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Abstract— Floating-point unit (FPU) is one of the most important 
custom applications needed in most hardware designs as it adds 
accuracy and ease of use. Its applications range from multimedia 
and 3D graphics processing to scientific and engineering 
applications. In this thesis we designed a ASIC implementation of 
a novel single-precision floating point processing element (FPPE) 
using a 24-b variant is presented for multi operations based on 
selection such as addition, subtraction, multiplication and 
accumulation operations. This FPPE can be designed by using 
24X24 Dadda multiplier. We also present a circuit-level 
implementation of the Dadda multiplier to explore the various 
Performance-speed tradeoffs involved. 
 

The proposed floating point architecture is used in the 
application development of DSP such as Finite impulse response 
(FIR) filters, graphics processing, Discrete cosine transforms 
(DCT), fast Fourier transform (FFTs) division and argument 
reduction.  
 
Keywords— Design of Dadda multiplier, floating point 32-b 
design, floating point reconfiguration and its rounding 

I. INTRODUCTION 
Digital signal processing and multimedia applications 

require large amounts of data, real-time processing ability and 
very high speed. To represent very large or small values, large 
range is required as the integer representation is no longer 
appropriate. These applications and values can be represented 
using the IEEE-754 standard based floating point 
representation. 

 
Multipliers are among the fundamental components 

of many digital systems and, hence, their power dissipation 
and speed are of primary concern. Multiplication plays an 
essential role in computer arithmetic operations for both 
general purpose and digital signal processors. For 
computational extensive algorithms required by multimedia 
functions such as finite impulse response (FIR) filters, infinite 
impulse response (IIR) filters and fast Fourier transform 
(FFT).In recent trends the column compression multipliers are 
popular for high speed computations due to their higher 
speeds. 

 
In Wallace Multipliers partial product of N rows by  

grouping into sets of three row set and two row set using (3,2) 
counters and (2,2) counters respectively. But in case of Dadda 

with the exact placement of the (3,2) counters and (2,2) 
counters in the maximum critical path delay of the multiplier. 
The hardware required for Dadda multiplier is lesser than the 
Wallace multiplier, Wallace multiplier and Dadda multiplier 
exhibits similar delay but Dadda multiplier is faster than the 
Wallace multiplier. 

II. ACHIEVEMENTS OF THIS WORK 
The Architecture of this work was achieved the following 

things. 
 

 Extendable arithmetic algorithm for future-

generation architectures. 

 Low area and Data path Elements 

 Full processing of cores, with minor architectural 

modifications. 

 Allows Complex Arithmetic Computations. 

 High Speed Elements for Media Reconfigurable 

Processing.  

 
III.DATAPATH ARCHITECTURES 

A.DADDA MULTIPLIER: 
 
The Dadda multiplier is a hardware multiplier design 

invented by computer scientist Luigi Dadda in 1965. It is 
similar to the Wallace multiplier, but it is slightly faster and 
requires fewer gates. 

 
Dadda multiplier essentially minimizes the number of adder 

stages required to perform the summation of partial products. 
Dadda multiplier consists of three stages. In the first stage, the 
partial product matrix is formed. In the second stage, this 
partial product matrix is reduced to a height of two. In the 
final stage, these two rows are combined using carry 
propagating adder. 
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Fig1: Dadda multiplier architecture 
Wallace multiplier is similar to Dadda multiplier, Dadda 
multiplier is slightly faster than Wallace multiplier. 
 

 Fig2: Wallace N-bit multiplier architecture 
 
The second proposed data path structure is shown in Fig. 4.It 
can be observed from the figure, that the data path also relies 
on a divide and conquers approach for multiplication, by 
following the same operand splitting technique described 
earlier. However, an advantage over the previously proposed 
Design is that this architecture eliminates the intermediate 
Compressor stage by transmitting the partial products directly 
to the 2N-bit carry-linked adders. Multiplexers placed after the 
Multipliers impart additional flexibility and increase the range 
of operations performed by the data path. These multiplexers 
are controlled by one-hot select signals ADD, MUL, and 
ACC, and send the appropriate signals to the inputs of the 
adders. For a multiplication operation, the multiplexers send 
the outputs of the two multipliers to the adders. For an 
addition/subtraction operation, the two operands are selected 

to be sent to the adders, while for an accumulation operation, 
the multiplexers send the accumulated result along with a 
string of zeroes to the adders. 

 
Fig3: Dadda N-bit multiplier architecture 

 
 

IV.IMPLEMENTATION OF FLOATING POINT ARCHITECTURE  
AND IT’S ROUNDING CONFIGURATION 

In this section, we present the organization of the 
proposedFPPE based on the generalized data path 
architectures. The proposed FPPE accepts 32-b single-
precision floating point operands A and B at the input stage. 
The operands go through a data conditioning stage which 
involves aligning the two sign bits SA and SB mantissas MA 
and MB and adjusting the exponents EA and EB. These 
adjusted operands then go through the arithmetic unit which 
performs the addition, subtraction, and multiplication 
operations. The result is then normalized and rounded before 
the output stage. 

 
 The operand A and B are compared for exponent 
values.Thecomparision operation involves an 8-b subtraction 
depending on EAand EB, produces difference and borrow bits. 
This borrows (SS) bit is used to control the multiplexers. If 
EA>EB , shift select is zero then the normal mantissa bits goes 
to the pipeline-register, If  EA<EB ,shift select is one then the 
shifted mantissa bits goes to the pipeline-register through 
Barrel shifter. A barrel shifter is a digital circuit that can shift 
a data word by a specified number of bits in one clock cycle. 
After alignment, the mantissas of the two numbers are sent to 
a 24-b integer PE. This PE is a 24-b extension of the two data 
path structures proposed in Section II. A bulk of the area of 
this data path is occupied by the two 24 × 12multipliers. 
Pipelining stages are often required in large dataPath or 
multiplier structures, to ensure a high throughput and High 
speed of operation. The exponent result is controlled by using 
control signal. When control signal is set to one adder result is 
directly sent to the pipeline register as exponent result 
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otherwise EA or EB sent to the pipeline register based on shift 
select value. 
 

 
Fig2: 32-bFloating point multiplier architecture 
 
The mantissa and exponent of the result obtained from the 
integer PE now need to be normalized and rounded so as to be 
represented back in the IEEE 754 floating point format. For 
this purpose, a copy of the mantissa of the result is fed to a 
modified leading one detector (LOD). This LOD works as a 
priority encoder. This same value is used to adjust the 
exponent accordingly. Once, the mantissa and exponent have 
been adjusted to the IEEE 754 single-precision format, the 24 
LSBs of the rotated mantissa are dropped. That is the 48-b 
mantissa is truncated. This approach compromises on the 
speed of the result. 
 
A.ROUNDING: 

First we take care of the sign and the exponent. The 
sign is stored as is (usually in 1 bit). The exponent is stored as 
is, if it is within the given range, otherwise we have underflow 
if the exponent is too small, or overflow if it is too big, these 
and other exceptions are dealt with differently on different 
machines, sometimes underflow is set to 0.For the mantissa 

we apply rounding. Rounding produces the computer number 
closest to the real number. Notation: if x is a real number, fl(x) 
is the computer representation of that number. Assume that 
the computer can store k digits (in base _) for the mantissa. 
Thus if x = ±0.d1d2d3d4 . . . × _n 
Then with rounding fl(x) = ±0.e1e2e3e4 . . . ek × _n 
Where ek = dk if dk+1 < _/2 or ek = dk + 1 if dk+1 _ _/2, and 
the rest of the digits e1, . . . , ek−1 are the di appropriately 
adjusted, i.e. if dk = _ −1 and dk+1 > _/2, then ek = 0 and 
ek−1 = dk−1 +1, etc. 
In some cases the exponent could also change (and cause 
overflow). 

V.CONCLUSION 
In this paper, we presented our recent efforts in the 

design of high-speed and low-area, data path elements for 
reconfigurable media processing architectures. It was 
observed that Dadda multiplier was around 14% faster and 
consumed 27%–45% lower power, hence it was selected to 
build the FPPE.The data paths are scalable and 
parameterizable. This was demonstrated through the 
implementation of a new FPPE.The generalized structure of 
the data paths makes them ideal implementation platforms for 
soft-processing-based systems.Also the power-delay product 
of the proposed design is significantly lower than that of the 
regular Wallace multiplier.Our future efforts in this area will 
involve integrating these data path structures  into a hybrid, 
multigranular FPGA as well as soft-processing reconfigurable 
array for low-cost, high-speed multimedia processing. 
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