
module. To minimize the number of systems used two
separate node module projects are installed in a system
and the system itself made to represent as a cluster that
contains those nodes. Each node module installed in the
system is made to look into / work with separate folders
in order to simulate the functionality of different nodes of
a cluster.

VI. CONCLUSION
 In this paper, we addressed the problem of scalable
resource discovery in large-scale systems. The presence
of node-level dynamism means that selecting nodes based
only on recently observed capacities can lead to poor
deployments resulting in application failures or
migrations. However, existing resource discovery
techniques rely only on recent observations to achieve
scalability. We proposed the notion of a resource bundle
that employs two complementary techniques to overcome
the limitations of existing techniques: resource usage
histograms to provide statistical guarantees for resource
capacities and clustering- based resource aggregation to
achieve scalability. We presented an adaptive algorithm
that detects fluctuations in heterogeneity in order to
parameterize the clustering-based resource bundles
algorithm. Using trace-driven simulations and data
analysis of a PlanetLab trace, we showed that resource
bundles are able to provide high accuracy for statistical

resource discovery, while achieving high scalability. We
also showed that resource bundles are ideally suited for
identifying group-level characteristics such as finding
load hot spots and estimating total group capacity.

VII. ACKNOWLEDGMENT

 This work was supported in part by the US National
Science Foundation (NSF) CAREER Award CNS-0643505.

VIII. REFERENCES

[1] D. Anderson, “BOINC: A System for Public-Resource
Computing and Storage,” Proc. IEEE/ACM Int’l Workshop Grid
Computing (GRID), 2004.
[2] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, “Cluster
Computing on the Fly: P2P Scheduling of Idle Cycles in the
Internet,” Proc. IEEE Fourth Int’l Conf. Peer-to-Peer Systems, 2004.
[3] Grid2: Blueprint for a New Computing Infrastructure,I. Foster
and
C. Kesselman, eds. M. Kauffman, 2004.
[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S.Shenker, “Making Gnutella Like P2P Systems Scalable,” Proc.
ACM SIGCOMM, Aug. 2003.
[5] B. Cohen, “Incentives Build Robustness in Bittorrent,” Proc.
First Workshop the Economics of P2P Systems, June 2003.
[6] S. Guha, N. Daswani, and R. Jain, “An Experimental Study of
the Skype Peer-to-Peer Voip System,” Proc. Int’l Workshop Peer-to-
Peer Systems (IPTPS), 2006.
[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak, and M. Bowman, “PlanetLab: An Overlay Testbed for
Broad-Coverage Services,” ACM SIGCOMM Computer Comm.
Rev., vol. 33, no. 3, pp. 3-12, July 2003.
[8] A. Iamnitchi and I. Foster, “On Fully Decentralized Resource
Discovery in Grid Environments,” Proc. IEEE/ACM Int’l Workshop
Grid Computing (GRID), 2001.
[9] P. Yalagandula and M. Dahlin, “A Scalable Distributed
Information Management System,” Proc. ACM SIGCOMM, 2004.
[10] B. Chun, J.M. Hellerstein, R. Huebsch, P. Maniatis, and T.
Roscoe, “Design Considerations for Information Planes,” Proc.
Workshop Real, Large Distributed Systems (WORLDS ’04), Dec.
2004.
[11] J.M. Schopf, “A Practical Methodology for Defining Histograms
for Predictions and Scheduling,” NU technical report, 1999.
[12] S.Zhong http://www.cse.fau.edu/~zhong/software/index.htm,
2009.
[13] A. Gupta, D. Agrawal, and A.E. Abbadi, “Distributed Resource
Discovery in Large Scale Computing Systems,” Proc. Int’l Symp.
Applications and the Internet (SAINT), 2005.
[14] R.V. Renesse, K.P. Birman, and W. Vogels, “Astrolabe: A
Robust and Scalable Technology for Distributed System Monitoring,
Management, and Data Mining,” ACM Trans. Computer
Systems, vol. 21, no. 2, pp. 164-206, 2003.
[15] J. Cappos and J.H. Hartman, “San Fermı´n: Aggregating Large
Data Sets Using a Binomial Swap Forest,” Proc. USENIX
Symp. Networked Systems Design and mplementation (NSDI),
2008.
[16] J. Mickens and B. Noble, “Exploiting Availability Prediction in
Distributed Systems,” Proc. USENIX Symp. Networked
Systems Design and Implementation (NSDI ’06), May 2006.

