
International Journal of Engineering Trends and Technology (IJETT) – Volume 11 Number 2 - May 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 79

Improving Network I/O Virtualization Performance
of Xen Hypervisor

Shikha R. Thakur#1, R. M. Goudar*2
#Department of Computer Engineering, MIT Academy of Engineering, Alandi (D)

Pune (M.S.), India

Abstract— Virtualization technology is the backbone of Cloud
Computing. Virtualization provides efficiency, flexibility and
scalability in cloud computing. Virtualization in cloud computing
can be done through different virtualization platform such as
VMware, Kvm, UMLinux, VirtualBox, Xen. Xen is an open
source hypervisor; a virtualization tool for cloud computing that
is widely used among cloud providers. Since, Xen yields poor
throughput for network I/O virtualization. To overcome this
problem; number of hardware and software enhancement
solutions are proposed. Packet aggregation mechanism is one of
the solutions that can improve the performance of driver domain
based model of Xen. Packet aggregation mechanism results in
increased throughput at a cost of maximized packet delay and
jitter. Here is the proposed self-adaptive buffering jitter control
mechanism that dynamically tunes the aggregation to achieve
best trade-off between throughput and delay. It finds the mean
release time of a container according to dynamic traffic load.
Thus, an aggregated model of Xen would improve performance
resulting in strong foundation of virtualization for cloud
providers.

Keywords— Xen, Network I/O virtualization, Cloud Computing,
Packet aggregation, Delay and jitter, Adaptive buffering.

I. INTRODUCTION
This Cloud [1] is an abstraction to hardware resources that
maintain and manages itself. Computing that enables accessing
of virtualized resources and services needed to perform
functions with dynamic user demands and changing needs is
termed as cloud computing. Cloud computing provides three
types of services, Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS).
Virtualization is a key technology to implement infrastructure
services. Virtualization is an isolation to each separate user.
Implementing virtualization provides flexibility, scalability and
effectiveness to the cloud.

Tools such as Kvm, UMLinux, VMware, VirtualBox, and
Xen can be used to implement virtualization in cloud. Xen
hypervisor, driver domain based model is an open source
virtualization platform. Xen [10, 11] is a hypervisor providing
services that allow multiple virtualized operating systems to
execute on a single computer hardware concurrently. Xen
hypervisor provides a strong foundation of virtualization to
cloud providers. Hypervisor is a software layer that creates
runs and manages virtual machines (VMs). Hypervisor layer
lies between physical and operating system. Hypervisor were
first implemented for computing intensive application and not

for the network intensive application. Thus, a hypervisor
exhibits poor network I/O virtualization performance [8].
Network I/O virtualization is essential to provide connectivity
to the virtual machines. However, current implementation of
VMMs does not provide high enough throughputs especially
when the applications running on the different virtual
machines within the same physical machine are I/O intensive
(web services, video servers, etc.). Network intensive
applications are among the applications dominating the cloud
based data centres today.

To improve networking performance, it is necessary to
make the networking performance of the VM scale up at line
rates. Packet aggregation mechanism [2] used to maximize the
throughput to scale up a networking performance.
Experimental evaluation of packet aggregation has been done
and maximized delay and jitter is observed. For network
intensive interactive communication, there must be smooth
traffic. In real applications, the traffic is dynamic and is
according to the dynamic user needs .The smoothness of the
traffic is measured in terms of its delay and jitter. Limited
buffer size jitter regulators can be used to minimize delay and
jitter. Thus, an algorithm is proposed to find a release
schedule for dynamic traffic rate with optimal jitter. In this
paper, the aim is to minimize this delay and jitter to obtain
desired throughput of system with post implementation of
packet aggregation.

Remainder of the paper is brief in section. Section II gives
the related work to improve network I/O virtualization.
Section III gives theoretical analysis. Section IV gives design
details and Section V gives brief idea about packet
aggregation and focuses on proposed algorithm, self-adaptive
buffering and its design details. Section VI brief about
experimental evaluation and result analysis. Last section
concludes the paper and mentions the future scope.

II. RELATED WORK
An Several research works [9, 10, 12] have been dedicated

to the I/O performance improvement. The detailed study of
research has been done and is stated as follows:

A) Large Receive Offload (LRO) [18] receives multiple

TCP packets and passes it as a single larger packet to the
upper layer of the network. The CPU overhead is lowered and
a performance improvement is expected. An improvement at a
rate of 200% is expected after implementing LRO with five

International Journal of Engineering Trends and Technology (IJETT) – Volume 11 Number 2 - May 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 80

1Gb/s NICs. LRO is nothing but an aggregation mechanism,
performed in the device driver of the receive side only, in the
context of TCP packets reception. In virtualization, LRO can
be used to transfer packets from the hardware i.e. NIC to the
driver domain. Henceforth, the grant reuse as well as proposal
are the ones that operating between the driver domain and the
virtual machines. .LRO reduces the physical interrupts that are
required to transfer packets from physical layer to driver
domain. System lacks at reducing virtual interrupts.

B) XenLoop [19] is an inter-VM loopback channel that

allows direct communication among VMs in the same
physical machine without the involvement of unprivileged
domain i.e. Dom0. Whenever two guest VMs within the same
physical machine have an active communication of packet
traffic, bypassing the standard data path via Dom0, VMs set
up a bidirectional inter-VM data channel between themselves.
An improvement from a factor of 1.5 to 6.2 is obtained in
bandwidth improvement with XenLoop over the native
netfront-netback corresponding to the transferred message size.
It reduces the memory call among virtual machines VMs
running on a single physical machine.

C) XenSockets [13] is a unidirectional communication pipe

between two VMs. Based on UNIX socket implementation, It
implements an inter VM communication mechanism. The
implementation of XenSockets makes use of statically shared
memory buffers. Instead of the traditional Xen page flipping
mechanism, It uses shared memory for message passing. For
example, For a message size of 4 Kb, XenSockets yields
XenLoop with a throughput of 5800 Mbps. Throughput of
Xen hypervisor increases greatly and is considerable.
Xensocket does not support VM migration and exhibits poor
transparency.

D) In [4], the authors observed that with numerous Vms

sharing a single CPU, the latency experienced by each VM to
obtain its CPU time slices increases and that the CPU access
latency dominates the round trip time between two VMs,
graduating the progress of TCP connections between Vms.
To solve this problem, the authors proposed a solution Known
as vFlood in which they did a small modification to the
sending VMs TCP stack that essentially offloads congestion
control functionality to the driver domain. The driver domain
handles congestion control on behalf of the VM, therefore
ensuring the compliance of TCP semantics. The throughput
achieved by vFlood is almost 5 times higher than that of the
vanilla Xen. For large packet transfers, vFlood improves TCP
throughput by 20% to 40%. vFlood improves Xen hypervisor
performance [16,17] giving higher throughput. The
throughput is increased at a cost of maximized delay and jitter.

E) In [20], authors proposed optimization to minimize the

I/O virtualization overhead: efficient interrupt coalescing for
virtualization and virtual receive side scaling (RSS). Here, an
adaptive multi-layer interrupt coalescing scheme for network
I/O virtualization is used to dynamically throttle interrupt

frequencies. To parallelize the backend driver and to adopt
RSS to bind each thread of the backend driver to
corresponding virtual CPU, virtual receive side scaling is
implemented. Efficient interrupt coalescing for virtualization
can mark ably minimize CPU utilization.

F) In [21] authors investigated the performance of four

different algorithms for dynamically adjusting the playout
delay of audio packets in an interactive packet-audio terminal
application, for varying network delays and dynamic traffic.
Experimental results indicate that an adaptive algorithm which
explicitly adjusts to the sharp, spike-like increases in packet
delay can achieve a lower rate of lost packets for both a given
average playout delay as well as a specified maximum buffer
size. The four algorithms differ in calculating the mean
estimate of delay and variation in delay. Formula for
calculating playout time is same for all the algorithms.

III. THEORETICAL ANALYSIS

All Packet buffering technique [2] introduces an additional

delay to the traffic. In a system without aggregation, the mean
delay and jitter of a packet varies as a function of the input
rate. The delay in this system will remain constant for the
drastic increase in forwarding throughput [2]. Whereas, an
aggregated system, consider the following scenarios:-

Assumption: - As it is known each TCP Packet size is

65535 bytes, which is a large size for any realistic data. The
Maximum Transmission Unit (MTU) that can be transferred is
1500 bytes and the container size is considered as 4096 bytes
as it is one page size of shared memory.

1) When forwarding throughput reaches to its ace, there

would be increase in packets average delay due to additional
waiting time until the container reaches to its timeout or
maximum accommodating size is reached.

2) At low input rates, containers are transferred to

destination after the timeout has expired. At this rate,
containers spend a long time to get full. Thus the packet delay
would be increased.

3) At high input rate, the containers reach their maximum

size rapidly before the timeout expire which triggers the
container transfer. Henceforth, containers will fill fast and will
generate small waiting packet delays. At the same time, there
could be more memory call and virtual interrupts that is
considerable In order to implement packet aggregation
mechanism efficiently, it is necessary to tune the aggregation
mechanism with the dynamic packet traffic. Here is the
proposed self-adaptive jitter regulating method that can adapt
the container size with the incoming traffic dynamically to
achieve best trade-off between delay and throughput. Next
part of this section will detail the proposed system model to
minimize delay and jitter.

International Journal of Engineering Trends and Technology (IJETT) – Volume 11 Number 2 - May 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 81

IV. DESIGN

A. Platform Choice

B. Modules of the System

 In the proposed system, there are two main
modules “Fig. 1” - packet aggregation and self-adaptive jitter
regulator algorithm. An aggregation mechanism is used to
improve performance of Xen hypervisor. As it improves
performance there is one disadvantage of aggregation is that it
increases delay and jitter, thus to minimize delay and jitter
second module i.e. self-adaptive jitter regulation mechanism
has been implemented.

Fig. 1. Modular diagram for improving I/O performance

C. Architecture of Proposed System

 Fig. 2. Architecture of proposed system

V. IMPLEMENTATION DETAILS
This proposed system is composed of two modules, packet

aggregation and self-adaptive jitter mode. Packet aggregation
is again divided into two sub-modules i.e. Container and
Unloader. Second module implements algorithm for
minimizing delay and jitter. The implementation consists of
two parts:

a) It is coded to prove the correctness of algorithms.
Thus it consists of simulation and the coding is done
in java.

b) Once correctness is proved, the spilt device drivers
can be modify and the algorithm can be embedded
into it.

A. Packet Aggregation

Consider a scenario in which driver domain is communicating
with virtual machines. The basic concept behind aggregation
mechanism is to buffer packets in a container of fixed size and
then to transfer it at once when the container size is full or
buffering time of container is timeout. Container generation
algorithm buffer packets and transfer container to shared
memory from driver domain. Extractor will extract the packets
from container in FIFO order. Author Manel Bourguiba and
his team has implemented and experimentally evaluated
aggregation mechanism [2] which shows that it improves
throughput affecting delay and jitter.

B. Self-Adaptive Jitter Model

Consider a scenario in which a system consists of a driver
domain and N number of VMs running simultaneously that
communicates through shared memory. At the arrival of packet
from the physical layer to the driver domain, aggregation
mechanism generates a container and waits for the next packet
to be queued until the maximum size is reached or timed out.
Thus, the arrival rate of two packets that is to be transferred to
the shared memory generates the delay and is equal to the sum
of delay between N packets transferring to driver domain.
 Foundation of jitter regulation is consisting of jitter
regulators that use a limited-size buffer in order to minimize
delay and jitter. Here, is the proposed method of finding
playout time of a container. Playout time is the release time of
container that can be calculated by obtaining mean of releasing
time of each packets arriving to container. This idea can be
clear through the following algorithm.

1) Notations:

 Pi - Playout time of ith packet

 Pj - Playout time of subsequent packets

 T0 - Time out of container

 α- is a linear weighting factor and is 0.99

 Dk – Mean estimate of delay

 Vk - Variation in delay i.e. Jitter

International Journal of Engineering Trends and Technology (IJETT) – Volume 11 Number 2 - May 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 82

2) Algorithm:-

After connection is setup, consider first packet coming to

Dom0 from physical line.

Step 1: Calculate playout time for the first packet; it would be
maximum for the first time which could be equal to the
timeout of the container.

Pi = To
For this condition, mean of delay and variation in delay will

be zero.

Step 2: For subsequent packet, the playout time is given as:
Pj = Dk + (4 * Vk)

Step 3: Di and Vi can be find by the given formula:

Dk = (α * Dk-1)

Vk = (α * Vk-1) + (1- α)

Step 4: For each N subsequent packets Pj, the release time

of container will be adjusting accordingly and thus container
will release at a calculated mean time when it is time out or
overflow.

Step 5: As one container will release; another container

will be allocated and then repeat step 1 to 4 until the
connection for a DomU is terminated.

IV. EXPERIMENTAL EVALUATION AND RESULTS
Experimental test bed consists of a PC/Laptop of
configuration 3rd Gen Ci5 Core Processor/ 6GB RAM/1 GB
NIC/500GB HDD. Consider one system as Dom0. For setting
up a Dom0 machine, it requires a Xen hypervisor to be
installed first. Here the host operating system used is Ubuntu
Desktop version 12.10. Any host operating system supporting
Xen hypervisor can be installed. Configure Virt manager to
have two or more guest operating system (DomU). Create a
network bridge between DomUs by following installation
guide of Xen.

Experimental performance is simulated. TCP load to the
system can be provided by a GUI tool called apache Jmeter
2.10.This tool provides heavy as well as light load to the java
server and get the response from the server and accordingly
makes different graphs for various performance metrics. Here,
two guest operating system is considered; for each of two TCP
load of 500 samples is applied. First this test case is applied to
only aggregated mechanism i.e. aggregation mechanism
without self-adaptive jitter algorithm. This generates graph for
throughput “Fig. 5” and gives average throughput of 4.187
KB/s. The same test sample when is applied to aggregation
with self-adaptive jitter regulation system an improved
throughput graph “Fig. 6” is obtained with average throughput
of 13.349 KB/s.

Table -1 Experiment Result

Performance
Metric

Packet aggregated Jitter Regulated
packet aggregated

Throughput
(KB/S)

4.18781 13.3497

In given two figures graph drawn in green indicates
throughput. Observing results in Fig 5 and Fig 6, it is
concluded that the throughput obtained in aggregation
mechanism with self-adaptive jitter regulator is improved as
compared to the results obtained from aggregation
mechanism.

Fig. 5. Throughput graph of aggregation mechanism

Fig. 6. Throughput graph of aggregation mechanism with self-adaptive jitter
regulator.

International Journal of Engineering Trends and Technology (IJETT) – Volume 11 Number 2 - May 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 83

V. CONCLUSION AND FUTURE SCOPE
Driver Domain based Xen hypervisor model is an effective,
scalable, flexible and most widely used virtualization
foundation for cloud service providers. Since, Driver domain
based model of Xen exhibits poor I/O networking
performance; it is overcome by the proposed aggregation
mechanism. In this paper, aggregation mechanism overcomes
the network I/O communication problem. It reduces number
of memory calls per byte transfer and thus increases the
throughput. Since it buffers the packets in a container of fixed
size which introduces packet delay and jitter while
communication when traffic is low. Henceforth, second part
of implementation is for minimizing the introduced delay and
jitter. Adapting the size of container with respect to the
dynamic incoming traffic will reduce delay and jitter to
achieve the best tradeoff between throughput and delay. Thus,
packet aggregation mechanism improves the performance of
driver domain based I/O virtualization in Xen hypervisor.

 The proposed algorithm would be implementing in
java to prove the functionality of the algorithm. Thus, the
future work is to implement packet aggregation in source code
of Xen hypervisor. The modification can be done in netfront.c
and netback.c file located at Linux/Drivers/net/Xen/netfront.c
and netback.c.

REFERENCES
[1] GManel Bourguiba, Kamel Haddadou, Ines El Korbi, Guy Pujolle,

"Improving Network I/O Virtualization for Cloud Computing," IEEE
Transactions on Parallel and Distributed Systems, 25 Feb. 2013.

[2] M. Bourguiba, K. Haddadou, and G. Pujolle, ”Packet Aggregation
Based Network I/O Virtualization for Cloud Computing”,Elsevier
Computer Communications, Vol. 35, no. 3, pp 309-319,2012.

[3] David Hay , Gabriel Scalosub,” Jitter regulation for multiple streams”,
13th Annual European Symposium on Algorithms,2005.

[4] S. Gamage, A. Kangarlou, R. Kompella, and D. Xu, ”Opportunistic
Flooding to Improve TCP Transmit Performance in Virtualized Clouds”,
Proc. ACM Symp. Cloud Computing (SOCC’ 11), 2011.

[5] K.K Ram, J.R. Santos, Y. Turner, A.L Cox, and S. Rixner, ”Achieving
10Gb/s using safe and transparent Network Interface Virtualization”,
Proc. ACM SIGPLAN/SIGOPS Conf. Virtual Execution Environments
(VEE’ 09), 2009.

[6] V. Ramaswami, ”From the matrix-geometric to the matrix exponential”,
Queueing Systems Theory Appl., vol. 6, pp. 229- 260, June 1990.

[7] M. Dobrescu, N. Egi, K. Argyraki, B.G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, Routebricks : exploiting
parallelism to scale software routers, Proc. ACM SIGOPS Symp.
Operating systems principles (SOSP 09), 2009.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R.Neugebauer, I.Pratt, and A. Warfield, ”Xen and the art of
virtualization”, Proc. ACM Symp. Operating Systems Principles (SOSP’
03), Oct. 2003.

[9] Xing Pu , Ling Liu , Yiduo Mei , Sankaran Sivathanu , Younggyun Koh ,
Calton Pu, Understanding Performance Interference of I/O Workload in
Virtualized Cloud Environments, Proceedings of the 2010 IEEE 3rd
International Conference on Cloud Computing, p.51-58, July 05-10,
2010.

[10] Mukil Kesavan , Ada Gavrilovska , Karsten Schwan, Differential virtual
time (DVT): rethinking I/O service differentiation for virtual machines,
Proceedings of the 1st ACM symposium on Cloud computing, June 10-
11, 2010.

[11] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, M. Williams,
Safe hardware Access with the Xen virtual machine monitor, in:
Proceedings of the First Workshop on Operating System and
Architectural Support for the on Demand IT Infrastructure, OASIS 2004.

[12] Jeremy Sugerman , Ganesh Venkitachalam , Beng-Hong Lim,
Virtualizing I/O Devices on VMware Workstation's Hosted Virtual
Machine Monitor, Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, p.1-14, June 25-30, 2001.

[13] X. Zhang, and Y. Dong, ”Optimizing Xen VMM based on Intel
Virtualization technology”, Proc. International Conference on Computer
Science and Software Engineering, 2008.

[14] Scot Rixner, Network Virtualization: Breaking the Performance Barrier,
Queue, v.6 n.1, January/February 2008.

[15] Paul Barham , Boris Dragovic , Keir Fraser , Steven Hand , Tim Harris ,
Alex Ho , Rolf Neugebauer , Ian Pratt , Andrew Warfield, Xen and the
art of virtualization, Proceedings of the nineteenth ACM symposium on
Operating systems principles, October 19-22, 2003.

[16] Yiduo Mei , Ling Liu , Xing Pu , Sankaran Sivathanu, Performance
Measurements and Analysis of Network I/O Applications in Virtualized
Cloud, Proceedings of the 2010 IEEE 3rd International Conference on
Cloud Computing, p.59-66, July 05-10, 2010.

[17] Scot Rixner, Network Virtualization: Breaking the Performance Barrier,
Queue, v.6 n.1, January/February 2008.

[18] A. Menon, and W. Zwaenepoel, ”Optimizing TCP Receive
Performance”, Proc. USENIX Annual Technical Conference (USENIX’
08), 2008.

[19] J. Wang, K. Wright, and K. Gopalan, ”XenLoop: A Transparent High
Performance Inter-vm Network LoopBack”, Proc. ACM Symp. High
Performnce Parrallel and Distributed Computing (HPDC’08), 2008.

[20] Yaozu Dong, Dongxiao Xu, Yang Zhang, Guangdeng
Liao, ”Optimizing Network I/O Virtualization with Efficient Interrupt
Coalescing and Virtual Receive Side Scaling ”, Proc. IEEE International
conference on cluster Computing, p.26-34, Sept. 26-30, 2011.

[21] Ramjee, R. Dept. of Comput. Sci., Massachusetts Univ., MA, USA
Kurose, J. Towsley, D. Schulzrinne, Henning “Adaptive playout
mechanisms for packetized audio applications in wide-area networks”,
INFOCOM '94. Networking for Global Communications., 13th
Proceedings IEEE, Page(s): 680 - 688 vol.2, 1994.

