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Abstract—The main aim of this paper is to analyse the 
implementation of two Evolutionary Computation (EC) 
techniques viz. Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO) for optimal tuning of PID 
controllers parameters and enumerate their advantages 
over the conventional tuning methodologies. The two 
techniques were implemented and analysed on a third 
order plant model of a DC servomotor with the aim of 
developing a position controller. The results obtained from 
GA and PSO algorithms were compared with that 
obtained from Ziegler Nichols method. It was found that 
the evolutionary computation techniques outperformed 
traditional tuning practices of Zeigler-Nichols at tuning of 
PID controllers. 
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I. INTRODUCTION 
In process control industry, majority of control system 

loops are based on Proportional-Integral-Derivative (PID) 
controllers. PID controllers are being widely used in industry 
due to their well-grounded established theory, simplicity, 
maintenance requirements, and ease of tuning. The basic 
structure of the PID controllers makes it easy to regulate the 
process output. Therefore, efficient design and tuning methods 
leading to an optimal and effective operation of the PID 
controllers in order to regulate the different parameters of the 
plant are economically vital for process industries. 

The main aim of this paper is to analyse the 
implementation of two evolutionary computation techniques 
viz. Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO) for optimal tuning of PID controllers 
parameters and enumerate their advantages over the 
conventional tuning methodologies. 

Genetic Algorithms (GA) are adaptive heuristic search 
based on evolutionary ideas of natural selection and genetics. 
Genetic Algorithms are effective and intelligent choices at 
finding the best solution among the space of all feasible 
solutions. Genetic Algorithms were used to evaluate the 
optimum PID controller gain values where performance 

indices ITAE, IAE, ISE and MSE were used as the objective 
functions. It was experimentally determined that the Integral 
of Absolute Magnitude of the error (IAE) performance 
criterion produces the most effective PID controller when 
compared with other performance criterion. 

Particle swarm optimization (PSO) is a metaheuristic 
algorithm based on swarm behaviour observed in nature such 
as in bird flocking or fish schooling. It attempts to mimic the 
natural process of group communication of individual 
knowledge, to achieve some optimum property. PSO searches 
the space of an objective function by adjusting the trajectories 
of individual agents, called particles. Each particle traces a 
piecewise path which can be modelled as a time-dependent 
position vector. 

The proposed methodologies were verified using a third-
order physical plant (Armature-controlled DC servomotor 
position control system) where tuning algorithms were driven 
mainly by the acquired system data and the desired 
performance parameters specified by the user are successfully 
satisfied. Resultant improvements on the step response 
behaviour of DC servomotor position control system are shown 
for two cases. 

This paper is organized as follows: system modelling of 
DC servomotor is presented in Section II, brief introduction to 
EC is discussed in Section III, the basics of PID controller and 
implementation of GA and PSO to optimize PID parameter is 
presented in Section IV and V respectively. In Section VI, 
simulated results obtained for the system considered are 
shown. At the end, conclusion of the present research work is 
given in Section VII. 

II. SYSTEM MODELLING 
As a reference we consider armature controlled DC 

servomotor as shown in Figure 1. In the point of control 
system, DC servo motor can be considered as linear SISO 
plant model having third order transfer function. The DC 
servomotors are found to have an excellent speed and position 
control. A simple mathematical relationship between the shaft 
angular position ‘휃’ and voltage input ‘푉 ’ to the DC motor 
may be derived from physical laws. 
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Fig.1  Schematic Diagram of armature controlled DC Servo motor 

 
The dynamic behaviour of the armature current-controlled 

DC servomotor is given by the following equations [1]:   

The air gap flux 휑 of the motor is proportional to the field 
current so that 
 
휑 = 푘 	푖 (푡)																																																																									(1) 

The torque developed by motor is assumed to be related 
linearly to air gap flux and the armature current as follows  
 
푇 = 푘 	휑	푖 (푡)																																																																		(2) 
 
표푟								푇 = 푘 	푘 	푖 (푡)	푖 (푡),  
 
where 푘 푎푛푑	푘  are constants. 
 
When a constant field current is established in a field coil, the 
motor torque is  

푇 = 푘 푖 (푡)																																																																					(3) 

In Laplace transform notification, 

푇 (푠) = 푘 퐼 (푠)																																																															(4) 

The armature current is related to the input voltage applied to 
the armature by  

푉 (푠) = 푅 	퐼 (푠) + 퐿 푠	퐼 (푠) + 푉 (푠)																									(5) 

where  푉 (푠) is back emf voltage proportional to the motor 
speed. Therefore, we have 

	푉 (푠) = 푘 휔(푠)																																																																(6) 

where 휔(푠) = 푠휃(푠)the transform of the angular speed and 
the armature is current is  

퐼 (푠) =
푉 (푠) − 푘 휔(푠)

푅 + 퐿 푠 																																																											(7) 

The motor torque is equal to the torque delivered to the load 
which may be expressed as  

푇 (푠) = 푇 (푠) + 푇 (푠)																																																														(8) 

where  푇  is the load torque and 푇  is the disturbance torque 
which is often negligible, so 

푇 (푠) = 퐽푠 휃(푠) + 푏푠휃(푠)																																																								(9)	 

Therefore, the transfer function of the motor load 
combination, with		푇 = 0, is: 

휃(푠)
푉 (푠) =

푘
푠 (퐿 푠 + 푅 )	(퐽푠 + 푏) + 푘 푘

																												(10) 

Or 

휃(푠)
푉 (푠) =

푘
퐿 퐽푠 + (퐿 푏 + 푅 퐽)푠 + (푅 푏 + 푘 푘 )푠									(11) 

 

Here the angular displacement 휃(푠) is considered the output 
and the armature voltage 푉 (푠) is considered the input. The 
block diagram representation is shown in figure 2. 

 

Fig.2  Block Diagram representation of a DC Servo motor 

For the DC servomotor with parameters given in Appendix 
A, the overall transfer function of the system is given as: 

 

휃(푠)
푉 (푠) =

0.01
0.005푠 + 0.06푠 + 0.1001푠																																	(12) 
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III. EVOLUTIONARY COMPUTATION 
Evolutionary computing is the collective name for a range 

of problem-solving techniques based on principles of 
biological evolution, which are being increasingly applied to a 
variety of problems, ranging from practical applications in 
industry and commerce to leading-edge scientific research. 
The idea in all these systems was to evolve a population of 
candidate solutions to a given problem, using operators 
inspired by natural genetic variation and natural selection. 

Evolutionary computing techniques mostly involve 
metaheuristic optimization algorithms. The field includes: [9] 
 
Evolutionary algorithms (EA): 

 Genetic algorithm 
 Genetic programming 
 Evolutionary programming 
 Differential evolution 

Swarm intelligence (SI): 

 Artificial Bee Colony Algorithm  
 Ant colony optimization 
 Particle swarm optimization 

 
An EA simulates an evolutionary process on a population 

of individuals with the purpose of evolving the best possible 
approximate solution to the optimization problem at hand. 
Swarm intelligence is the collective behaviour of 
decentralized, self-organized systems, natural or artificial. The 
concept is employed in work on artificial intelligence.  

Swarm Intelligence systems are typically made up of a 
population of simple objects interacting locally with one 
another and with their environment. Natural examples of SI 
include ant colonies, bird flocking, animal herding, bacterial 
growth, and fish schooling. 

This paper mainly focuses Genetic Algorithm and Particle 
swarm Optimization for the optimal tuning of PID controller 
parameters as discussed in the following sections. 

 

IV. GENETIC ALGORITHMS 
A.   Overview 
 

Genetic Algorithms (GAs) are heuristic search techniques 
based on an artificial simulation of the mechanisms 
underlying the evolution of living beings: natural selection 
and genetic. 
The simplest form of genetic algorithm involves three types of 
operators: selection, crossover, and mutation. GAs are 
population-based search methods that work through the 
following elements: populations of chromosomes, selection 
according to fitness, crossover to produce new offspring, and 
random mutation of new offspring. 

The GA process consists in an iterative stepwise 
refinement of the performance of the individuals. The first 
step is the creation of a new population composed of 
individuals randomly generated. Then a fitness function 
evaluates and assigns to each individual a performance 
measure, or fitness value. The definition of the fitness 
function depends on the objective function. Then this 
population evolves for a number of iteration called generation 
until to satisfy a termination criterion. 

 
B.   GA-Based PID Controller Optimization 
 

1) GA Tuning Parameters 
 
The values in the Table 1 describe the GA settings used for 

this work. 
TABLE 1: GA Tuning Parameters 

PARAMETERS VALUES 
Lower bound [Kp Ki Kd] [0 0 0] 
Upper bound [Kp Ki Kd] [100 100 100] 
Stopping criteria (Iterations) 100 
Population Size 40 
Crossover Fraction 4 
Mutation Fraction 0.08 

 
2) Steps in GA-Based PID Controller Optimization 
 

Step 1  % Establish initial population of individuals % 
An initial random population having P(t) individuals 
is generated. 
 

Step 2  % Evaluate the fitness of each individual in P(t)% 
 Evaluate all the individual solutions with the fitness 
 function, which can be the inverse of error function. 
 
Step 3 % Select some highly fit solutions% 
 Select P’(t+1) form intermediate population of fittest 
 members from initial population P(t). 
 
Step 4 % Apply crossover to selected solutions% 
 Pair off and mate individuals in P’(t+1) as parents 
 and perform crossover operation to generate
 offsprings. 
 
Step 5 % Apply mutation% 
 Perform mutation by slightly changing some 
 random solution. 
 
Step 6 Steps 2–5 are repeated until the predefined value of 
 the function or the number of iterations has been 
 reached. Record the optimized Kp, Ki and Kd values. 
 
Step 7 Perform closed-loop test with the optimised values 
 of controller parameters and calculate the time 
 domain specification for the system. 
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Fig.3  Convergence of Genetic Algorithm 
 
  
 

 
 

 

 

 

Fig.4  Step responses for GA and ZN tuned system 

Figure 3 shows the convergence of genetic algorithm through 
various generations for the three PID parameters, Kp, Ki and 
Kd. The comparative output responses of the system tune 
using GA-based PID controller and conventionally tuned PID 
controller using Zeigler Nichols (ZN) method is shown in 
figure 4. The GA tuned system exhibits greatly reduced 
overshoot, rise time and settling time. 

V. PARTICLE SWARM OPTIMIZATION 
A.   Overview 
 

Particle swarm optimization (PSO) algorithm is a 
population-based evolutionary computation technique 
developed by the inspiration of the social behaviour in bird 
flocking or fish schooling. It attempts to mimic the natural 
process of group communication of individual knowledge, to 
achieve some optimum property. In this method, a population 
of swarm is initialized with random positions Si and velocities 
Vi. At the beginning, each particle of the population is 
scattered randomly throughout the entire search space and 
with the guidance of the performance criterion, the flying 
particles dynamically adjust their velocities according to their 

own flying experience and their companions flying 
experience. 

In PSO, each single solution is a “bird” in the search 
space; this is referred to as a “particle”. The swarm is 
modelled as particles in a multidimensional space, which have 
positions and velocities. These particles have two essential 
capabilities: their memory of their own best position and 
knowledge of the global best [10].  

Each particle remembers its best position obtained so far, 
which is denoted as pbest (푃 ). It also receives the globally 
best position achieved by any particle in the population, which 
is denoted as gbest (퐺 ). 

The updated velocity of each particle can be calculated 
using the present velocity and the distances from pbest and 
gbest as given by the following equations:  

 
푉 = 푊 ∙ 푉 + 퐶 ∙ 푅 ∙ (푃 − 푆 ) + 퐶 ∙ 푅 ∙ (퐺 − 푆 ) 

(13) 
푆 = 푆 + 푉 																																																																								(14) 

 

푊 = (푊 − 퐼푡푒푟) ×
(푊 −푊 )

퐼푡푒푟 																										(15) 

The updated velocity and the position are given in (13) and 
(14), respectively. Equation (15) shows the inertia weight. 

 
B.   PSO-Based PID Controller Optimization 
  

1) PSO Tuning Parameters 

The values in the Table 2 describe the PSO settings used 
for this work 

TABLE 2: PSO Tuning Parameters 

PARAMETERS VALUES 
Lower bound [Kp Ki Kd] [0 0 0] 
Upper bound [Kp Ki Kd] [100 100 100] 
Stopping criteria (Iterations) 100 
Population Size 40 
Maximal velocity factor 0.2 
Inertial weight factor [Min Max] [0.4 0.9] 
Acceleration constants [c1, c2] [2 2] 

      2) Steps in PSO-Based PID Controller Optimization [2] 
 
Step 1  % Assign values for the PSO parameters % 

Initialize: swarm (N) and step size; learning rate (C1, 
C2) dimension for search space (D); inertia (W); 
% Initialize random values and current fitness % 
R1=rand (D, N); R2=rand (D, N);  
current fitness =0*ones (N, 1). 
 

Step 2     % Initialize Swarm Velocity and Position % 
 Current position =10*(rand (D, N)-0.2), 
 Current velocity =0.5*rand (D, N) 
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Step 3 Evaluate the objective function of every particle 
 and record each particle’s 푃  and퐺 . Evaluate the 
 desired optimization fitness function in D-dimension 
 variables. 
Step 4 Compare the fitness of particle with its 푃  and 
 replace the local best value as given below. 
 for i=1: N 
 If current fitness (i) < local best fitness (i); 
 Then local best fitness = current fitness; 
 local best position = current position (i); 
 end 
 % same operation to be performed for 퐺  %. 
 
Step 5 Change the current velocity and position of the 
 particle group according to (13) and (14). 
 
Step 6  Steps 2–5 are repeated until the predefined value of 
 the function or the number of iterations has been 
 reached. Record the optimized Kp, Ki and Kd values. 
 
Step 7 Perform closed-loop test with the optimised values 
 of controller parameters and calculate the time 
 domain specification for the system. 
 If the values are within the allowable limit, consider 
 the current Kp, Ki and Kd values. Otherwise perform
 the retuning operation for Ki, by replacing the 
 optimised numerical values for Kp and Kd. 
 

 

 

 

 

 

 

 
Fig.5  Step responses for GA and ZN tuned system 

The output response of the system tune using PSO-based PID 
controller is shown in figure 5. The system exhibits nearly 
zero overshoot and remarkably reduced rise time. 

V. SIMULATION RESULTS 
 

 
 
 
 
 
 
 

 

Fig.6 Block diagram for PID parameters tuning using PSO/GA. 

In order to improve the performance of the dc motor under 
transient and steady state condition, a PID controller is 
inserted in the forward path as shown in Fig 6. The parameters 
of the PID controller are now adjusted by using conventional 
method i.e. Ziegler-Nichols method and the response obtained 
for the DC servomotor is evaluated. Further again the 
parameters of PID controller are obtained using evolutionary 
computation of GA and PSO and the system step responses 
are evaluated.  
The controller gains were computed by using the classical 
Zeigler-Nichols rules and evolutionary computation 
techniques i.e. Genetic Algorithm and Particle swarm 
optimization. The controller gains obtained from the methods 
are listed in Table 3. 

TABLE 3: Comparison of steady state responses 

Figure 7 shows the corresponding step responses of ZN, GA 
and PSO-based PID systems. It can be clearly seen that GA 
tuned system shows improved response with respect to the 
rise time and overshoot as compared to that of ZN tuned 
system. However, system tuned with PSO has further 
improved the overshoot of the considered system though the 
rise time and settling time exhibit slight increament. 
 

 
 
 
 
 
 
 
 
 

Fig.7  Comparitive step responses for GA, PSO and ZN tuned system 

 
VI. CONCLUSIONS 

TITLE ZN_PID GA_PID PSO_PID 

Rise Time(sec) 0.2901 0.1070 0.9564 
Settling Time 
(sec) 5.0139 1.0721 2.4892 

% Overshoot 61.7409 21.3911 0.8190 
Peak Time (sec) 0.8492 0.2395 8.0611 
Kd 12.6486 99.0275 16.5836 
Kp 72.0720 91.7813 20.4031 
Ki 102.6374 1.3092 0.3758 
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Application of evolutionary computation techniques to the 
optimum tuning of PID controller led to a satisfactory close-
loop response for the system under consideration. Comparison 
of the results as shown in Table 3 clearly reflects that the GA 
and PSO tuned PID outperformed the classical Zeigler-
Nichols’s tuning method in order to achieve minimum rise 
time, settling time overshoot and nearly zero steady state 
error. The simulation results show that the PSO-based PID 
controller tuning approach provides more improved 
performance as compared to GA-based PID controller for the 
considered system and hence, showed the superiority of the 
PSO. 
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APPENDIX A: SYSTEM MODEL PARAMETERS 
  
The parameters of the DC servomotor under consideration are 
as follows: 
 
(J) moment of inertia of the rotor            0.01 kg.m2 
(b) motor viscous friction constant         0.1 N.m.s 

(푘 ) back emf constant     0.01 V/rad/sec 
(푘 ) motor torque constant                              0.01 N.m/Amp 
(푅 ) electric resistance                                   1.0 Ohm 
(퐿 )  electric inductance                                   0.5 H 

NOMENCLATURE 
 

푖   Armature current in ampere, 
 푖   Field current in ampere,  
푘   Motor torque constant, 
푘   Back emf constant, 
 푉   Armature voltage in volts, 
	푉   Back emf in volts, 
 J   Moment of inertia of rotor, 
 b  Viscous frictional constant of motor, 
 휃 Angular displacement of shaft in radians, 
 L  Armature inductance in henry, 
 R 	 Armature resistance in ohm 
 C  Positive acceleration constants (0–2) 
gbest  Global best position 
Gc(s)  Controller model 
Gp(s)  Process model 
IAE  Integrated absolute error 
ISE  Integral squared error 
ITAE  Integral time absolute error 
Iter  Iteration 
Kp  Proportional gain 
Ki Integral gain 
Kd Derivative gain 
pbest Local best position. 
R  Random number (0-2) 
R(s) Reference input 
S  Position of particle 
V  Velocity of particle 
W Inertia weight of particle 
Y(s) Process out 

 


