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Abstract:- In this paper we are proposing an efficient decision 
support system for Diabetes Disease, apart from the 
traditional simple support vector machine. We are proposing 
an efficient two level approach for classifying data. In initial 
phase we extract optimal feature set from the training data by 
analyzing the optimality in the dataset, then new dataset is 
formed as optimal training dataset, now we apply our 
classification mechanism on the optimal feature set. 

I.INTRODUCTION 

    Researchers  developed a fuzzy-based controller that 
incorporates expert knowledge to regulate the blood 
glucose level. Magni and Bellazzi [2] devised a stochastic 
model to extract variability from a self monitoring blood 
sugar level time series. Polat and Gunes [3] designed an 
expert system to diagnose the diabetes disease based on 
principal component analysis. Polat et al. [4] also 
developed a cascade learning system to diagnose the 
diabetes. Chang and Lilly [5] developed an evolutionary 
approach to derive a compact fuzzy classification system. 
Goncalves et al. [6] introduced an inverted hierarchical 
neuro-fuzzy BSP system for pattern classification and rule 
Extraction in databases and Kahramanli and Allahverdi [7] 
designed a hybrid neural network system for classification 
of the diabetes database. Chang-Shing Lee [8] designed as 
fuzzy expert system for diabetes decision support  
application based on the fuzzy ontology with five layer 
fuzzy ontology. Ismail saritas et al.[9] developed a fuzzy 
expert system to determine drug dose in treatment of 
chronic intestine  inflammation   using the concept of 
fuzzification. Mehdi Fasanghari et al.[10] developed a 
fuzzy expert system for Tehran stock exchange using the 
concept of fuzzification. Diabetes treatment focuses on 
controlling blood sugar levels to prevent various symptoms 
and complications through diet and exercise. The American 
Diabetes Association [11] categorizes diabetes into type-1 
diabetes, which is normally diagnosed in children and 
young adults, and type-2 diabetes, i.e., the most common 
form of diabetes that originates from a progressive insulin 
secretary defect so that the body does not produce adequate 
insulin or the insulin does not affect the cells. The Bayesian 
classification easing number of diabetics worldwide has 
drawn the attention of a diverse array of fields, including 
artificial intelligence and biomedical engineering, 
explaining why related technologies such as fuzzy 

inference mechanisms and fuzzy expert systems have been 
adopted for diabetes research. 
      More number of the studies have shown that patients 
suffering from Diabetes can significantly delay the onset 
and slow down the progression of diabetes micro- and 
macro-angiopathic complications through intensive 
treatment and monitoring as  In general intensive 
treatments imply a careful blood case of glucose level 
(BGL) self-monitoring process of  analysis of BGL 
measurements is one of the most important tasks in order to 
assess the glucose metabolic control and to revise the 
therapeutic model in  Recent clinical studies have shown 
the correlation between the glucose variability and the 
long-term diabetes related complications. 

 

II. RELATED WORK 

Expert knowledge system has    interesting research work 
during these years, specifically in the medical field of  
Diabetes mellitus. This illness requires continuous and 
regular treatment for the patient who are suffering with 
Diabetes mellitus, researchers in a way to find an optimal 
solution of expert knowledge system .Most of the 
Traditional knowledge systems and classifications  works 
with probability densities density variation between the 
training and testing datasets .These mechanisms suffering 
with so many drawbacks like new attribute recovery and 
mismatch of the the attribute in the training data set and 
testing dataset , because in there time environment end user 
analyst cannot expect the semantic so the attributes of the 
training and testing datasets So, if analyst can reduce the 
computational complexity regarding mismatched attributes 
and   We are rectifying one more drawback in the 
classification approach with elimination features, we will 
ignore the mismatched unavailable features from the 
training and testing datasets and calculates the posterior 
probability with the attributes of the datasets, the following 
procedure shows the document wise filtering and 
elimination. We integrated optimal extraction for the 
optimal diabetes results by eliminating the unavailable 
attributes from the training datasets and testing datasets 
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III. PROPOSED SYSTEM 

                  In this proposed approach we are introducing 
two level approaches. Initially we Extract the optimal 
feature set from the existing training data and calculate the 
positive and negative probability, until a new dataset is 
formed with same size and forwards the current generated 
dataset for the classification; there it classifies the testing 
data features with the new Dataset.   

A) Optimal Feature Extraction 

 Traditional approaches of knowledge expert system works 
with static measures and it may contains unnecessary 
information, which means the attributes doesn’t satisfies 
the minimum threshold value. In our proposed approach  
Dataset is gathered for the decision support system, with 
relevant diabetes characteristics or feature sets and before 
forwarding the dataset to the classification ,forward the 
Dataset to the Optimal feature set selection process with 
the specified threshold values of the Dataset. 

                      The objects satisfies the minimum threshold 
value can be treated as positive attributes and other can be 
treated as negative attributes, for  Optimal extraction of the 
datasets, remove the records which contains the negative 
attributes, forward the remaining dataset as optimal dataset 
to further classification process. 

B) Baye’s Theorem  
              Bayes theorem is a simple calculation of finding 
probability factors over existing and new attribute possible 
values over the samples .This approach shows the how the 
probability works with theoretical values of the samples, 
Bayesian can be applied in many ways while there is a 
possibility of existing attribute values and new samples and 
can be measures in terms of probability class labels.There 
are so many real time application which are using bayseian 
approach bank relation, corporate analyzes, educational 
analysis, science and technology etc.. 

 

           Notation of the bayes approach is given as follow 
with sample notation of the probability and with its 
conditional probability with respect to event 

P(T|E)= (ா|்)×(்)
(ா|்)×(்)ା(ா|~்)×(~்)

 

               In this below formula, T indicates the theory or 
hypothesis that we are interested in testing E represents a 
new piece of evidence that seems to confirm or disconfirm 
the theory. For any proposition S it will use P(S) to stand 
for our degree of belief, or "subjective probability," that S 
is true. Particularly P(T) represents our best estimate of the 
probability of the theory we are considering and prior to 
consideration of the evidence. It is known as the prior 
probability of T. Our work is to discover is the probability 
that T is true supposing that our new piece of evidence is 
true. This is a conditional probability and the probability is 
that one proposition is true provided that another 
proposition is true. Suppose you draw a card from a deck 
of 52 and without showing it to me. Consider that the deck 
has been well shuffled and I should believe that the 
probability that the card is a jack and P(J) is 4/52 or 1/13 
since there are four jacks in the deck. Suppose you tell me 
that the card is a face card. The resultant probability that 
the card is a jack and it is given that it is a face card and 
4/12, or 1/3, since there are 12 face cards in the deck. We 
denote this conditional probability as P(J|F), meaning the 
probability that the card is a jack given that it is a face card. 
(It don't need to take conditional probability as a primitive 
notion; we define it in terms of absolute probabilities: 
P(A|B) = P(A and B) / P(B) that is the probability that A 
and B are both true divided by the probability that B is 
true.) 

Using this idea of conditional probability to 
express what we want to use Bayes' Theorem to discover, 
we say that P(T|E), the probability that T is true given that 
E is true and it is the posterior probability of T. The idea is 
that P(T|E) represents the probability assigned to 
T after taking into account the new piece of evidence E. To 
find the value we need addition to the prior probability 
P(T) and two further conditional probabilities indicating 
how probable our piece of evidence is depending on 
whether our theory is or is not true. We can represent these 
as P(E|T) and P(E|~T) where ~T is the negation of T i.e. 
the proposition that T is false. Proposed approach as 
follows 
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Figure1: Proposed architecture 

 

C) Classification 

 
       For the Classification mechanism, we are using 
Bayesian classifier for classify the testing dataset with 
newly formed optimal feature set based Dataset for 
diabetes. This approach works with corresponding 
posterior probability of the individual features with respect 
to the original dataset. 
 
              For the classification process we are using 
Bayesian classifier for analyzing the testing data with the 
training information. Bayesian classifier is defined by a set 
C of classes and a set A of attributes. A generic class from 
C is denoted by cj and a generic attribute belonging to A as 
Ai.Consider a database D with a set of attribute values and 
the class label of the case. The training of the Naïve 
Bayesian Classifier consists of the estimation of the 
conditional probability distribution of each attribute is 
given in the class. 

              Here P(X) is prior probability =  

 P is the data sample from our set of fruits is red 
and round) P(X), P(H), and P(X/H) may be estimated from 
given data .Use of Bayes Theorem in Naïve Bayesian 
Classifier 

1. Each data sample is of the type  

 X=(xi) i =1(1)n, where xi is the values of X for 
attribute Ai 

2. Consider we have m classes Ci, i=1(1)m.  

 X  Ci iff  

 P(Ci|X) > P(Cj|X) for 1  j  m, ji  

 i.e BC assigns X to class Ci having highest 
posterior probability conditioned on X . The class for 
which P(Ci|X) is maximized is called the maximum 
posterior hypothesis. From Bayes Theorem 

3. P(X) is constant. Only                           need be 
maximized. 

  If class prior probabilities not known 
and assume all classes to be equally 
likely 

 else maximize                              

 P(Ci) = Si/S 

Problem: computing P(X|Ci) is unfeasible!  

(find that how would you find it and why it is infeasible) 

4. Naïve consideration is: attribute independence 

           = P(x1,…,xn|C) = P(xk|C) 

5. In order to classify an unknown sample X, 
evaluate    for each class Ci. Sample X is included 
to the class Ci iff  

P(X|Ci)P(Ci) > P(X|Cj) P(Cj) for 1  j  m, ji . 

 

Experimental Analysis: 

     Our implementation purpose we have used language 
java and some synthetic datasets for analysis, the following 
representation shows the complete implementation of the 
architecture. 

Optimal 
Extraction 

Dataset Optimal Dataset Naïve Bayesian 
Classifier 

Classified Data 

Testing Data 
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The above figure shows the Synthatic dataset before 
optimal extraction process and it it will be forwarded to 
optimal extraction process as follows 

 

 

In the above screen we will specify the threshold values of 
the attributes,then optimal extraction can be done(i.e 
retrieves the record which satisfies the threshold values). 

 

 

 

  Now we will forward the optimal dataset to our naïve 
classification approach for classifying the testing data with 
training data. 

 

 

Performance representation of the traditional naïve 
Bayesian and our optimal approach shown as below 
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                             Performance analysis 

 

IV.CONCLUSION 

  We conclude that the project our system provides an 
efficient knowledge expert system by the naïve 
classification, in our proposed approach instead of 
classifying the traditional testing data with training data, 
we forward the initial training data to the optimal process, 
to extract the optimal data set, on that optimal dataset we 
apply classification with Bayesian classifier. 
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