
International Journal of Engineering Trends and Technology- Volume3Issue1- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 47

Automated Anomaly and Root Cause
Detection in Distributed Systems

 G.D.K.Kishore1, Maddali Sravanthi2, Kurma Siva Naga Mrudhula3, J Sandeep4, Kilaru Swapna5

 1Asst.Professor, Dept. of Computer Science & Engineering, KLCE-522502,INDIA,
 2,3,4,5,Student, Dept. of Computer Science & Engineering, KLCE-522502, INDIA,

Abstract— It is a challenging issue to

identify a defective system in a large scale network.
The data collected from the distributed systems for
troubleshooting is very huge and may contain noisy
data, so manual checking and detecting of the
abnormal node is time consuming and error prone. In
order to solve this, we need to develop an automated
system that detects the anomaly. Though the defective
node is found it has to be rectified, for this we need to
know the root cause of the problem. In this paper we
present an automated mechanism for node level
anomaly detection in large-scale systems and the root
cause for anomaly. A set of data mining techniques
are used here to analyze the collected data and to
identify the nodes acting differently from others. We
use Independent Component Analysis (ICA) for
feature extraction. We also present some of the
mechanisms needed to know the root cause of the
problem. So the results will be abnormal nodes and
problem to be rectified in them. These can be
validated manually.
Keywords—node level anomaly identification,
large-scale systems, data mining techniques,
independent component analysis.
1 INTRODUCTION
Large scale distributed systems are becoming key
engines of IT industry. For a large commercial
system, execution anomalies, including erroneous
behavior or unexpected long response times, often
result in user dissatisfaction and loss of revenue.
These anomalies may be caused by hardware
problems, network communication congestion or
software bugs in distributed system components.
Most systems generate and collect logs for
troubleshooting, and developers and administrators
often detect anomalies by manually checking
system printed logs. However, as many large scale
and complex applications are deployed, manually
detecting anomalies becomes very difficult and
inefficient. In the distributed systems every hour
that a system is unavailable can cause undesirable
loss of processing cycles, as well as substantial
maintenance cost. When a system fails to function
properly, health-related data are collected across
the system for troubleshooting. Unfortunately, how
to effectively find anomalies and their causes in the
data has never been as straightforward as one
would expect. Traditionally, human operators are
responsible of examining the data with their
experience and expertise. Such manual processing
is time-consuming, error-prone, and even worse,

not scalable. As the size and complexity of
computer systems continue to grow, so does the
need for automated anomaly identification. To
address the problem, in this paper, we present an
automated mechanism for node-level anomaly
identification and the root cause for the anomaly
behaviour of the node. By finding the abnormal
nodes and the cause for the anomaly, system
managers are able to know where to fix the
problem and what problem to fix. The use of the
node in the error state can lead to node failure.
Hence, we seek to discover the nodes in error or
failed states, which are also called abnormal states
in the paper; we regard these nodes as anomalies
that require further investigation to say what makes
the node anomaly.

2 METHODOLOGY OVERVIEW
This automated mechanism can be triggered either
periodically with a predefined frequency or by a
system monitoring tool in case of unusual events.
In this paper, we focus on detecting anomalies in
homogeneous collection of nodes (also called
“groups”),and the reason for their anomaly
behaviour . The resulting list of anomalies and the
causes will be sent to system administrators for
final validation. As we will see later, by combining
the fast processing capability of computers with
human expertise, the proposed mechanism can
quickly discover anomalies and the causes with a
very high accuracy. The step we perform for
anomaly detection are

2.1. Data transformation. It is collection of
relevant data across the system and assembling
them into a uniform format called feature matrix
(generally in high dimensionality). Here, a feature
is defined as any individually measurable variable
of the node being observed, such as CPU
utilization, available memory size, I/O, network
traffic, etc.
2.2. Feature extraction. A feature extraction
technique, such as ICA, is applied on the feature
matrix to generate a matrix with much lower
dimensionality,
2.3. Outlier detection. It determines the nodes that
are “far away” from the majority as potential
anomalies. By analyzing the low-dimensional

International Journal of Engineering Trends and Technology- Volume3Issue1- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 48

matrix produced by feature extraction, a cell-based
algorithm is used to quickly identify the outliers.
2.4. Root cause detection: It determines whether a
deadlock occurrence or memory leakage problem
that caused the node to act like a anomaly.

3.IMPLEMENTATION DESCRIPTION

3.1. Data Collection: In this step we have to get
the information of the nodes in order to start the
working process. Here we use the remote method
invocation of java to get information of each and
every node to the server by remote procedural calls.
We have to compare the collected data, as data is in
arbitrary formats, data preprocessing has to be
applied to convert it into a single format. Possible
preprocessing includes converting variable-spaced
time series to constant-spaced ones, filling in
missing samplings, generating real-value samples
from system logs, and removing period spikes or
noises and normalization. The features to be
collected are CPU usage, memory available, IO
information etc.

3.2Feature Matrix Construction: the collected
information must be constructed in the form of
matrix with row representing a particular feature
information and column representing particular
node complete information.
Features Description
1.CPU_SYSTEM_PROC1
2.CPU_SYSTEM_PROC2

Percentage of CPU
utilization at system
level

3.CPU_USER_PROC1
4.CPU_USER_PROC2

Percentage of CPU
utilization at user
level

5.CPU_USER_PROC1
6.CPU_USER_PROC2

Percentage of time
CPU blocked for I/O

7.MEMORY_FREE Amount of free
memory (KB)

8.MEMORY_SWAPPED Amount of virtual
memory used(KB)

9.PAGE_IN Page in from
swap(KB/s)

10.PAGE_OUT Page out to
swap(KB/s)

11.IO_WRITE No of blocks written
per second

12.IO_READ No of blocks read
per second

13.CONTEXT_SWITCH No of context
switches per second.

14.PACKET_IN No of packets
received per second.

15.PACKET_OUT No of packets
transmitted per
second.

16.COMP_PROC1
17.COMP_PROC2

Computation time

18.COMM_PROC1
19.COMM_PROC2

Communication time

3.3 Dimensionality Reduction Using ICA:
There are a number of algorithms for performing
ICA. For the purpose of fast convergence, we
choose the FastICA algorithm. Whitening is a
typical pre-processing step used to simplify and
reduce the complexity of ICA algorithms. It
ensures that all the dimensions are treated equally
before the algorithm is run. For a vector v, its
whitening means that its covariance matrix is equal
to the identity matrix, that is, vvt = I ,where n is
the number of nodes in the distributed system. To
whiten the matrix Fn (feature matrix), we first
calculate i.covariance matrix C , and
ii. calculate nonzero Eigenvalues of C.
iii.Put them in a descent order:
λ1≥ λ2≥ … λr let v=diag(λ1, λ2, …, λr) and
E=[e1,e2,…,er] where ei is the Eigenvector
corresponding to λ i.
iv.The whitened data of Fn are defined as
 X = V -1/2ETFn; where X is a r × n matrix
and r ≤ m × k.
After whitening, ICA projects the data point.xi Є
IRr into a data point
 yi Є IRs as yi =WT xi. Where W is the matrix
obtained after whitening.
The convergence of FastICA is good . In our
experiments, generally only a few iterations are
needed,and the total calculation time is less than
0.1 second.[1]
3.4 Outlier Detection:
This step is to identify a subset of nodes that are
significantly dissimilar from the majority. In the
field of data mining, these nodes are called outliers.
CellBasedAlgorithm is used for this purpose.

Fig. 2. Cell-based outlier detection.
The data space is partitioned into
cells of length 푙 = 푑/2√푠 . Each cell is surrounded
by two layers: L1 (in the light-gray area) and L2 (in
the dark-gray area).The cell-based algorithm works
as follows. We first partition the data space that
holds y={푦1,푦2,푦3,푦4 … , 푦푛}into cells of length

International Journal of Engineering Trends and Technology- Volume3Issue1- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 49

 푙 = 푑/2√푠 (see Fig. 2). Each cell is surrounded by
two layers: 1) the first layer L1 includes those
immediate neighbours and 2) the second layer L2
includes those additional cells within three cells of
distance. For simplicity of discussion, let M be the
maximum number of objects within the d-
neighbourhood of an outlier (i.e., within a distance
of d). According to the outlier definition, the
fraction p is the minimum fraction of objects in the
data set that must be outside the d-neighbourhood
of an outlier.Hence,
푀 = 푛(1 − 푝). The cell-based algorithm aims to
quickly identify a large number of outliers and
nonoutliers .according to three properties, in the
order as listed below:
1. If there are >M objects in one cell, none of the
objects in this cell is an outlier.
2. If there are >M objects in one cell plus the L1
layer,none of the objects in this cell is an outlier.
3. If there are _M objects in one cell plus the L1
layer and the L2 layer, every object in this cell is an
outlier.
These properties are used in the order to determine
outliers and nonoutliers on a cell by cell basis
rather than on an object by object basis. For cells
not satisfying any of the properties,we have to
resort to object by object processing.The above
detection algorithm will separate the data set Y into
two subsets: normal data set Yn and abnormal data
set Ya. For each yi, we calculate its anomaly score:

ŋi=
0														,								푌푖Є푌푛
푑(푌푖,µ)	,								푌푖Є푌푎

where µ is the nearest point belonging to the
normal data set Yn. Anomaly score indicates the
severity of anomaly.The abnormal subset, along
with anomaly scores, will be
sent to system administrators for final
validation.[2]

4.DETECTING AND SOLVING THE
ROOT CAUSE

4.1 Insufficient CPU and Other CPU
problems

4.1.1. Insufficient CPU

In the peak times of the work, CPU resources might
be completely allocated and service time could be
excessive too. In this situation, you must improve
your system's processing ability. Alternatively, you
could have too much idle time and the CPU might
not be completely used up. In either case, you need
to determine why so much time is spent waiting.

To determine why there is insufficient CPU,
identify how your entire system is using CPU. Do
not just rely on identifying how CPU is used by

server processes. At the beginning of a workday,
for example, the mail system may consume a large
amount of available CPU while employees check
their messages. Later in the day, the mail system
may be much less of a bottleneck and its CPU use
drops accordingly.

To address this CPU problem, we distinguish
whether sufficient CPU resources are available and
recognize when a system is consuming too many
resources. Begin by determining the amount of
CPU resources used by system when system is:

 Idle
 At average workloads
 At peak workloads

Fig 3: CPU Utilization at different times
of working hours

 The above figure shows the usage of 100 users
working 8 hours a day, for a total of 800 hours per
day. Each user entering one transaction every 5
minutes translates into 9,600 transactions daily.
Over an 8-hour period, the system must support
1,200 transactions per hour, which is an average of
20 transactions per minute. If the demand rate were
constant, you could build a system to meet this
average workload.

However, usage patterns are not constant--and in
this context, 20 transactions per minute can be
understood as merely a minimum requirement. If
the peak rate you need to achieve is 120
transactions per minute, you must configure a
system that can support this peak workload.

For this example, assume that at peak workload
server can use 90% of the CPU resource. For a
period of average workload, then, server use no
more than about 15% of the available CPU
resource as illustrated in the following equation:

20 tpm/120 tpm * 90% = 15%

Where tpm is "transactions per minute".

International Journal of Engineering Trends and Technology- Volume3Issue1- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 50

If the system requires 50% of the CPU resource to
achieve 20 tpm, then a problem exists: the system
cannot achieve 120 transactions per minute using
90% of the CPU. However, if you tuned this
system so it achieves 20 tpm using only 15% of the
CPU, then, assuming linear scalability, the system
might achieve 120 transactions per minute using
90% of the CPU resources.

As users are added to an application, the workload
can rise to what had previously been peak levels.
No further CPU capacity is then available for the
new peak rate, which is actually higher than the
previous.

Workload is a very important factor when
evaluating your system's level of CPU use. During
peak workload hours, 90% CPU use with 10% idle
and waiting time may be understandable and
acceptable; 30% utilization at a time of low
workload may also be understandable. However, if
your system shows high utilization at normal
workloads, there is no more room for a "peak
workload". You have a CPU problem if idle time
and time waiting for I/O are both close to zero, or
less than 5%, at a normal or low workload.

4.3 Detecting and Solving CPU Problems

4.3.1 Detection of System CPU Utilization

Commands such as sar -u on many UNIX-based
systems enable you to examine the level of CPU
utilization on your entire system. CPU utilization in
UNIX is described in statistics that show user time,
system time, idle time, and time waiting for I/O. A
CPU problem exists if idle time and time waiting
for I/O are both close to zero (less than 5%) at a
normal or low workload.

4.3.2Solving CPU Problems by Changing
System Architectures

If you have maximized the CPU utilization power
on your system and have exhausted all means of
tuning your system's CPU use, consider
redesigning your system on another architecture.
Moving to a different architecture might improve
CPU use. This section describes architectures you
might consider using, such as:

 Single Tier to Two-Tier
 Multi-Tier: Using Smaller Client

Machines
 Two-Tier to Three-Tier: Using a

Transaction Processing Monitor
 Three-Tier: Using Multiple TP Monitors
 Oracle Parallel Server

Single Tier to Two-Tier

Consider whether changing from several clients
with one server, all running on a single machine
(single tier), to a two-tier client/server
configuration would relieve CPU problems.

Multi-Tier: Using Smaller Client Machines

Consider whether using smaller clients improves
CPU usage rather than using multiple clients on
larger machines. This strategy may be helpful with
either two-tier or three-tier configurations.

Two-Tier to Three-Tier: Using a Transaction
Processing Monitor

If your system runs with multiple layers, consider
whether moving from a two-tier to three-tier
configuration and introducing a transaction
processing monitor might be a good solution.

Three-Tier: Using Multiple TP Monitors

Consider using multiple transaction processing
monitors.

client client client

server

client client client

server

client client

l
client client

Server
server

clients

client client client

server

client client client

 TCP
Monitor

server

International Journal of Engineering Trends and Technology- Volume3Issue1- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 51

4.4 Memory Management Problems and
Detection

4.4.1Paging and Swapping

 Use commands such as sar or vmstat to
investigate the cause of paging and swapping
problems.

4.4.2Memory Leakage

When the nodes in the distributed systems
continuously utilize the memory and not leaving
the memory then the state is considered as the
memory leakage .it is a problem because the
memory is being wasted.

4.4.3Memory leakage Detection

When a process tries to consume more memory
than the virtual memory size, the system may crash.
We use DMMA(Dynamic Memory Monitoring
Agent), where we set the maximum memory
consumption limit can be set virtually for each
process. If memory utilization is higher than the
maximum memory consumption limit DMMA
consider the process in a bad state and identifies
that process running on the node has memory leak.
Otherwise DMMA considers the process in good
state.

4.5 Dead Locks and their Detection in the
Distributed Systems

4.5.1Deadlocks in Distributed Systems

Deadlocks in distributed systems are similar to
deadlocks in single processor systems, only worse.
They are harder to avoid, prevent or even detect.
They are hard to cure when tracked down because
all relevant information is scattered over many
machines. People sometimes might classify
deadlock into the following types: Communication
deadlocks -- competing with buffers for

send/receive Resources deadlocks -- exclusive
access on I/O devices, files, locks, and other
resources. We treat everything as resources, there
we only have resources deadlocks. Four best-
known strategies to handle deadlocks: The ostrich
algorithm (ignore the problem) Detection (let
deadlocks occur, detect them, and try to recover)
Prevention (statically make deadlocks structurally
impossible) Avoidance (avoid deadlocks by
allocating resources carefully)

Distributed Deadlock Detection

 Distributed Deadlock Detection Since preventing
and avoiding deadlocks to happen is difficult,
researchers works on detecting the occurrence of
deadlocks in distributed system.Deadlock detection
is realized by tracking which threads are waiting
for which resources. When a cycle is detected,
deadlock has occurred. Rather than tracking the
waiting relation as an explicit graph, we use thread-
local digests.
Let T ∈ N represent threads and R ∈ N represent
resources. Further, we define owner : R → T to
map resources to the threads which currently hold
them.Thread T’s digest, denoted DT , is the
set of other threads upon which T is waiting,
directly or indirectly.
The value of a given thread’s digest depends on the
thread’s current state:

1. If thread T is not trying to acquire a
resource,
 DT = {T}

 2. If T is trying to acquire a resource R,
 DT = {T} ∪ Downer(R).
A thread trying to acquire a resource has a digest
which includes itself as well as the digest of the
resource’s owner.

Fig5: Example of an explicit waits-for graph,of
which Dreadlocks maintains small per-thread
di-gests.
Moreover, the owner may itself be acquiring
another resource and so the digest represents the
transitive closure of the thread-centric waits-for
graph. When a thread begins to acquire a resource

client client client

 TCP
Monitor

server

clients

 TCP
Monitor

 TCP
Monitor

server

A x B

y

D

C

Thread

Resource

 Held by

 Acquiring

Acquiring next

International Journal of Engineering Trends and Technology- Volume3Issue1- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 52

(moving from state 1 to state 2 above),it detects
deadlock as follows:
 Thread T detects deadlock when acquiring
resource R if T ∈ Downer(R).
Consider the waits-for graph given in Figure ,
ignoring the dotted line for the moment. Thread A
is attempting to acquire lock x held by thread B
which, in turn, is trying to
acquire lock y held by thread C. Thread D is also
trying to acquire lock y. Following the above rules,
digests for this example are as follows:
DC = {C}
DD = {C, D}
DB = {C, B}
DA = {C, B, A}
The dotted line indicates that thread C tries to
acquire lock x. It discovers itself in DB, detects a
deadlock has been reached, and aborts. Digest
Propagation Threads must propagate updates to
digests to maintain per-thread transitive closures.
Each lock must provide a field that references its
owner’s digest.

5.Conclusion

In this paper we have presented an automated
mechanism for identifying anomalies in large scale
systems. We have applied three techniques of data
mining data transformation, feature extraction and
outlier detection. The results show the abnormal
nodes in large scale systems. In the abnormal nodes
the root cause of the anomalies are identified.
Finally these problems are manually validated.

ACKNOWLEDGMENT
 The authors would like to
Prof.S.Venkateswarulu Head of CSE, KLU Andhra
Pradesh-India, for his invaluable feedback and
review comments. The authors convey immense
reverence and thankfulness to Asst.Prof
G.D.K.Kishore KLU Andhra Pradesh-India for
providing the suggestion and guidance to this
project.
References:

[1] A. Hyva¨rinen and E. Oja, Independent
Component Analysis:Algorithms and
Applications,” Neural Networks, vol. 13, nos.
4/5,pp. 411-430, 2000.

[2] E. Knorr, R. Ng, and V. Tucakov, “Distance-
Based Outliers: Algorithms and Applications,” The
VLDB J., vol. 8, no. 3, pp. 237- 253, 2000.

[3] Roohi Shabrin S., Devi Prasad B., Prabu D.,
Pallavi R. S., and Revathi P.“Memory
Leak Detection in Distributed System” - World
Academy of Science, Engineering and Technology
16 2006. www.waset.org/journals/waset/v16/v16-
15.pdf

[4] Eric Koskinen andMaurice Herlihy
 Dreadlocks: Efficient Deadlock Detection
www.cl.cam.ac.uk/~ejk39/papers/dreadlocks-
spaa08.pdf

