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Abstract - Scheduling of jobs in High Performance Computing 
environment is a NP-Hard Problem. Many conventional algorithms 
were used by the researchers to solve this problem. But the results 
got by using swarm intelligence based algorithms gives a near 
optimal solution then conventional method. In this paper, we 
propose two such algorithms like Firefly Algorithm and Intelligent 
Water Drop Algorithm which outperforms the results of 
conventional algorithms and also some swarm intelligence 
algorithms like Ant Colony Optimization, Particle Swarm 
Optimization comparatively. Both this proposed algorithms are 
used to dynamically create an optimal schedule to finish the 
submitted jobs in a High Performance Computing environment 
showing promising results.  
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I. INTRODUCTION 
The term high performance computing (HPC) refers to any 

computational activity requiring more than a single computer to 
execute a task.  HPC has the capacity to handle and analyze 
massive amounts of data at high speed. Tasks that can take 
months using normal computers is possible in days or even 
minutes. It might be utilized to model and tackle highly complex 
issues over a scope of high esteem areas.  

Uses are diverse and examples include facial reconstruction 
modeling, animated graphics, fluid dynamic calculations, 
nuclear energy research, petroleum exploration, car crash 
simulations, airflows over aircraft wings, data mining and 
storage, and visualization. 

The objective of task scheduling is to achieve high system 
throughput and to match the application need with the accessible 
computing resources. This is matching of resources in a non-
deterministically shared heterogeneous environment. The 
decision of the best pairs of tasks and resources is NP-Hard 

problem. A good task scheduler should adapt its scheduling 
strategy to the changing environment and the types of tasks. In 
recent years there has been a large increase in HPC technologies  
research, which has produced some reference implementations. 
Various sciences can benefit from the use of HPCs to solve 
CPU-intensive problems, creating potential benefits to the entire 
society. 

 
In this paper, we address a job scheduling problem on High 

Performance Computing environment, in which to obtain near 
optimal solution so as to complete the task in minimum period 
of time as well as utilizing the resources in an efficient way is 
considered as the objective. To tackle this problem, Firefly 
Algorithm (FA) and Intelligent Water Drop (IWD) algorithm is 
proposed to search for the optimal schedule which in turn gives 
the solution to complete the batch of jobs in minimum period of 
time. 

The rest of the paper is organized as follows.  Section 2, 
related works is described; Section 3 presents the problem 
statement related to job scheduling. Details of the proposed 
Firefly algorithm and Intelligent Water Drop Algorithm are 
reported in Section 4 and 5 respectively. Comparison with other 
conventional algorithms is discussed in Section 6 and the 
conclusions are presented in Section 7. 

 

II. RELATED WORKS 
Both Grid and Cloud environment is HPC environment. Grid 

computing is a form of distributed computing that involves 
coordinating and sharing computing, application, data storage or 
network resources across dynamic and geographically dispersed 
organizations[1].  Cloud computing, the long-held dream of 
“computing as a utility”, is emerging as a new paradigm of 
large-scale distributed computing driven by economies of scale, 
in which a pool of highly scalable, heterogeneous, virtualized, 
and configurable and reconfigurable computing resources(e.g., 
networks, storage, computing units, applications, data) can be 
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rapidly provisioned and released with minimal management 
effort in the data centers [2-6]. Scheduling in Grid and cloud 
though has been intensively studied only during the recent year; 
there exists a great variety of the algorithms for scheduling in 
Grid and Cloud. This section discusses some of the research 
works on the algorithms for scheduling in HPC used. 

 
Several heuristic algorithms [7, 8] have been proposed for the 

job scheduling problem. Ant Colony Optimization (ACO) is a 
heuristic algorithm with efficient local search for combinatorial 
problems. ACO imitates the behavior of real ant colonies in 
nature to search for food and to connect to each other by 
pheromone laid on paths travelled. Many researches use ACO to 
solve NP-hard problems such as travelling salesman problem, 
graph coloring problem, vehicle routing problem, and so on. In 
paper [9] Ruay-Shiung Chang et al suggests modified ant 
algorithm as Balanced ACO (BACO) algorithm which reduces 
makespan time and also tried to balance the entire system load. 
This work was implemented in the Taiwan UniGrid Platform. 
The BACO algorithm selects a resource for submitting the 
request (job) by finding the largest entry in the Pheromone 
Indicator (PI) matrix among the available jobs to be executed. 
This work was carried for independent jobs and not for 
workflow jobs. 

 
PSO is a population-based search algorithm based on the 

simulation of the social behavior of bird flocking and fish 
schooling. HU Xu-Huai et al [10] proposes an Immune Particle 
Swarm Optimization (IPSO) algorithm. The basic idea of the 
IPSO is to record the particles with a higher fitness in the 
evaluating process, and make the new particles which satisfy 
neither the assumption nor the constraint condition replaced by 
the recorded ones. In addition, immune regulation should be 
done to maintain the species diversity while it decreases. This 
paper mainly discusses the independent task scheduling. 
Experiments show that the PSO algorithm has the best integrate 
performance. 

Genetic algorithm may be used to solve optimization 
problems by mimicking the genetic process of biological 
organisms. In [11] authors investigate the job scheduling 
algorithm in grid environments as an optimization problem. This 
paper gives an improved genetic algorithm with limited number 
of iteration to schedule the independent tasks onto Grid 
computing resources. The evolutionary process is modified to 
speed up convergence as a result of shortening the search time, 
at the same time obtaining a feasible scheduling solution. The 
scheduling creating process in GA algorithm costs the longest 
time. 

III. THE PROBLEM STATEMENT 
Suppose that R = {r1, r2, r3, …, rm} are m resources and  J={j1, 

j2, j3, …, jm} are n independent client jobs. The speed of each 

resource is expressed in the form of MIPS (Million Instructions 
Per Second), and the length of each job is expressed in the form 
of number of instructions. Define Cij as the time that resource ri  
needs to finish job ji; ΣCi  is the total time that resource ri 
completes all the jobs submitted to it. Cmax = max {ΣCi} is 
makespan time, which is the maximum completion time or the 
time when the HPC system completes the latest job. The 
flowtime, which is the total of execution times of all tasks 
submitted to the HPC. 

Makespan and flow time are critical factors in scheduling 
problems; moreover the efficiency and effectiveness of each 
algorithm depend mainly on the makespan and the flow time. 

Scheduling the Longest Job on the Fastest Resource (LJFR) 
rule minimizes the makespan time. However, to minimize the 
flowtime we should use scheduling Shortest Job on the Fastest 
Resource (SJFR) rule. Flowtime minimization tries to decrease 
the average job completion time; at the cost of the longest job 
finishing in a long time. 

While, makespan minimization strives to make no job 
finishes in too long time; at the cost of most jobs finish in long 
time. So it is obvious that, the minimization of makespan will 
consequently maximize the flowtime and vice versa. The goal of 
job scheduling process is to dynamically allocate the n jobs to 
the m resources in order to complete the tasks within a 
minimum makespan and flowtime as well as utilizing the 
resources effectively. 

IV. FIREFLY ALGORITHM 

A. Standard Firefly Algorithm 
Firefly algorithm (FA) is a metaheuristic algorithm, inspired 

by the flashing behavior of fireflies. The Firefly Algorithm (FA) 
is a population-based technique to find the global optimal 
solution based on swarm intelligence, investigating the foraging 
behavior of fireflies [12].  

The main function of the firefly's flash is to operate as a 
signal method to attract other fireflies. The flashing signal by 
fireflies is to attract mating partners and preys and share food 
with others.  

Similar to other metaheuristics optimization methods, firefly 
algorithm generates random initial population of feasible 
candidate solutions. All fireflies of the population are handled in 
the solution search space with the aim that knowledge is 
collectively shared among fireflies to guide the search to the 
best location in the search space. Each particle in the population 
is a firefly, which moves in the multi-dimensional search space 
with an attractiveness that is dynamically updated based on the 
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knowledge of the firefly and its neighbors. Firefly optimization 
algorithm illustrated by [12, 13] can be described as follows:  

• The firefly x attracts all other fireflies and is attracted to 
all other fireflies.  

• The less bright firefly is attracted and moved to the 
brighter one.  

• The brightness decreases when the distance between 
fireflies is increased.  

• The brightest firefly moves randomly (no other fireflies 
can attract it).  

• The firefly particles are randomly distributed in the search 
space.  

According to above rules there are two main points in firefly 
algorithm, the attractiveness of the firefly and the movement 
towards the attractive firefly.  

The main steps of firefly algorithm as described in [14, 15] 
are as follows:  
Create and initialize N firefly particles  
Determine the light intensity for each firefly 
Determine the distance between each tow fireflies  
repeat 

 for i=1: N  
   for j=1 : N 

 if (Ii <Ij) move firefly i towards firefly j end if  
   Update the attractiveness with distance r by exp[-γr]  

 Evaluate the new solution and update light intensity  
End for j  

 End for i  
Rank the fireflies and find the current global best 
until Termination condition is met 

B. Merits 
FA has two major advantages over other algorithms: 

automatical subdivision and the ability of dealing with 
multimodality. It outperforms other optimization methods in 
terms of convergence and cost minimization in a statistically 
significant manner [15]. Moreover, FAs are simple, distributed 
and do not have central control or data source which allows the 
system to become more scalable. 

C. Demerits 
Firefly algorithm has some disadvantage such as getting 

trapped into several local optima. Firefly algorithm performs 
local search as well and sometimes is unable to completely get 
rid of them. Firefly algorithm parameters are set fixed and they 
do not change with the time. In addition Firefly algorithm does 
not memorize or remember any history of better situation for 
each firefly and this causes them to move regardless of its 
previous better situation, and they may end up missing their 
situations. 

D. Algorithm Complexity 

Almost all metaheuristic algorithms are simple in terms of 
complexity, and thus they are easy to implement. Firefly 
algorithm has two inner loops when going through the 
population n, and one outer loop for iteration t. So the 
complexity at the extreme case is O (n2t). As n is small 
(typically, n = 40), and t is large (say, t = 5000), the 
computation cost is relatively inexpensive because the algorithm 
complexity is linear in terms of t. The main computational cost 
will be in the evaluations of objective functions, especially for 
external black-box type objectives. This latter case is also true 
for all metaheuristic algorithms. After all, for all optimization 
problems, the most computationally extensive part is objective 
evaluations. If n is relatively large, it is possible to use one inner 
loop by ranking the attractiveness or brightness of all fireflies 
using sorting algorithms. In this case, the algorithm complexity 
of firefly algorithm will be O (ntlog (n)). 

E. Applications 

• Digital Image compression and Image processing 
• Feature selection and fault detection 
• Antenna design 
• Structural design 
• Scheduling 
• Semantic web Composition 
• Chemical base equilibrium 
• Clustering 
• Dynamic problems 
• Rigid image registration problems 

 

V. INTELLIGENT WATER DROP ALGORITHM 

A. Standard Intelligent Water Drop Algorithm 
Intelligent Water drops Algorithm was introduced by Shah-

Hosseini, H. in 2007 [16]. It is a population based constructive 
optimization algorithm which has been inspired from natural 
rivers and exploit the path finding strategies of rivers. A natural 
river often finds good paths among lots of possible paths in its 
ways from the source to destination. These near optimal or 
optimal paths follow from actions and reactions occurring 
among the water drops and the water drops with their riverbeds. 
In the IWD algorithm, several artificial water drops cooperate to 
change their environment in such a way that the optimal path is 
revealed as the one with the lowest soil on its links. The 
solutions are thus incrementally constructed by the IWD 
algorithm.  

In the original IWD algorithm [17, 18] the water drops are 
created with two main properties:  
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• Velocity  
• Soil  

Both of above mentioned properties of IWD may change 
during its lifetime. The IWD begins its trip from a source to 
reach some destination with an initial velocity and zero soil. 
During its trip, an IWD travels in the environment from which it 
removes some soil and may gain some speed. This soil is 
removed from the path joining the two locations. IWD is 
supposed to flow in discrete steps. From its current location to 
its next location, its velocity is increased by the amount that is 
non-linearly proportional to the inverse of the soil between the 
two locations and the amount of soil added to the IWD is non-
linearly proportional to the inverse of the time needed for the 
IWD to pass from its current location to the next location. 
Therefore, a path having less soil lets the IWD becomes faster 
than a path having more soil and the time interval is calculated 
by the laws of physics of linear motion. Thus, the time taken is 
proportional to the velocity of the IWD and inversely 
proportional to the distance between the two locations. An IWD 
prefers the paths having low soils than the paths having high 
soils.  

The IWD algorithm as specified by Shah-Hosseini H. in is as 
follows:  

1. Initialization of static parameters.  
2. Initialization of dynamic parameters.  
3. Spread the IWDs randomly on the nodes of the graph.  
4. Update the visited node list of each IWD.  
5. Repeat Steps a to d for those IWDs with partial solutions.  

a. For the IWD residing in node i, choose the next 
node j, which does not violate any constraints of the problem 
and is not in the visited node list of the IWD.  

b. For each IWD moving from node i to node j, 
update its velocity.  

c. Compute the soil.  
d. Update the soil.  

6. Find the iteration-best solution from all the solutions 
found by the IWDs.  
7. Update the soils on the paths that form the current 
iteration best solution.  
8. Update the total best solution by the current iteration - 
best solution.  
9. Increment the iteration number. 
10. Stops with the total best solution.  

    B.  Merits 
• It provides good quality solutions using average values.  
• IWD algorithm has fast convergence when compared to 

other methods.  

• It is also flexible in the dynamic environment and pop-up 
threats are easily incorporated.  

C.  Algorithm Complexity 

Time complexity  of  IWD Algorithm when there is M 
Iterations, N Nodes, E Edges and  N IWDs Path selection then 
the complexity is O (M * N * E) which is Very small comparing 
to O (2^N).  

Space complexity for N IWD’s, N Solutions is O (N). 

D. Applications 

• Travelling Salesman Problem (TSP)  
• Multidimensional Knapsack Problem 
• Air Robot Path Planning 
• N-Queen puzzle 
• Vehicle Routing Problem 
• Economic Load Dispatch 
• Continuous Optimization Applications 
• Scheduling problem 
• Data clustering and Automatic multilevel thresholding 

 

VI. COMPARISON WITH CONVENTIONAL ALGORITHMS 

Comparison of bio-inspired algorithms with conventional 
algorithms can be discussed on the basis of following criteria:  

• Intelligence: Bioinspired Algorithms are based on simple 
rules which take bottom-up approach. While conventional 
algorithms takes top-down approach. 

• Testing: In Bioinspired methods, improvements have to 
be verified on successive generations taking more time 
while in conventional, testing results can be obtained 
immediately.  

• Improvement: Improving of the Bio-inspired algorithms is 
not easy because verifiability compared to conventional 
algorithms.  

• Flexibility to practical situation: Bioinspired algorithms 
have to be modified when applied to practical problems, 
while conventional algorithms are built keeping the 
practical situations and the end result in mind. 

VII. CONCLUSION 
This paper presents strategies for scheduling jobs in HPC 

environment using IWD algorithm and firefly algorithm which 
is able to find optimal solutions. The efficiency and 
practicability of IWD and FA is proved by testing in 
experimental environment and the results were better compared 
to that of conventional algorithms. From the results, it is proved 
that IWD and FA are more efficient and it also avoids the 
problem of consuming a large number of iterations. The results 
of the experimental study support the claims that the proposed 
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algorithm is superior to other related strategies. As a 
consequence, further research can focus on the points for 
amplification of strengths and eliminating the weaknesses. The 
IWD and FA algorithm demonstrates that the nature is an 
excellent guide for designing and inventing new nature-inspired 
optimization algorithms.  
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