
International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2529

Evolutionary Computation Techniques Based
Optimal PID Controller Tuning

Sulochana Wadhwani#1, Veena Verma*2
#Department of Electrical Engineering, RGPV

MITS, Gwalior, Madhya Pradesh-474005, India

* Department of Electrical Engineering, RGPV
 MITS, Gwalior, Madhya Pradesh-474005, India

Abstract—The main aim of this paper is to analyse the
implementation of two Evolutionary Computation (EC)
techniques viz. Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) for optimal tuning of PID
controllers parameters and enumerate their advantages
over the conventional tuning methodologies. The two
techniques were implemented and analysed on a third
order plant model of a DC servomotor with the aim of
developing a position controller. The results obtained from
GA and PSO algorithms were compared with that
obtained from Ziegler Nichols method. It was found that
the evolutionary computation techniques outperformed
traditional tuning practices of Zeigler-Nichols at tuning of
PID controllers.

Keywords— PID Tuning, Evolutionary Computation,
Evolutionary Algorithm, Genetic Algorithm, Swarm Intelligence,
Particle Swarm Optimization

I. INTRODUCTION
In process control industry, majority of control system

loops are based on Proportional-Integral-Derivative (PID)
controllers. PID controllers are being widely used in industry
due to their well-grounded established theory, simplicity,
maintenance requirements, and ease of tuning. The basic
structure of the PID controllers makes it easy to regulate the
process output. Therefore, efficient design and tuning methods
leading to an optimal and effective operation of the PID
controllers in order to regulate the different parameters of the
plant are economically vital for process industries.

The main aim of this paper is to analyse the
implementation of two evolutionary computation techniques
viz. Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) for optimal tuning of PID controllers
parameters and enumerate their advantages over the
conventional tuning methodologies.

Genetic Algorithms (GA) are adaptive heuristic search
based on evolutionary ideas of natural selection and genetics.
Genetic Algorithms are effective and intelligent choices at
finding the best solution among the space of all feasible
solutions. Genetic Algorithms were used to evaluate the
optimum PID controller gain values where performance

indices ITAE, IAE, ISE and MSE were used as the objective
functions. It was experimentally determined that the Integral
of Absolute Magnitude of the error (IAE) performance
criterion produces the most effective PID controller when
compared with other performance criterion.

Particle swarm optimization (PSO) is a metaheuristic
algorithm based on swarm behaviour observed in nature such
as in bird flocking or fish schooling. It attempts to mimic the
natural process of group communication of individual
knowledge, to achieve some optimum property. PSO searches
the space of an objective function by adjusting the trajectories
of individual agents, called particles. Each particle traces a
piecewise path which can be modelled as a time-dependent
position vector.

The proposed methodologies were verified using a third-
order physical plant (Armature-controlled DC servomotor
position control system) where tuning algorithms were driven
mainly by the acquired system data and the desired
performance parameters specified by the user are successfully
satisfied. Resultant improvements on the step response
behaviour of DC servomotor position control system are shown
for two cases.

This paper is organized as follows: system modelling of
DC servomotor is presented in Section II, brief introduction to
EC is discussed in Section III, the basics of PID controller and
implementation of GA and PSO to optimize PID parameter is
presented in Section IV and V respectively. In Section VI,
simulated results obtained for the system considered are
shown. At the end, conclusion of the present research work is
given in Section VII.

II. SYSTEM MODELLING
As a reference we consider armature controlled DC

servomotor as shown in Figure 1. In the point of control
system, DC servo motor can be considered as linear SISO
plant model having third order transfer function. The DC
servomotors are found to have an excellent speed and position
control. A simple mathematical relationship between the shaft
angular position ‘휃’ and voltage input ‘푉 ’ to the DC motor
may be derived from physical laws.

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2530

Fig.1 Schematic Diagram of armature controlled DC Servo motor

The dynamic behaviour of the armature current-controlled

DC servomotor is given by the following equations [1]:

The air gap flux 휑 of the motor is proportional to the field
current so that

휑 = 푘 	푖 (푡)																																																																									(1)

The torque developed by motor is assumed to be related
linearly to air gap flux and the armature current as follows

푇 = 푘 	휑	푖 (푡)																																																																		(2)

표푟								푇 = 푘 	푘 	푖 (푡)	푖 (푡),

where 푘 푎푛푑	푘 are constants.

When a constant field current is established in a field coil, the
motor torque is

푇 = 푘 푖 (푡)																																																																					(3)

In Laplace transform notification,

푇 (푠) = 푘 퐼 (푠)																																																															(4)

The armature current is related to the input voltage applied to
the armature by

푉 (푠) = 푅 	퐼 (푠) + 퐿 푠	퐼 (푠) + 푉 (푠)																									(5)

where 푉 (푠) is back emf voltage proportional to the motor
speed. Therefore, we have

	푉 (푠) = 푘 휔(푠)																																																																(6)

where 휔(푠) = 푠휃(푠)the transform of the angular speed and
the armature is current is

퐼 (푠) =
푉 (푠) − 푘 휔(푠)

푅 + 퐿 푠 																																																											(7)

The motor torque is equal to the torque delivered to the load
which may be expressed as

푇 (푠) = 푇 (푠) + 푇 (푠)																																																														(8)

where 푇 is the load torque and 푇 is the disturbance torque
which is often negligible, so

푇 (푠) = 퐽푠 휃(푠) + 푏푠휃(푠)																																																								(9)	

Therefore, the transfer function of the motor load
combination, with		푇 = 0, is:

휃(푠)
푉 (푠) =

푘
푠 (퐿 푠 + 푅)	(퐽푠 + 푏) + 푘 푘

																												(10)

Or

휃(푠)
푉 (푠) =

푘
퐿 퐽푠 + (퐿 푏 + 푅 퐽)푠 + (푅 푏 + 푘 푘)푠									(11)

Here the angular displacement 휃(푠) is considered the output
and the armature voltage 푉 (푠) is considered the input. The
block diagram representation is shown in figure 2.

Fig.2 Block Diagram representation of a DC Servo motor

For the DC servomotor with parameters given in Appendix
A, the overall transfer function of the system is given as:

휃(푠)
푉 (푠) =

0.01
0.005푠 + 0.06푠 + 0.1001푠																																	(12)

ퟏ
(푳풂풔 + 푹풂) 풌풎

풌풃

ퟏ
(푱풔 + 푩) ퟏ

풔

푽풂(풔) 푰풂(풔)

푽풃(풔)

푻풎 푻풍

흎(풔) 휽(풔)

Disturbance 푇푑

Armature Load

푆푝푒푒푑

+
-

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2531

III. EVOLUTIONARY COMPUTATION
Evolutionary computing is the collective name for a range

of problem-solving techniques based on principles of
biological evolution, which are being increasingly applied to a
variety of problems, ranging from practical applications in
industry and commerce to leading-edge scientific research.
The idea in all these systems was to evolve a population of
candidate solutions to a given problem, using operators
inspired by natural genetic variation and natural selection.

Evolutionary computing techniques mostly involve
metaheuristic optimization algorithms. The field includes: [9]

Evolutionary algorithms (EA):

 Genetic algorithm
 Genetic programming
 Evolutionary programming
 Differential evolution

Swarm intelligence (SI):

 Artificial Bee Colony Algorithm
 Ant colony optimization
 Particle swarm optimization

An EA simulates an evolutionary process on a population

of individuals with the purpose of evolving the best possible
approximate solution to the optimization problem at hand.
Swarm intelligence is the collective behaviour of
decentralized, self-organized systems, natural or artificial. The
concept is employed in work on artificial intelligence.

Swarm Intelligence systems are typically made up of a
population of simple objects interacting locally with one
another and with their environment. Natural examples of SI
include ant colonies, bird flocking, animal herding, bacterial
growth, and fish schooling.

This paper mainly focuses Genetic Algorithm and Particle
swarm Optimization for the optimal tuning of PID controller
parameters as discussed in the following sections.

IV. GENETIC ALGORITHMS
A. Overview

Genetic Algorithms (GAs) are heuristic search techniques
based on an artificial simulation of the mechanisms
underlying the evolution of living beings: natural selection
and genetic.
The simplest form of genetic algorithm involves three types of
operators: selection, crossover, and mutation. GAs are
population-based search methods that work through the
following elements: populations of chromosomes, selection
according to fitness, crossover to produce new offspring, and
random mutation of new offspring.

The GA process consists in an iterative stepwise
refinement of the performance of the individuals. The first
step is the creation of a new population composed of
individuals randomly generated. Then a fitness function
evaluates and assigns to each individual a performance
measure, or fitness value. The definition of the fitness
function depends on the objective function. Then this
population evolves for a number of iteration called generation
until to satisfy a termination criterion.

B. GA-Based PID Controller Optimization

1) GA Tuning Parameters

The values in the Table 1 describe the GA settings used for

this work.
TABLE 1: GA Tuning Parameters

PARAMETERS VALUES
Lower bound [Kp Ki Kd] [0 0 0]
Upper bound [Kp Ki Kd] [100 100 100]
Stopping criteria (Iterations) 100
Population Size 40
Crossover Fraction 4
Mutation Fraction 0.08

2) Steps in GA-Based PID Controller Optimization

Step 1 % Establish initial population of individuals %
An initial random population having P(t) individuals
is generated.

Step 2 % Evaluate the fitness of each individual in P(t)%
 Evaluate all the individual solutions with the fitness
 function, which can be the inverse of error function.

Step 3 % Select some highly fit solutions%
 Select P’(t+1) form intermediate population of fittest
 members from initial population P(t).

Step 4 % Apply crossover to selected solutions%
 Pair off and mate individuals in P’(t+1) as parents
 and perform crossover operation to generate
 offsprings.

Step 5 % Apply mutation%
 Perform mutation by slightly changing some
 random solution.

Step 6 Steps 2–5 are repeated until the predefined value of
 the function or the number of iterations has been
 reached. Record the optimized Kp, Ki and Kd values.

Step 7 Perform closed-loop test with the optimised values
 of controller parameters and calculate the time
 domain specification for the system.

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2532

Fig.3 Convergence of Genetic Algorithm

Fig.4 Step responses for GA and ZN tuned system

Figure 3 shows the convergence of genetic algorithm through
various generations for the three PID parameters, Kp, Ki and
Kd. The comparative output responses of the system tune
using GA-based PID controller and conventionally tuned PID
controller using Zeigler Nichols (ZN) method is shown in
figure 4. The GA tuned system exhibits greatly reduced
overshoot, rise time and settling time.

V. PARTICLE SWARM OPTIMIZATION
A. Overview

Particle swarm optimization (PSO) algorithm is a
population-based evolutionary computation technique
developed by the inspiration of the social behaviour in bird
flocking or fish schooling. It attempts to mimic the natural
process of group communication of individual knowledge, to
achieve some optimum property. In this method, a population
of swarm is initialized with random positions Si and velocities
Vi. At the beginning, each particle of the population is
scattered randomly throughout the entire search space and
with the guidance of the performance criterion, the flying
particles dynamically adjust their velocities according to their

own flying experience and their companions flying
experience.

In PSO, each single solution is a “bird” in the search
space; this is referred to as a “particle”. The swarm is
modelled as particles in a multidimensional space, which have
positions and velocities. These particles have two essential
capabilities: their memory of their own best position and
knowledge of the global best [10].

Each particle remembers its best position obtained so far,
which is denoted as pbest (푃). It also receives the globally
best position achieved by any particle in the population, which
is denoted as gbest (퐺).

The updated velocity of each particle can be calculated
using the present velocity and the distances from pbest and
gbest as given by the following equations:

푉 = 푊 ∙ 푉 + 퐶 ∙ 푅 ∙ (푃 − 푆) + 퐶 ∙ 푅 ∙ (퐺 − 푆)

(13)
푆 = 푆 + 푉 																																																																								(14)

푊 = (푊 − 퐼푡푒푟) ×
(푊 −푊)

퐼푡푒푟 																										(15)

The updated velocity and the position are given in (13) and
(14), respectively. Equation (15) shows the inertia weight.

B. PSO-Based PID Controller Optimization

1) PSO Tuning Parameters

The values in the Table 2 describe the PSO settings used
for this work

TABLE 2: PSO Tuning Parameters

PARAMETERS VALUES
Lower bound [Kp Ki Kd] [0 0 0]
Upper bound [Kp Ki Kd] [100 100 100]
Stopping criteria (Iterations) 100
Population Size 40
Maximal velocity factor 0.2
Inertial weight factor [Min Max] [0.4 0.9]
Acceleration constants [c1, c2] [2 2]

 2) Steps in PSO-Based PID Controller Optimization [2]

Step 1 % Assign values for the PSO parameters %

Initialize: swarm (N) and step size; learning rate (C1,
C2) dimension for search space (D); inertia (W);
% Initialize random values and current fitness %
R1=rand (D, N); R2=rand (D, N);
current fitness =0*ones (N, 1).

Step 2 % Initialize Swarm Velocity and Position %
 Current position =10*(rand (D, N)-0.2),
 Current velocity =0.5*rand (D, N)

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step Response

Time (sec)

Am
pl

itu
de

GA Controlled Sys
ZN Controlled Sys

0 10 20 30 40 50 60 70 80 90 100
88

90

92
Kp Value

G
ai

n

0 10 20 30 40 50 60 70 80 90 100
0

50

100
Ki Value

G
ai

n

0 10 20 30 40 50 60 70 80 90 100
90

95

100
Kd Value

Generations

G
ai

n

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2533

Step 3 Evaluate the objective function of every particle
 and record each particle’s 푃 and퐺 . Evaluate the
 desired optimization fitness function in D-dimension
 variables.
Step 4 Compare the fitness of particle with its 푃 and
 replace the local best value as given below.
 for i=1: N
 If current fitness (i) < local best fitness (i);
 Then local best fitness = current fitness;
 local best position = current position (i);
 end
 % same operation to be performed for 퐺 %.

Step 5 Change the current velocity and position of the
 particle group according to (13) and (14).

Step 6 Steps 2–5 are repeated until the predefined value of
 the function or the number of iterations has been
 reached. Record the optimized Kp, Ki and Kd values.

Step 7 Perform closed-loop test with the optimised values
 of controller parameters and calculate the time
 domain specification for the system.
 If the values are within the allowable limit, consider
 the current Kp, Ki and Kd values. Otherwise perform
 the retuning operation for Ki, by replacing the
 optimised numerical values for Kp and Kd.

Fig.5 Step responses for GA and ZN tuned system

The output response of the system tune using PSO-based PID
controller is shown in figure 5. The system exhibits nearly
zero overshoot and remarkably reduced rise time.

V. SIMULATION RESULTS

Fig.6 Block diagram for PID parameters tuning using PSO/GA.

In order to improve the performance of the dc motor under
transient and steady state condition, a PID controller is
inserted in the forward path as shown in Fig 6. The parameters
of the PID controller are now adjusted by using conventional
method i.e. Ziegler-Nichols method and the response obtained
for the DC servomotor is evaluated. Further again the
parameters of PID controller are obtained using evolutionary
computation of GA and PSO and the system step responses
are evaluated.
The controller gains were computed by using the classical
Zeigler-Nichols rules and evolutionary computation
techniques i.e. Genetic Algorithm and Particle swarm
optimization. The controller gains obtained from the methods
are listed in Table 3.

TABLE 3: Comparison of steady state responses

Figure 7 shows the corresponding step responses of ZN, GA
and PSO-based PID systems. It can be clearly seen that GA
tuned system shows improved response with respect to the
rise time and overshoot as compared to that of ZN tuned
system. However, system tuned with PSO has further
improved the overshoot of the considered system though the
rise time and settling time exhibit slight increament.

Fig.7 Comparitive step responses for GA, PSO and ZN tuned system

VI. CONCLUSIONS

TITLE ZN_PID GA_PID PSO_PID

Rise Time(sec) 0.2901 0.1070 0.9564
Settling Time
(sec) 5.0139 1.0721 2.4892

% Overshoot 61.7409 21.3911 0.8190
Peak Time (sec) 0.8492 0.2395 8.0611
Kd 12.6486 99.0275 16.5836
Kp 72.0720 91.7813 20.4031
Ki 102.6374 1.3092 0.3758

Step Response

Time (sec)

A
m

pl
itu

de

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

PSO_PID

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (sec)

A
m

pl
itu

de

STEP RESPONSES OF ZN PID, GA PID, PSO PID

ZN PID
GA PID
PSO PID

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue6- June 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2534

Application of evolutionary computation techniques to the
optimum tuning of PID controller led to a satisfactory close-
loop response for the system under consideration. Comparison
of the results as shown in Table 3 clearly reflects that the GA
and PSO tuned PID outperformed the classical Zeigler-
Nichols’s tuning method in order to achieve minimum rise
time, settling time overshoot and nearly zero steady state
error. The simulation results show that the PSO-based PID
controller tuning approach provides more improved
performance as compared to GA-based PID controller for the
considered system and hence, showed the superiority of the
PSO.

REFERENCES

[1]. Dorf and Bishop, Modern Control Systems, 9th Ed., Prentice-
Hall, Inc. 2001.

[2]. V. Rajinikanth and K. Latha, Tuning and Retuning of PID
Controller for Unstable Systems Using Evolutionary Algorithm,
Research Article, International Scholarly Research Network,
Volume 2012, Article ID 693545, doi:10.5402/2012/693545

[3]. Ömer Gündoğdu, optimal-tuning of PID controller gains using
genetic algorithms, Journal of Engineering Sciences, pp 131-
135, 2005 11(1).

[4]. Bhawna Tandon, Randeep Kaur, genetic algorithm based
parameter tuning of pid controller for composition control
system, International Journal of Engineering Science and
Technology, ISSN:0975-5462, Vol. 3 No. 8 August 2011, pp
6705-6711.

[5]. F. M. Amaral, Ricardo Tanscheit, Marco A. C. Pacheco, Tuning
PID Controllers through Genetic Algorithms, WSES
International Conference on Evolutionary Computation, Feb 12-
14, 2001, pp 6121-6124.

[6]. Neenu Thomas, Dr. P. Poongodi, Position Control of DC Motor
Using Genetic Algorithm Based PID Controller, Proceedings of
the World Congress on Engineering 2009 (ISBN: 978-988-
18210-1-0) Vol II WCE 2009, July 1 - 3, 2009, London, U.K.

[7]. Harinath Babu Kamepalli, The optimal basics for Gas, IEEE
Potentials, 0278-6648/01/$10.00 © 2001 IEEE, April/May 2001
pp 25-27.

[8]. Tom V. Mathew, Genetic Algorithm, Lecture notes
http://www.civil.iitb.ac.in/tvm/2701_dga/2701-ga-notes/ gadoc/
gadoc.html.

[9]. http://en.wikipedia.org/wiki/Evolutionary_computation
[10]. M. Molenaar, P. Nijdam, Y. Yan, W.A. Klop, Tuning a PID

controller: Particle Swarm Optimization versus Genetic
Algorithms, http://www.martinm.nl/attachments/028_paper_
tuning_ a_PID_controller.pdf

[11]. Sulochana Wadhwani, Veena Verma, Rekha Kushwah, “Design
and Tuning of PID Controller Parameters based on Fuzzy Logic
and Genetic Aalgorithm” , Int. Conf. on Soft Computing,
Artificial Intelligence, Pattern Recognition, Biomedical
Engineering and Associated Technologies (SAP-BEATS) 23-24
Feb ,2013”, Department of Electrical Engineering, MBM Eng.
College Jai Narain Vyas University,Jodhpur.

APPENDIX A: SYSTEM MODEL PARAMETERS

The parameters of the DC servomotor under consideration are
as follows:

(J) moment of inertia of the rotor 0.01 kg.m2
(b) motor viscous friction constant 0.1 N.m.s

(푘) back emf constant 0.01 V/rad/sec
(푘) motor torque constant 0.01 N.m/Amp
(푅) electric resistance 1.0 Ohm
(퐿) electric inductance 0.5 H

NOMENCLATURE

푖 Armature current in ampere,
 푖 Field current in ampere,
푘 Motor torque constant,
푘 Back emf constant,
 푉 Armature voltage in volts,
	푉 Back emf in volts,
 J Moment of inertia of rotor,
 b Viscous frictional constant of motor,
 휃 Angular displacement of shaft in radians,
 L Armature inductance in henry,
 R 	 Armature resistance in ohm
 C Positive acceleration constants (0–2)
gbest Global best position
Gc(s) Controller model
Gp(s) Process model
IAE Integrated absolute error
ISE Integral squared error
ITAE Integral time absolute error
Iter Iteration
Kp Proportional gain
Ki Integral gain
Kd Derivative gain
pbest Local best position.
R Random number (0-2)
R(s) Reference input
S Position of particle
V Velocity of particle
W Inertia weight of particle
Y(s) Process out

