
International Journal of Engineering Trends and Technology (IJETT) – Volume 14 Number 1 – Aug 2014

 ISSN: 2231-5381 http://www.ijettjournal.org Page 8

Scheduling in High Performance Computing
Environment using Firefly Algorithm and Intelligent

Water Drop Algorithm
Ms. D. Thilagavathi1, Dr. Antony Selvadoss Thanamani2

1Research Scholar, Research Department of Computer Science,
NGM College, Pollachi - 642001, Tamilnadu, India.

2 Professor and Head, Research Department of Computer Science,
NGM College, Pollachi - 642001, Tamilnadu, India.

Abstract - Scheduling of jobs in High Performance Computing
environment is a NP-Hard Problem. Many conventional algorithms
were used by the researchers to solve this problem. But the results
got by using swarm intelligence based algorithms gives a near
optimal solution then conventional method. In this paper, we
propose two such algorithms like Firefly Algorithm and Intelligent
Water Drop Algorithm which outperforms the results of
conventional algorithms and also some swarm intelligence
algorithms like Ant Colony Optimization, Particle Swarm
Optimization comparatively. Both this proposed algorithms are
used to dynamically create an optimal schedule to finish the
submitted jobs in a High Performance Computing environment
showing promising results.

Keywords— High Performance Computing, NP-Hard, Firefly,
Intelligent Water Drop, Ant Colony Optimization, Particle Swarm
Optimization.

I. INTRODUCTION
The term high performance computing (HPC) refers to any

computational activity requiring more than a single computer to
execute a task. HPC has the capacity to handle and analyze
massive amounts of data at high speed. Tasks that can take
months using normal computers is possible in days or even
minutes. It might be utilized to model and tackle highly complex
issues over a scope of high esteem areas.

Uses are diverse and examples include facial reconstruction
modeling, animated graphics, fluid dynamic calculations,
nuclear energy research, petroleum exploration, car crash
simulations, airflows over aircraft wings, data mining and
storage, and visualization.

The objective of task scheduling is to achieve high system
throughput and to match the application need with the accessible
computing resources. This is matching of resources in a non-
deterministically shared heterogeneous environment. The
decision of the best pairs of tasks and resources is NP-Hard

problem. A good task scheduler should adapt its scheduling
strategy to the changing environment and the types of tasks. In
recent years there has been a large increase in HPC technologies
research, which has produced some reference implementations.
Various sciences can benefit from the use of HPCs to solve
CPU-intensive problems, creating potential benefits to the entire
society.

In this paper, we address a job scheduling problem on High

Performance Computing environment, in which to obtain near
optimal solution so as to complete the task in minimum period
of time as well as utilizing the resources in an efficient way is
considered as the objective. To tackle this problem, Firefly
Algorithm (FA) and Intelligent Water Drop (IWD) algorithm is
proposed to search for the optimal schedule which in turn gives
the solution to complete the batch of jobs in minimum period of
time.

The rest of the paper is organized as follows. Section 2,
related works is described; Section 3 presents the problem
statement related to job scheduling. Details of the proposed
Firefly algorithm and Intelligent Water Drop Algorithm are
reported in Section 4 and 5 respectively. Comparison with other
conventional algorithms is discussed in Section 6 and the
conclusions are presented in Section 7.

II. RELATED WORKS
Both Grid and Cloud environment is HPC environment. Grid

computing is a form of distributed computing that involves
coordinating and sharing computing, application, data storage or
network resources across dynamic and geographically dispersed
organizations[1]. Cloud computing, the long-held dream of
“computing as a utility”, is emerging as a new paradigm of
large-scale distributed computing driven by economies of scale,
in which a pool of highly scalable, heterogeneous, virtualized,
and configurable and reconfigurable computing resources(e.g.,
networks, storage, computing units, applications, data) can be

International Journal of Engineering Trends and Technology (IJETT) – Volume 14 Number 1 – Aug 2014

 ISSN: 2231-5381 http://www.ijettjournal.org Page 9

rapidly provisioned and released with minimal management
effort in the data centers [2-6]. Scheduling in Grid and cloud
though has been intensively studied only during the recent year;
there exists a great variety of the algorithms for scheduling in
Grid and Cloud. This section discusses some of the research
works on the algorithms for scheduling in HPC used.

Several heuristic algorithms [7, 8] have been proposed for the

job scheduling problem. Ant Colony Optimization (ACO) is a
heuristic algorithm with efficient local search for combinatorial
problems. ACO imitates the behavior of real ant colonies in
nature to search for food and to connect to each other by
pheromone laid on paths travelled. Many researches use ACO to
solve NP-hard problems such as travelling salesman problem,
graph coloring problem, vehicle routing problem, and so on. In
paper [9] Ruay-Shiung Chang et al suggests modified ant
algorithm as Balanced ACO (BACO) algorithm which reduces
makespan time and also tried to balance the entire system load.
This work was implemented in the Taiwan UniGrid Platform.
The BACO algorithm selects a resource for submitting the
request (job) by finding the largest entry in the Pheromone
Indicator (PI) matrix among the available jobs to be executed.
This work was carried for independent jobs and not for
workflow jobs.

PSO is a population-based search algorithm based on the

simulation of the social behavior of bird flocking and fish
schooling. HU Xu-Huai et al [10] proposes an Immune Particle
Swarm Optimization (IPSO) algorithm. The basic idea of the
IPSO is to record the particles with a higher fitness in the
evaluating process, and make the new particles which satisfy
neither the assumption nor the constraint condition replaced by
the recorded ones. In addition, immune regulation should be
done to maintain the species diversity while it decreases. This
paper mainly discusses the independent task scheduling.
Experiments show that the PSO algorithm has the best integrate
performance.

Genetic algorithm may be used to solve optimization
problems by mimicking the genetic process of biological
organisms. In [11] authors investigate the job scheduling
algorithm in grid environments as an optimization problem. This
paper gives an improved genetic algorithm with limited number
of iteration to schedule the independent tasks onto Grid
computing resources. The evolutionary process is modified to
speed up convergence as a result of shortening the search time,
at the same time obtaining a feasible scheduling solution. The
scheduling creating process in GA algorithm costs the longest
time.

III. THE PROBLEM STATEMENT
Suppose that R = {r1, r2, r3, …, rm} are m resources and J={j1,

j2, j3, …, jm} are n independent client jobs. The speed of each

resource is expressed in the form of MIPS (Million Instructions
Per Second), and the length of each job is expressed in the form
of number of instructions. Define Cij as the time that resource ri
needs to finish job ji; ΣCi is the total time that resource ri
completes all the jobs submitted to it. Cmax = max {ΣCi} is
makespan time, which is the maximum completion time or the
time when the HPC system completes the latest job. The
flowtime, which is the total of execution times of all tasks
submitted to the HPC.

Makespan and flow time are critical factors in scheduling
problems; moreover the efficiency and effectiveness of each
algorithm depend mainly on the makespan and the flow time.

Scheduling the Longest Job on the Fastest Resource (LJFR)
rule minimizes the makespan time. However, to minimize the
flowtime we should use scheduling Shortest Job on the Fastest
Resource (SJFR) rule. Flowtime minimization tries to decrease
the average job completion time; at the cost of the longest job
finishing in a long time.

While, makespan minimization strives to make no job
finishes in too long time; at the cost of most jobs finish in long
time. So it is obvious that, the minimization of makespan will
consequently maximize the flowtime and vice versa. The goal of
job scheduling process is to dynamically allocate the n jobs to
the m resources in order to complete the tasks within a
minimum makespan and flowtime as well as utilizing the
resources effectively.

IV. FIREFLY ALGORITHM

A. Standard Firefly Algorithm
Firefly algorithm (FA) is a metaheuristic algorithm, inspired

by the flashing behavior of fireflies. The Firefly Algorithm (FA)
is a population-based technique to find the global optimal
solution based on swarm intelligence, investigating the foraging
behavior of fireflies [12].

The main function of the firefly's flash is to operate as a
signal method to attract other fireflies. The flashing signal by
fireflies is to attract mating partners and preys and share food
with others.

Similar to other metaheuristics optimization methods, firefly
algorithm generates random initial population of feasible
candidate solutions. All fireflies of the population are handled in
the solution search space with the aim that knowledge is
collectively shared among fireflies to guide the search to the
best location in the search space. Each particle in the population
is a firefly, which moves in the multi-dimensional search space
with an attractiveness that is dynamically updated based on the

International Journal of Engineering Trends and Technology (IJETT) – Volume 14 Number 1 – Aug 2014

 ISSN: 2231-5381 http://www.ijettjournal.org Page 10

knowledge of the firefly and its neighbors. Firefly optimization
algorithm illustrated by [12, 13] can be described as follows:

• The firefly x attracts all other fireflies and is attracted to
all other fireflies.

• The less bright firefly is attracted and moved to the
brighter one.

• The brightness decreases when the distance between
fireflies is increased.

• The brightest firefly moves randomly (no other fireflies
can attract it).

• The firefly particles are randomly distributed in the search
space.

According to above rules there are two main points in firefly
algorithm, the attractiveness of the firefly and the movement
towards the attractive firefly.

The main steps of firefly algorithm as described in [14, 15]
are as follows:
Create and initialize N firefly particles
Determine the light intensity for each firefly
Determine the distance between each tow fireflies
repeat

 for i=1: N
 for j=1 : N

 if (Ii <Ij) move firefly i towards firefly j end if
 Update the attractiveness with distance r by exp[-γr]

 Evaluate the new solution and update light intensity
End for j

 End for i
Rank the fireflies and find the current global best
until Termination condition is met

B. Merits
FA has two major advantages over other algorithms:

automatical subdivision and the ability of dealing with
multimodality. It outperforms other optimization methods in
terms of convergence and cost minimization in a statistically
significant manner [15]. Moreover, FAs are simple, distributed
and do not have central control or data source which allows the
system to become more scalable.

C. Demerits
Firefly algorithm has some disadvantage such as getting

trapped into several local optima. Firefly algorithm performs
local search as well and sometimes is unable to completely get
rid of them. Firefly algorithm parameters are set fixed and they
do not change with the time. In addition Firefly algorithm does
not memorize or remember any history of better situation for
each firefly and this causes them to move regardless of its
previous better situation, and they may end up missing their
situations.

D. Algorithm Complexity

Almost all metaheuristic algorithms are simple in terms of
complexity, and thus they are easy to implement. Firefly
algorithm has two inner loops when going through the
population n, and one outer loop for iteration t. So the
complexity at the extreme case is O (n2t). As n is small
(typically, n = 40), and t is large (say, t = 5000), the
computation cost is relatively inexpensive because the algorithm
complexity is linear in terms of t. The main computational cost
will be in the evaluations of objective functions, especially for
external black-box type objectives. This latter case is also true
for all metaheuristic algorithms. After all, for all optimization
problems, the most computationally extensive part is objective
evaluations. If n is relatively large, it is possible to use one inner
loop by ranking the attractiveness or brightness of all fireflies
using sorting algorithms. In this case, the algorithm complexity
of firefly algorithm will be O (ntlog (n)).

E. Applications

• Digital Image compression and Image processing
• Feature selection and fault detection
• Antenna design
• Structural design
• Scheduling
• Semantic web Composition
• Chemical base equilibrium
• Clustering
• Dynamic problems
• Rigid image registration problems

V. INTELLIGENT WATER DROP ALGORITHM

A. Standard Intelligent Water Drop Algorithm
Intelligent Water drops Algorithm was introduced by Shah-

Hosseini, H. in 2007 [16]. It is a population based constructive
optimization algorithm which has been inspired from natural
rivers and exploit the path finding strategies of rivers. A natural
river often finds good paths among lots of possible paths in its
ways from the source to destination. These near optimal or
optimal paths follow from actions and reactions occurring
among the water drops and the water drops with their riverbeds.
In the IWD algorithm, several artificial water drops cooperate to
change their environment in such a way that the optimal path is
revealed as the one with the lowest soil on its links. The
solutions are thus incrementally constructed by the IWD
algorithm.

In the original IWD algorithm [17, 18] the water drops are
created with two main properties:

International Journal of Engineering Trends and Technology (IJETT) – Volume 14 Number 1 – Aug 2014

 ISSN: 2231-5381 http://www.ijettjournal.org Page 11

• Velocity
• Soil

Both of above mentioned properties of IWD may change
during its lifetime. The IWD begins its trip from a source to
reach some destination with an initial velocity and zero soil.
During its trip, an IWD travels in the environment from which it
removes some soil and may gain some speed. This soil is
removed from the path joining the two locations. IWD is
supposed to flow in discrete steps. From its current location to
its next location, its velocity is increased by the amount that is
non-linearly proportional to the inverse of the soil between the
two locations and the amount of soil added to the IWD is non-
linearly proportional to the inverse of the time needed for the
IWD to pass from its current location to the next location.
Therefore, a path having less soil lets the IWD becomes faster
than a path having more soil and the time interval is calculated
by the laws of physics of linear motion. Thus, the time taken is
proportional to the velocity of the IWD and inversely
proportional to the distance between the two locations. An IWD
prefers the paths having low soils than the paths having high
soils.

The IWD algorithm as specified by Shah-Hosseini H. in is as
follows:

1. Initialization of static parameters.
2. Initialization of dynamic parameters.
3. Spread the IWDs randomly on the nodes of the graph.
4. Update the visited node list of each IWD.
5. Repeat Steps a to d for those IWDs with partial solutions.

a. For the IWD residing in node i, choose the next
node j, which does not violate any constraints of the problem
and is not in the visited node list of the IWD.

b. For each IWD moving from node i to node j,
update its velocity.

c. Compute the soil.
d. Update the soil.

6. Find the iteration-best solution from all the solutions
found by the IWDs.
7. Update the soils on the paths that form the current
iteration best solution.
8. Update the total best solution by the current iteration -
best solution.
9. Increment the iteration number.
10. Stops with the total best solution.

 B. Merits
• It provides good quality solutions using average values.
• IWD algorithm has fast convergence when compared to

other methods.

• It is also flexible in the dynamic environment and pop-up
threats are easily incorporated.

C. Algorithm Complexity

Time complexity of IWD Algorithm when there is M
Iterations, N Nodes, E Edges and N IWDs Path selection then
the complexity is O (M * N * E) which is Very small comparing
to O (2^N).

Space complexity for N IWD’s, N Solutions is O (N).

D. Applications

• Travelling Salesman Problem (TSP)
• Multidimensional Knapsack Problem
• Air Robot Path Planning
• N-Queen puzzle
• Vehicle Routing Problem
• Economic Load Dispatch
• Continuous Optimization Applications
• Scheduling problem
• Data clustering and Automatic multilevel thresholding

VI. COMPARISON WITH CONVENTIONAL ALGORITHMS

Comparison of bio-inspired algorithms with conventional
algorithms can be discussed on the basis of following criteria:

• Intelligence: Bioinspired Algorithms are based on simple
rules which take bottom-up approach. While conventional
algorithms takes top-down approach.

• Testing: In Bioinspired methods, improvements have to
be verified on successive generations taking more time
while in conventional, testing results can be obtained
immediately.

• Improvement: Improving of the Bio-inspired algorithms is
not easy because verifiability compared to conventional
algorithms.

• Flexibility to practical situation: Bioinspired algorithms
have to be modified when applied to practical problems,
while conventional algorithms are built keeping the
practical situations and the end result in mind.

VII. CONCLUSION
This paper presents strategies for scheduling jobs in HPC

environment using IWD algorithm and firefly algorithm which
is able to find optimal solutions. The efficiency and
practicability of IWD and FA is proved by testing in
experimental environment and the results were better compared
to that of conventional algorithms. From the results, it is proved
that IWD and FA are more efficient and it also avoids the
problem of consuming a large number of iterations. The results
of the experimental study support the claims that the proposed

International Journal of Engineering Trends and Technology (IJETT) – Volume 14 Number 1 – Aug 2014

 ISSN: 2231-5381 http://www.ijettjournal.org Page 12

algorithm is superior to other related strategies. As a
consequence, further research can focus on the points for
amplification of strengths and eliminating the weaknesses. The
IWD and FA algorithm demonstrates that the nature is an
excellent guide for designing and inventing new nature-inspired
optimization algorithms.

REFERENCES

[1] Foster I. The Grid: Blueprint for a New Computing Infrastructure (2nd
Edition) [M]. Morgan Kaufmann Publishers Inc., ISBN: 1-55860- 993-4,
2004.

[2] Armbrust M, Fox A, Griffith R, Joseph A D, Katz R, Konwinski A, Lee
G, Patterson D, Rabkin A and Stoica I, A view of cloud computing,
Communications of the ACM, Vol. 53, No. 4, 2010, pp. 50-58.

[3] Nidhi Jain Kansal and Inderveer Chana, Cloud. Load Balancing
Techniques : A Step Towards Green Computing, IJCSI International
Journal of Computer Science Issues, Vol. 9, Issue 1, No. 1, 2012, pp. 238-
246.

[4] Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T. and
Epema, D.H.J, Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing, IEEE Transactions on Parallel and
Distributed Systems, Vol. 22, No. 6, 2011, pp. 931-945.

[5] Almutairi, A., Sarfraz M., Basalamah S., Aref W. and Ghafoor A, A
Distributed Access Control Architecture for Cloud Computing, IEEE
Software Vol. 29, No. 2, 2012, pp. 36-44.

[6] Junaid Qayyum, Faheem Khan, Muhammad LaL, Fayyaz Gul,
Muhammad Sohaib and Fahad Masood, Implementing and Managing
framework for PaaS in Cloud Computing, IJCSI International Journal of
Computer Science Issues, Vol. 8, Issue 5, No. 3, 2011, pp. 474-479.

[7] Thilagavathi, D. and A. S. Thanamani, A Survey on Dynamic Job
Scheduling in Grid Environment Based on Heuristic Algorithms,
International Journal of Computer Trends and Technology Vol. 3, Issue 4,
2012, pp. 531-536.

[8] Thilagavathi, D. and A. S. Thanamani, Heuristics in Grid Scheduling,
International Journal of Advanced Research in Computer Engineering &
Technology (IJARCET) Vol. 2 Issue 8, August 2013, pp. 2427-2432.

[9] Ruay-Shiung Chang, Jih-Sheng Chang, Po-Sheng Lin, An ant algorithm
for balanced job scheduling in grids, Future Generation Computer
Systems 25 (2009) 20–27. (FGCS- Elsevier).

[10] HU Xu-Huai, OUYANG Jing-Cheng, YANG Zhi-He, CHEN Zhuan-
Hong, An IPSO algorithm for grid task scheduling based on satisfaction
rate, International Conference on Intelligent Human-Machine Systems
and Cybernetics, 2009.

[11] Hao Yin, Huilin Wu, Jiliu Zhou, Abdul Hanan Abdullah, and Chai
Chompoo-inwai, An Improved Genetic Algorithm with Limited Iteration
for Grid Scheduling, The Sixth International Conference on Grid and
Cooperative Computing(GCC 2007), IEEE.

[12] Yang, X.S., Nature-inspired metaheuristic algorithms. 2010: Luniver
Press.

[13] Senthilnath, J., S. Omkar, and V. Mani, Clustering using firefly
algorithm: Performance study. Swarm and Evolutionary Computation,
2011.

[14] Yang, X.S., Firefly algorithms for multimodal optimization. Stochastic
Algorithms: Foundations and Applications, 2009: p. 169-178

[15] Yousif, Adil, et al. Intelligent Task Scheduling for Computational Grid.
1st Taibah University International Conference on Computing and
Information Technology. 2012.

[16] Shah-Hosseini, H. (2007). Problem Solving by Intelligent Water Drops.
Proc. IEEE Congress on Evolutionary Computation, (pp. 3226-3231).
Singapore.

[17] Shah-Hosseini, H. (2008a). Intelligent water drops algorithm: a new
optimization method for solving the multiple knapsack problem. Int.
Journal of Intelligent Computing and Cybernetics, Vol. 1, No. 2, pp. 193-
212.

[18] Shah-Hosseini, H. (2008b). The Intelligent Water Drops algorithm: A
nature-inspired swarm-based optimization algorithm. Int. J. Bio-Inspired
Computation, Vol. 1, Nos. 1/2, pp. 71–79.

Ms. D. Thilagavathi received her MCA
degree from Bharathidasan University in 2001
and completed her M.Phil. degree in
Computer Science from Bharathiar University
in 2005. She is currently pursuing her Ph.D. at
the Research Department of Computer
Science, NGM College, Pollachi, under
Bharathiar University, Coimbatore. Her

research interests include Object Oriented Analysis and Design,
Grid Computing and Cloud Computing. She has 13 years of
teaching experience. She is presently working as an Assistant
Professor and Head, Department of Computer Technology,
NGM College, Pollachi.

Dr. Antony Selvadoss Thanamani is
presently working as Professor and Head,
Research Department of Computer Science,
NGM College, Pollachi, Coimbatore, India.
He has published more than 100 papers in
international/national journals and
conferences. He has authored many books on

recent trends in Information Technology. His areas of interest
include E-Learning, Knowledge Management, Data Mining,
Networking, Parallel and Distributed Computing. He has to his
credit 25 years of teaching and research experience. He is a
senior member of International Association of Computer
Science and Information Technology, Singapore and Active
member of Computer Science Society of India, Computer
Science Teachers Association, NewYork.

