
International Journal of Engineering Trends and Technology (IJETT) – Volume 13 Number 8 – Jul 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 391

Multi Operation Floating Point Architecture
using DADDA Multiplier
Girija Alukuru1, Janardhana Raju M2, Anilkumar Somasi3

1M.TechStudent , 2Assoc.Professor
1,2E.C.E,JNTUniversity Ananthapur,

Department of ECE, Siddharth Institute of Engineering & Technology, Puttur-517583, Andhra Pradesh, India
3M.Tech Student, CNST, JNTUniversity Hyderabad,

Centre for Nano Science & Technology, IST, JNTU Hyderabad, Kukatpally,Hyd-500085, Telangana, India

Abstract— Floating-point unit (FPU) is one of the most important
custom applications needed in most hardware designs as it adds
accuracy and ease of use. Its applications range from multimedia
and 3D graphics processing to scientific and engineering
applications. In this thesis we designed a ASIC implementation of
a novel single-precision floating point processing element (FPPE)
using a 24-b variant is presented for multi operations based on
selection such as addition, subtraction, multiplication and
accumulation operations. This FPPE can be designed by using
24X24 Dadda multiplier. We also present a circuit-level
implementation of the Dadda multiplier to explore the various
Performance-speed tradeoffs involved.

The proposed floating point architecture is used in the
application development of DSP such as Finite impulse response
(FIR) filters, graphics processing, Discrete cosine transforms
(DCT), fast Fourier transform (FFTs) division and argument
reduction.

Keywords— Design of Dadda multiplier, floating point 32-b
design, floating point reconfiguration and its rounding

I. INTRODUCTION
Digital signal processing and multimedia applications

require large amounts of data, real-time processing ability and
very high speed. To represent very large or small values, large
range is required as the integer representation is no longer
appropriate. These applications and values can be represented
using the IEEE-754 standard based floating point
representation.

Multipliers are among the fundamental components

of many digital systems and, hence, their power dissipation
and speed are of primary concern. Multiplication plays an
essential role in computer arithmetic operations for both
general purpose and digital signal processors. For
computational extensive algorithms required by multimedia
functions such as finite impulse response (FIR) filters, infinite
impulse response (IIR) filters and fast Fourier transform
(FFT).In recent trends the column compression multipliers are
popular for high speed computations due to their higher
speeds.

In Wallace Multipliers partial product of N rows by

grouping into sets of three row set and two row set using (3,2)
counters and (2,2) counters respectively. But in case of Dadda

with the exact placement of the (3,2) counters and (2,2)
counters in the maximum critical path delay of the multiplier.
The hardware required for Dadda multiplier is lesser than the
Wallace multiplier, Wallace multiplier and Dadda multiplier
exhibits similar delay but Dadda multiplier is faster than the
Wallace multiplier.

II. ACHIEVEMENTS OF THIS WORK
The Architecture of this work was achieved the following

things.

 Extendable arithmetic algorithm for future-

generation architectures.

 Low area and Data path Elements

 Full processing of cores, with minor architectural

modifications.

 Allows Complex Arithmetic Computations.

 High Speed Elements for Media Reconfigurable

Processing.

III.DATAPATH ARCHITECTURES

A.DADDA MULTIPLIER:

The Dadda multiplier is a hardware multiplier design

invented by computer scientist Luigi Dadda in 1965. It is
similar to the Wallace multiplier, but it is slightly faster and
requires fewer gates.

Dadda multiplier essentially minimizes the number of adder

stages required to perform the summation of partial products.
Dadda multiplier consists of three stages. In the first stage, the
partial product matrix is formed. In the second stage, this
partial product matrix is reduced to a height of two. In the
final stage, these two rows are combined using carry
propagating adder.

International Journal of Engineering Trends and Technology (IJETT) – Volume 13 Number 8 – Jul 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 392

Fig1: Dadda multiplier architecture
Wallace multiplier is similar to Dadda multiplier, Dadda
multiplier is slightly faster than Wallace multiplier.

 Fig2: Wallace N-bit multiplier architecture

The second proposed data path structure is shown in Fig. 4.It
can be observed from the figure, that the data path also relies
on a divide and conquers approach for multiplication, by
following the same operand splitting technique described
earlier. However, an advantage over the previously proposed
Design is that this architecture eliminates the intermediate
Compressor stage by transmitting the partial products directly
to the 2N-bit carry-linked adders. Multiplexers placed after the
Multipliers impart additional flexibility and increase the range
of operations performed by the data path. These multiplexers
are controlled by one-hot select signals ADD, MUL, and
ACC, and send the appropriate signals to the inputs of the
adders. For a multiplication operation, the multiplexers send
the outputs of the two multipliers to the adders. For an
addition/subtraction operation, the two operands are selected

to be sent to the adders, while for an accumulation operation,
the multiplexers send the accumulated result along with a
string of zeroes to the adders.

Fig3: Dadda N-bit multiplier architecture

IV.IMPLEMENTATION OF FLOATING POINT ARCHITECTURE
AND IT’S ROUNDING CONFIGURATION

In this section, we present the organization of the
proposedFPPE based on the generalized data path
architectures. The proposed FPPE accepts 32-b single-
precision floating point operands A and B at the input stage.
The operands go through a data conditioning stage which
involves aligning the two sign bits SA and SB mantissas MA
and MB and adjusting the exponents EA and EB. These
adjusted operands then go through the arithmetic unit which
performs the addition, subtraction, and multiplication
operations. The result is then normalized and rounded before
the output stage.

 The operand A and B are compared for exponent
values.Thecomparision operation involves an 8-b subtraction
depending on EAand EB, produces difference and borrow bits.
This borrows (SS) bit is used to control the multiplexers. If
EA>EB , shift select is zero then the normal mantissa bits goes
to the pipeline-register, If EA<EB ,shift select is one then the
shifted mantissa bits goes to the pipeline-register through
Barrel shifter. A barrel shifter is a digital circuit that can shift
a data word by a specified number of bits in one clock cycle.
After alignment, the mantissas of the two numbers are sent to
a 24-b integer PE. This PE is a 24-b extension of the two data
path structures proposed in Section II. A bulk of the area of
this data path is occupied by the two 24 × 12multipliers.
Pipelining stages are often required in large dataPath or
multiplier structures, to ensure a high throughput and High
speed of operation. The exponent result is controlled by using
control signal. When control signal is set to one adder result is
directly sent to the pipeline register as exponent result

International Journal of Engineering Trends and Technology (IJETT) – Volume 13 Number 8 – Jul 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 393

otherwise EA or EB sent to the pipeline register based on shift
select value.

Fig2: 32-bFloating point multiplier architecture

The mantissa and exponent of the result obtained from the
integer PE now need to be normalized and rounded so as to be
represented back in the IEEE 754 floating point format. For
this purpose, a copy of the mantissa of the result is fed to a
modified leading one detector (LOD). This LOD works as a
priority encoder. This same value is used to adjust the
exponent accordingly. Once, the mantissa and exponent have
been adjusted to the IEEE 754 single-precision format, the 24
LSBs of the rotated mantissa are dropped. That is the 48-b
mantissa is truncated. This approach compromises on the
speed of the result.

A.ROUNDING:

First we take care of the sign and the exponent. The
sign is stored as is (usually in 1 bit). The exponent is stored as
is, if it is within the given range, otherwise we have underflow
if the exponent is too small, or overflow if it is too big, these
and other exceptions are dealt with differently on different
machines, sometimes underflow is set to 0.For the mantissa

we apply rounding. Rounding produces the computer number
closest to the real number. Notation: if x is a real number, fl(x)
is the computer representation of that number. Assume that
the computer can store k digits (in base _) for the mantissa.
Thus if x = ±0.d1d2d3d4 . . . × _n
Then with rounding fl(x) = ±0.e1e2e3e4 . . . ek × _n
Where ek = dk if dk+1 < _/2 or ek = dk + 1 if dk+1 _ _/2, and
the rest of the digits e1, . . . , ek−1 are the di appropriately
adjusted, i.e. if dk = _ −1 and dk+1 > _/2, then ek = 0 and
ek−1 = dk−1 +1, etc.
In some cases the exponent could also change (and cause
overflow).

V.CONCLUSION
In this paper, we presented our recent efforts in the

design of high-speed and low-area, data path elements for
reconfigurable media processing architectures. It was
observed that Dadda multiplier was around 14% faster and
consumed 27%–45% lower power, hence it was selected to
build the FPPE.The data paths are scalable and
parameterizable. This was demonstrated through the
implementation of a new FPPE.The generalized structure of
the data paths makes them ideal implementation platforms for
soft-processing-based systems.Also the power-delay product
of the proposed design is significantly lower than that of the
regular Wallace multiplier.Our future efforts in this area will
involve integrating these data path structures into a hybrid,
multigranular FPGA as well as soft-processing reconfigurable
array for low-cost, high-speed multimedia processing.

VI.REFERENCES
[1] DAPDNA-2 Product Brochure. (2010) [Online].
Available:http://www.ipflex.com
[2]L.DADDA,”some schemes for parallel multipliers”, Alta
Frequenza,vol.34, pp.349-356,1965.
[3] S. Xydis, G. Economics, and K. Pekmestzi, “Designing coarse-grain
reconfigurable architectures by inlining flexibility into custom arithmetic
data-paths,” Integration, VLSI J., vol. 42, pp. 486–503, Mar. 2009.6.
[3] S. Chalamalasetti, W. Vanderbauwhede, S. Purohit, and M. Margala,
“A low cost reconfigurable soft processor for multimedia applications:Design
synthesis and programming model,” in Proc. Int. Conf. Field Program. Logic
Devices, 2009, pp. 534–538.
[4] C. Baugh and B. Wooley, “A 2s complement parallel array multiplication
algorithm,” IEEE Trans. Comput., vol. 22, no. 2, pp. 1045–1047, Dec.1973.
[5] H. Oh, S. Mueller, C. Jacobi, K. Tran, S. Cottier, B. Micheal,
H.Nishikawa, Y. Totsuka, T. Namatame, N. Yano, T. Machida, and S.Dhong,
“A fully pipelined single-precision floating point unit in thesynergistic
processor element of a CELL processor,” IEEE J. Solid-StateCircuits, vol. 41,
no. 4, pp. 759–771, Apr. 2006.
[6] N. Hockert and K. Compton, “FFPU: Fractured floating point unit for
FPGA soft processors,” in Proc. Int. Conf. Field-Program.Technol.,
Dec.2009, pp. 143–150.
[7] S. Liang, R. Tessier, and O. Mencer, “Floating point unit generation and
evaluation for FPGAs,” in Proc. 11th Annu. IEEE Symp. Field-Program.
Custom Comput. Mach., Apr. 2003, pp. 185–194.

