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Abstract— Optical flow is the pattern of apparent motion of 

objects in a visual scene caused by the relative motion between 

an observer and the scene. There are many methods to extract 

optical flow, yet there is no platform that brings out comparison 

on the performance of these methods. In this paper, the 

comparison between the results obtained by the application of 

two major optical flow algorithms on different sets of image 

sequences is brought out. Also the applications of optical flow in 
vehicle detection and tracking are discussed. 
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I. INTRODUCTION 

Optical flow is defined as the apparent motion of image 

brightness patterns in an image sequence [11]. There are many 

methods to extract optical flow out of which, the gradient 

method is the basic method. But Gradient method cannot give 

a complete solution for optical flow fields because of the 

aperture problem. Hence to obtain a complete solution, two 

different Differential techniques namely Horn-Schunck 

algorithm and Lucas-Kanade algorithm are analysed and 
comparisons are made based on the results obtained.  

II. GRADIENT METHOD 

The basic method that has been developed to extract optical 

flow is the gradient method. Extraction of optical flow at the 

pixel level can be computed from an image sequence by 

making some assumptions about the spatiotemporal variations 

of image brightness. Our first assumption is that pixel 
intensities are translated from one frame to the next, 
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where  ( ⃗  )is image intensity as a function of space  ⃗  
(   ) and time t, and  ⃗⃗  (     )

 is the 2D velocity. We 
can expand the right-hand side of the above equation in terms 

of first order tailor series to obtain 

 

                  

 

where       and    denote the partial derivatives of intensity 

with respect to x, y and t respectively,         and 

       denote the x and y directional components of 2 

dimensional optical flow vector. The above equation is known 

as gradient constraint equation. 

Gradient method cannot give complete solution for optical 

flow fields because of aperture problem i.e., normal 

component parallel to gradient direction can be determined 

but tangential component perpendicular to gradient direction 

remains unsolved. We have analyzed two different solutions 

to the aperture problem in this paper. 

2.1. Differential techniques: 

Differential techniques compute velocity from spatiotemporal 

derivatives of image intensity. It can also be computed from 

the filtered versions of the image using low-pass or band-pass 

filters. The first instances used first-order derivatives and are 

based on image translation [1], [3], [4] 
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where   (   ) . From the Taylor expansion of (1) or from 

an assumption that intensity is conserved,   (   )   ⁄   . 

This implies 
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where   (   ) denote the partial derivative of   (   ) with 

respect to time,   (   )  (  (   )   (   ))  and       

denotes the usual dot product. The normal component (  ) of 

motion of spatial contours of constant intensity is given by (2) 

as       where s is the normal speed and n is the normal 

direction. There are two unknown components of V in the 

gradient constraint equation, constrained by only one linear 

equation. Further constraints are therefore necessary to solve 

for both components of V. 

Second-order differential methods use second-order 
derivatives to constrain 2-D velocity [4], [5], [6], [7]: 
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Equation (3) can be derived from (1) or from the 

conservation of  (   )    (   )   ⁄   . Conservation of 

  (   ) implies that first-order deformations of intensity 

should not be present. This is therefore a stronger restriction 

than the gradient constraint equation on permissible motion 

fields. To measure image velocity, assuming    (   )   ⁄  
 , the constraints in (3) may be used alone or together with (2) 

to yield an over-determined system of linear equations [8], 
[9]. However, if the aperture problem prevails in a local 
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neighborhood, then because of the sensitivity of numerical 

differentiation, second-order derivatives cannot be measured 

accurately to determine the tangential component of V. As a 
consequence, velocity estimates from second-order methods 

are often assumed to be less accurate than estimates from first-

order methods. 

Since differential techniques cannot give the result as 

accurate as first order differential methods, another way to 

constrain  ( ) is to combine local estimates of component 

velocity and/or 2-D velocity through space and time, thereby 

producing more robust estimates of  ( ) 

 

    

Fig 1, Fig 2: Original images at times t, (t+Δt) 

  

    

Fig 3, Fig 4: Images after applying differential technique 

 Fig 1 and Fig 2 are two frames of a video taken at instants 

t sec and (t+ Δt) sec respectively. Fig 3 and Fig 4 are the 
images obtained after applying differential technique to Fig 1 

and Fig 2 respectively. In Fig 3, the car and the bench are 

highlighted with blurred shapes whereas in Fig 4, only car is 

highlighted .Velocity values obtained through this method are 

(-2.0916, -0.1200). 

 

A. Horn-Schunck Algorithm: 

One method to determine the 2D velocity using gradient 

constraint equation is using global smoothness constraints. In 

this method, the velocity field is defined in terms of the 

minimum of a function defined over the image. 

Horn and Schunck [3] combined the gradient constraint 

with a global smoothness term to constrain the estimated 

velocity field (   )  ( (   )  (   )), minimizing the 

equation  

∫ (        )
    (||  ||

 

 
 ||  ||

 

 
)  

 
  (4)  

defined over a domain D, where the magnitude of λ reflects 

the influence of the smoothness term. We used λ = 0.5 instead 

of λ = 100 as suggested by Horn and Schunck [3], because it 
produced better results in most of our test cases. Iterative 

equations in (5) are used to minimize (4) and obtain image 

velocity. 
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where n denotes the iteration number,    and     denote 

initial velocity estimates (set to zero), and     and     denote 

neighbourhood averages of    and   . At most 100 iterations 

are made in all the test cases for computing the flow vectors. 
 

    

Fig 5, Fig 6: Images after applying Horn-Schunck algorithm 

The original method described by Horn and Schunck used 

first-order differences to estimate intensity derivatives. 

Application of Horn-Schunck algorithm to Fig 1 and Fig 2 

gives the images in Fig 5 and Fig 6. The velocities obtained 

through this method are (9.6837, 7.1435). 

 

B. Lucas-Kanade Algorithm: 

 

Though Horn-Schunck algorithm gives a complete solution 

for optical flow, it takes high computational time because of 

the iterations and hence resulting in the mathematical 

complexity. This can be rectified in Lucas-Kanade algorithm 
by implementing the concept of Least Square method. Here 

we find the velocity that minimizes the constraint errors. The 

least-squares (LS) estimator minimizes the squared errors [2] 

and is given as: 

 

 ( ⃗⃗)  ∑  ( ⃗)  ⃗⃗   ( ⃗  )    ( ⃗  )   ⃗   
 

where  ( ⃗) is a weighting function that determines the 

support of the estimator. Estimator is the region within which 

we combine constraints. To weight constraints in the center of 

the neighborhood highly, giving them more influence, we 

consider  ( ⃗)to be Gaussian. The 2D velocity  ̂ is the least 

squares flow estimate that minimizes  ( ⃗⃗). 
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The minimum of  ( ⃗⃗) can be found from its critical points, 

where its derivatives with respect to  ⃗⃗ are zero; i.e., 
 

  (     )
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These equations may be rewritten in matrix form: 

 

     ⃗⃗   ⃗⃗   (6) 

 

where the elements of M and  ⃗⃗ are: 
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∑     ∑   

 ]        ⃗⃗   (
∑     
∑     

)    

 

When   has rank 2, the Least Square estimate is  ̂      ⃗⃗. 
We implemented a weighted least-squares (LS) fit of local 

first-order constraints in equation (2) to a constant model for V 

in each small spatial neighborhood Ω by minimizing 

 
∑   ( )   (   )     (   )      (7) 

 

where  ( ) denotes a window function that gives more 

influence to constraints at the centre of the neighbourhood 

than those at the periphery. The solution to (7) is given by 

 

              (8) 

Where, for n points      at a single time t, 

     (  )       (  )    

        (  )      (  )   
      (  )       (  )    

 

The solution to (8) is                 , which is 

solved in closed form when       is non-singular, since it is 

a 2x2 matrix: 

        

          [
∑  ( )  

 ( ) ∑  ( )  ( )  ( )

∑  ( )  ( )  ( ) ∑  ( )  
 ( )

] (9) 

 

where all sums are taken over points in the neighbourhood  Ω. 

Equations (7) and (8) may also be viewed as weighted 

least-squares estimates of   from estimates of normal 

velocities      ; that is, (7) is equivalent to 

 
∑   ( )  ( )     ( )   ( )      (10) 

 

where the coefficients   ( ) reflect the confidence in the 

normal velocity estimates; here,  ( )  ||  (  t)||. The 

image sequence will be smoothed using spatiotemporal   

Gaussian filter with a standard deviation of 1.5 pixel-frames. 

This helps to attenuate temporal aliasing and quantization 

effects in the input. Fig 8 and Fig 9 are the resultant images 

after application of Lucas-Kanade algorithm to Fig 1 and Fig 
2. The velocities obtained through this method are (4, 3). 

 

    

Fig 7, Fig 8: Images after applying Lucas & Kanade algorithm 

2.2. Applications of Optical Flow: 

Motion estimation and video compression have developed as a 

major aspect of optical flow research. Optical flow is being 

used by robotics researchers in many areas such as: object 

detection and tracking, image dominant plane extraction, 

movement detection, robot navigation and visual odometry. 

Optical Flow Techniques can also be used in the restoration of 

Non-Uniformly warped images [12]. Optical flow information 
has been recognized as being useful for controlling micro air 

vehicles. 

III. RESULTS 

In Differential technique, 1st order deformation should not be 
present to solve 2nd order equations. But this is not possible in 

practical cases. So using simple differential techniques will 

not give accurate solutions for optical field. 

In Horn-Schunck algorithm, we optimize the function 

based on residuals from the brightness constancy. Here we 

improve the global smoothness but to reduce the mathematical 

complexity, we go for iterative method which is a time taking 

process. We used λ=0.5 instead of λ=100 since it produced 
better results in most of the cases.  

In Lucas-Kanade method we use image patches and 

windowing methods with least squares technique. 

These algorithms were tested on eight different sets of 

images for determining the flow field. Each algorithm 

produced its respective values of velocities and optical flow 

fields which are summarised below. Fig (a), (b) are the 

original images and Fig (c) is the resultant flow field. 
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        Fig 9 (a)    Fig 9 (b)                Fig 9 (c) 

 

     
        Fig 10 (a)    Fig 10 (b)                Fig 10 (c) 

 

     
        Fig 11 (a)    Fig 11 (b)                Fig 11 (c) 

 

     
        Fig 12 (a)    Fig 12 (b)                Fig 12 (c) 

 

     
        Fig 13 (a)    Fig 13 (b)                Fig 13 (c) 

 

 

     
        Fig 14 (a)    Fig 14 (b)                Fig 14 (c) 

 

     
             Fig 15 (a)    Fig 15 (b)                Fig 15 (c) 

 

     
                Fig 16 (a)    Fig 16 (b)                Fig 16 (c) 
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Table I 

COMPARISON OF VELOCITIES 

 

Method u v 

Horn-Schunck method 9.6837 7.1435 

Lucas-Kanade method 3 4 

 

The tabulated values are obtained by the application of 
Horn-Schunck algorithm and Lucas-Kanade algorithm on 

Fig 1 and Fig 2 respectively. In Table I, u represents 

normal component parallel to gradient direction and v 

represents tangential component perpendicular to gradient 

direction. The velocity values are calculated in pixels per 

frame. 

III. CONCLUSIONS 

From Table 1 it can be inferred that, when compared to 

Horn-Schunck algorithm, Lucas-Kanade algorithm 

improves the signal strength and reduces noise giving more 

accurate and relatively speed results. To obtain better 

results in Differential Technique, we can use band pass 

filter to reduce the given 1st order differentiation 

constraints. To improve the results of Horn-Schunck 

algorithm, we recommend spatiotemporal presmoothing. 

Results of Lucas-Kanade algorithm can be improved by 

using FIR filters. Using FIR filters will reduce the number 

of delay elements. 
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