
International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 7 – Sep 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 335

An Efficient Evolutionary and Cache Based
Cooperative Communication in Wireless Sensor

Network
M.Srinivasa Rao1 and N.Sarath Babu2

1 M.Tech Student, 2 Asst. Professor
1,2CSE Dept., Swarnandhra Institute of Engineering and Technology, Narsapur.

Abstract: Cooperative communication is the one of the current
interesting research issue in the field of wireless sensors, various
cache based approaches proposed by various authors but cache
individually cannot increase the performance over MANET.
Topology architectures defined for data transmission and
cooperative communication in MANET, In this approach we are
introducing an empirical model for cooperative communication
with one of the evolutionary algorithm along with cache
implementation which is proposed in previous mechanism, In this
approach we consider the factors of signal strength and channel
capacity for calculating the communication cost then we
generates the chromosomes for data transmission between source
and destination through intermediate nodes.

Index terms: Cooperative communication, Cache, MANET,
Wireless Sensor Networks

I. INTRODUCTION

Mobile adhoc networks have many applications such as
web conferences, tourist centers, Wireless offices etc. For
increasing the accessibility of data mobiles nodes or
devices should maintain cache to store various data. By
increasing the data accessibility processing of the query
response takes more time. So accessing data from neighbor
nodes locally decreases the processing time and increases
the accessibility.

In this cooperative catching plays crucial role in
accessibility of data. Cooperative catching consists of
multiple nodes sharing and maintenance of the cached data.
In wired networks mostly use this cooperative catching to
increase the performance. By using this mobile nodes can
modify the route and send the data to the requested node.
So this process reduces the modification of the data in
wireless networks. Using authentication method user can
authenticate the data is authenticated or not which means
that the data received from the original source and not
modified in the network channel even another data
receivers are not trusted.

 Identifying the data source is authenticated or not
is complex task because any receiver with the shared key
can copy the data and duplicate the sender. Attaching the
authentication signature with the data using shared key
does not work every time because of impersonation. So we
adopt cryptographic techniques to generate digital
signatures using private key (which is not shared in the
network) for authentication. Mobiles nodes can verify the
combination of the signature and data using the source
public key. There are two types of cooperative catching
techniques. They are cooperative catching and layered
catching.

 Cooperative catching functions are linked with
network layer. Then the node can check every packet send
to requested node. This approach has some drawbacks such
as network layer mainly linked with kernel so it is very
difficult to customize it.

 Layered caching is having two options such as
cross layer information based function and another is
network layer using TCP or IP. Coming to the cross layer
based functions, at the time application sends data request
to routing layer. This approaches leads more complexity to
routing process required to maintain the cache data as
table. So it deals with fragment situations of the data not
pass through the requested node. Another one if any node
A request data from another node B, based on routing
method the sender node know neighbor node C and sends
request to neighbor node C attaching the request message.
Then C receives the request and it sends the request of A to
cache layer and that can check if the request serves locally
or not. This sequential process continues until the request
serve node A. This solution also has some drawbacks such
as to server corrupted free cache data more protocols need
TCP layer. So we have to move TCP Layer at every node
in the network. In this process data only send to routing
layer if cooperating cache is not used when request data.

International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 7 – Sep 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 336

 Further researches focused on asymmetric
cooperative caching techniques. In this we have three
phases such as forwarding the request message,
determining the caching node a forwarding the data reply.
In the below section explained its functionality in detail.
Then in section III we explained our proposed work.

II. RELATED WORK

Cooperative caching was implemented in wireless
p2p networks to cache the data. It was based on
asymmetric approach. In asymmetric approach to cache the
data, a layered design was considered. Cooperative cache is
designed as a middleware lying right below the application
layer and on top of the network layer (including the
transport layer). In asymmetric cooperative cache
approach, the data requests are transmitted to the cache
layer on every node, but the data replies are only
transmitted to the cache layer at the intermediate nodes that
need to cache the data. This solution not only reduces the
overhead of copying data between the user space and the
kernel space, it also allows data pipelines to reduce the
end-to-end delay.

Asymmetric cooperative caching:
In this there are three stages and those are presented below.
Requested Message Forwarding:
In this initially application generates request message and
sends to cache layer. Cache layer merges the original
message with destination address to reach the real
destination. In this process consider the cache access the
routing data and finds the next node to read the destination.
This process is done by the routing protocol depend on the
DSR routing protocol.

 At the time of the receiving the request message it
delivers that request to cache layer. Initially it checks the
requested serves locally otherwise it checks whether to
cache the requested data based on decision formula

suggested. The decision examines its local status that is the
access rate of this data request distance to the requested
node and route status. If the result is to cache the requested
data then its node identity will Cache List that is linked list
merged in the cache layer. When the request message
reaches the node has the data of the request the Cache List
in the message will include entire intermediate nodes with
the forwarding route which want to cache the requested

Determining the cache node:

At the time of request message reaches the destination node
that has cached the requested data the cache manager
verifies the Cache List and it makes the final decision on
which ones in the Cache List will cache the data and it may
deletes some nodes if required. Advantage of allowing the
data server reconsider the caching result is that the
requested node can use more parameters to clarify the
purpose of caching. For example, the data centre can add
update ratio as another parameter and re-evaluate the
caching decision. If many intermediate nodes decide to
cache the data based on the formula provided in the data
server can compare the relevance of each node, and select
those with highest relevance into Cache List, to avoid
generating too much unnecessary cache data. Also, if the
geographic location or hop distance of the intermediate
node in Cache List is attached, the data server can better
determine the distribution of the caching nodes, e.g. to
avoid too many data replicas in one area.

Sending Data Reply:

Unlike the data request, the data reply only needs
to be processed by those nodes that need to cache the data.
To deliver the data only to those that will cache the data,
tunnelling techniques are used. The data reply is
encapsulated by the cache manager, and tunnelled only to
those nodes appeared in Cache List.

The Asymmetric Cooperative Cache (ACC) is one

of the approaches in various network environments.
Simple-Cache is the traditional cache scheme that only
caches the received data at the query node. We also
compare these schemes to an Ideal Cooperative Cache
(ICC) approach, which does not have processing delay at
the cache layer. Further, upon receiving each packet, the
cache manager makes a copy of the packet and buffers it,
and then forwards the original one immediately. Thus, an
intermediate node can immediately forward the packet
without waiting until the whole data item is received,
which can maximize the pipeline effect. It is easy to see
that ICC sets up a performance upper bound that any
cooperative cache scheme can achieve.

Application layer

Cache layer

Network
&

Transport Layer

A Cache Node

International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 7 – Sep 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 337

Algorithm for asymmetric approach:

1. Initialize Cache cluster heads and gateways by finding
centroids for different transmission ranges.

2. Centroid for n points is calculated as follows:

X = (x1+x2+…….+xn)/n and
Y = (y1+y2+…….+yn)/n

3. Cache the status of the nodes by updating cache tables
maintained by Cache cluster heads.
4. Choose source and destination nodes.
5. Find shortest path from source to destination by using
DSR or AODV
6. Transmit the data if the nodes on the chosen path are all
active by retrieving status from Cache cluster heads.

III. PROPOSED WORK

 In our work we propose a topology, we presented
as special algorithm for moderate cooperative

communication between the nodes having parameters
network channel capability, strength of signal and
temporary memory that is cache implementation for
previous accessed / transferred data for accessing. It tends
to the increasing of communication cost, Hence we
introduced genetic algorithm leads to the optimal solution
for decreasing the communication cost. It applies the
method for path selection and mutation operation between
the nodes. Then mutation operation once again computes
the communication cost between the source node and the
destination node followed by relay nodes.

 In the initialize the communication between the
nodes we connect through socket programming. The node
which is connected with another node communication each
other at the time of data packet transfer. Each node in the
communication acts as a server and accept requests from
another nodes. It receives data packets from accepted nodes
and vice versa.

 Fig -1

Proposed Approach:

 Genetic algorithm is a process which uses the
operators to generate off spring of the previous group of
chromosomes. Here we explained about the operators
present in genetic algorithm such as Selection, Crossover
and Mutation.

Selection: This operator selects a chromosome in
existing set of chromosomes based on fitness. It copies that
selected chromosome without any changes into the new
chromosomes. It uses wheel selection that depends on
fitness value of the chromosomes in each generation and
the best fittest chromosomes more chances to get selected.

Crossover: This operator generates new
chromosomes based on particular probability from two
selected chromosomes. It swaps segments in chromosomes
at particular position in chromosomes produces new
chromosome.

Mutation: This operator generates new

chromosomes by interchanging the genes in chromosomes
itself.

Our Architecture:

The below architecture show our complete
proposed work. The Source node sends request to the
global (centralized) server using cache. If the data is not
present in cache the centralized server calculates the
optimal path by calculating the optimal cost and sends the
data packets using the path in secure channel. If the
requested data packet is available at cache there is no need
to connect with centralized server otherwise it connects
with server and copy data packet from the centralized
server and then copy to cache.

Node 2

Node 5

Node 6

Node 3

Node 1

Node 4

International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 7 – Sep 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 338

Analysis of Optimal Communication cost:

 At cooperative communication between the nodes
are communicate each other with optimal path which is
generated by genetic algorithm. At the time of data transfer
to receiver the source node calculates communication cost
and optimal path using genetic algorithm (evolutionary
algorithm). Then the source node selects one of the paths
from the set of optimal paths to transfer the data to
destination node.

Communication cost (complexity) =Signal-strength +
channel capability gets the optimal path which has the best
communication cost and transfer the data packet through
the path.

1. Source node chooses the destination to transfer
the data.

2. If the request received by the processing
method it generates the paths in architecture.

3. The Processing method calculates the path with
their signal strength and channel capability.

4. Then compute the communication complexity
with signal strength and network channel capacity for
fitness value.
5. Select optimal communication cost and transfers the
data.
 Here we explain an example, Take some set of
nodes A,B,C,D,E,F and if a node ’A’ wants to send the
data to receiver ’F’ , The processing module calculates all
the available paths from source to destination. Then apply
the fitness value and obtains the optimal path and transfer
the data over that path using the following Evolutionary
approach as shown below

ABCDEF

ABEDCF

AEDCBF

ACDBEF

Then compute the fitness value based on the
signal strength and channel capacity as communication cost
and Obtains the optimal path which has the best
communication cost and transmits the data over the path.

IV. CONCLUSION

 Finally we conclude our research work with efficient
cache implementation and evolutionary routing protocol
based on signal strength and channel capacity for
calculation of communication cost. Our primary factors
give optimal performance than the traditional weight based
approaches an cache improves the performance by
reducing the response time of the requested node.

V. FUTURE ENHANCEMENT

We are concluding our research work with efficient routing
approach for cooperative communication and cache
implementation for frequently accessed information. It
leads to optimal of usage of bandwidth, reduces the
network traffic and improves in terms of time complexity.
We can enhance our approach by reducing the time
complexity issues in the split cache replacement and by
implementing in our current approach.

REFERENCES

[1] Distributed Cooperative Caching in Social Wireless Networks.
Mahmoud Taghizadeh, Kristopher Micinski, Charles Ofria, Eric Torng,
and SubirBiswas

7. Forward
 Data Packets

3. Compute path

Response Source node Centralized server Destination
node

Cache
Intermediate

Node

1.Request

8. Same
Request

9. Response

4. Forward
Request

5. Data Packets

nse
2. Request

6. Data
Packets

International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 7 – Sep 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 339

[2] Improving On-Demand Data Access Efficiency InManets With
Cooperative Caching By Yu Du
[3] A Survey of Web Cache Replacement StrategiesStefan podlipnig and
laszlobo¨ szo¨ rmenyi
[4] A. Chankhunthod and P. B. Danzig and C. Neerdaels and M. F.
Schwartz and K.J. Worrell, A hierarchical internet object cache," in
USENIX Annual Technical Conference, 1996.
[5] L. Fan and P. Cao and J. Almeida and A. Z. Broder, \Summary cache:
a scalable wide-area web cache sharing protocol," IEEE/ACM
Transactions on Networking, vol. 8, no. 3, pp. 281{293, 2000.
[6] S. Iyer and A. Rowstron and P. Druschel, \Squirrel: A decentralized
peer-to-peer web cache," in PODC, 2002.
[7] S. Podlipnig and L. Boszormenyi, “A Survey of Web Cache
Replacement Strategies,” ACM Computing Surveys, vol. 35, pp. 374-398,
2003.
[8] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of Human Mobility on Opportunistic Forwarding Algorithms,”
IEEE Trans. Mobile Computing, vol. 6, no. 6,pp. 606-620, June 2007.
[9] “BU-Web-Client - Six Months of Web Client Traces,”
http://www.cs.bu.edu/techreports/1999-011-usertrace-98.gz, 2012.
[10] A. Wolman, M. Voelker, A. Karlin, and H. Levy, “On the Scale and
Performance of Cooperative Web Caching,” Proc. 17th ACM
Symp.Operating Systems Principles, pp. 16-31, 1999.
[11] S. Dykes and K. Robbins, “A Viability Analysis of Cooperative Proxy
Caching,” Proc. IEEE INFOCOM, 2001.
[12] M. Korupolu and M. Dahlin, “Coordinated Placement and
Replacement for Large-Scale Distributed Caches,” IEEE Trans.
Knowledge and Data Eng., vol. 14, no. 6, pp. 1317-1329, Nov. 2002.

