
International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2903

Evaluating Inheritance and Coupling Metrics
 Sonia Chawla #1, Dr. Rajender Nath *2

1 M.Tech., Department of Computer Science and Applications, Kurukshetra University, Kurukshetra, Haryana, India.
2 Professor, Department of Computer Science and Applications, Kurukshetra University, Kurukshetra , Haryana, India.

Abstract—Software metrics helps in estimating the
quality of software. To meet the customer’s demands,
there is a competence in the software industries for the
best quality product. Some metrics can be applied in the
early stages of product development that helps in
eliminating the complexity at later stages. This paper
helps in predicting software quality with the help of
object oriented metrics.

Keywords— Software quality, object-oriented metrics,
quality attributes, complexity.

 1. Introduction

Measurement is required to assess quality and
improvements in performance of the software
products. Software industries are striving to improve
productivity and quality of software to meet ever
increasing demands of users. Metrics give
information regarding the status of an attribute of the
software and help to find opportunities of
improvements in the software. Object oriented
metrics measures the characteristics of object
oriented designs. These measures allow the designer
to access the software early in the process making
changes which reduces complexity and improve the
capability of the product. Quality of a software
system can be predicted by evaluating the attributes
of software with the help of metrics. In this paper, an
attempt is made to use object oriented metrics to
predict software quality. Rest of the paper is
organized as follows: Section 2 gives an overview of
the existing studies in object oriented metrics.
Section 3 formulates the problem. Section 4 tests
effectiveness of inheritance and coupling metrics
with the help of a sample project. Section 5 presents
conclusion.

 2. Related Work

Among all the metric suites, Chidamber and kemerer
[4] metric suite is the most referenced one. They
defined six metrics-Weighted Methods per Class
(WMC), Depth of Inheritance (DIT), Coupling

Between Objects (CBO), Response For a Class
(RFC), Lack of Cohesion in Methods (LCOM),
Number of Children (NOC). Various studies have
been done on their validation by many researchers. Li
et al. [10] validated CK metrics using statistical
analysis on two commercial systems. Five of the six
metrics (except CBO) helped predict maintenance
effort and they proposed many other metrics to
evaluate maintainability like Data Abstraction
Coupling (DAC), Message Passing Coupling (MPC),
Number of methods (NOM) and two size metrics.
Lorenz and Kidd [6] divided metrics into project
level and design level metrics. They divided design
metrics into four categories: size, internals, externals,
inheritance. MOOD (Metrics for Object Oriented
Design) metric set proposed by Abreu et al. [2]
measure the object oriented mechanisms such as
inheritance (Method Inheritance Factor, Attribute
Inheritance Factor), encapsulation (Method Hiding
Factor, Attribute Hiding Factor), polymorphism
(Polymorphism Factor), message passing (Coupling
Factor). Rosenberg [9] proposed nine metrics to
evaluate attributes like efficiency, complexity,
reusability, testability, understandability. Three of
them were the traditional metrics viz. LOC,
Comment percentage, Cyclomatic Complexity and
the rest were same as those of CK metrics.
W.Li et al [7]described another Object-Oriented
syntactic metrics suite that addressed certain
shortcomings in CK’s metrics suite. They proposed
certain metrics-Number of Ancestor Classes (NAC),
Number of Descendant Classes (NDC), Number of
Local Methods (NLM), Class Method Complexity
(CMC) Coupling Through Abstract Data Types
(CTA) and Coupling Through Message Passing
(CTM). Bansiya J. et al. [3] defined Quality Model
for Object Oriented Design (QMOOD) metrics which
provided formulae to compute quality attributes.

 3. Problem Formulation

There are certain factors to assess the quality of the
software. McCall, Richards and Walters [8] divided
product into three aspects: revision, transition and
operation and proposed quality factors based on this

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2904

 Figure 1 ATM Class Diagram
.
categorization. ISO 9126 standard also defines six
attributes of quality- functionality, reliabilty,
usability, efficiency, maintainability, portability.
Faults must be checked at the early stages of the
product development as it saves time and cost. It also
helps in reducing complexity at early stages, which
also affects other quality attributes. If complexity is
less it implies that the effort required to test a
program would be less and product would be more
reliable. The object oriented paradigm provides
strong support for software reuse. Inheritance helps
in reusability as well as it affects other factors like
complexity, testability etc.
These metrics are tested on ATM class diagram
(selected for this study) in order to evaluate the
effectiveness of these metrics. The following
inheritance metrics (DIT, MIF, AIF, NOC, MFA,
NAC, NDC) and coupling metrics (DAC, RFC,
CBO, CF) are identified to compute complexity,
reliability, testability and reusability.

4. Testing effectiveness of Inheritance and
Coupling Metrics
The metrics chosen for evaluating the class diagram
are divided into two categories viz. Inheritance
Metrics and Coupling Metrics. Both Class level as
well as system level metrics from different metric
suites have been considered. Metric values are
analyzed to predict the software quality attributes like
reusability, testability, reliability.

4.1. Inheritance Metrics
Inheritance promotes reusability but it should be used
in a proper range so that the project doesn’t become
complex. In this section seven inheritance metrics are
considered for estimating the software quality.

Attribute Inheritance Factor (AIF): The AIF is the
ratio of sum of the inherited attributes in all classes of
the system to the total number of available attributes
for all classes. It is a system level metric and
measures the extent of attribute inheritance in a

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2905

METRI
C

 CLASS 1 2 3 4 5 6 7 8 9 10 11 12

AIF ATTRIBUTES
INHERITED (AI(CI))

0 0 0 0 0 3 3 0 3 3 3 3

ATTRIBUTES
AVAILABLE(AA(CI))

2 1 3 2 3 5 5 3 4 5 5 4

MIF METHODS
INHERITED (MI(CI))

0 0 0 0 0 2 2 0 1 1 1 1

METHODS
AVAILABLE(MA(CI))

1 1 0 1 2 2 2 1 2 2 2 2

 Table 1: System Level Inheritance Metrics

system. The number of attributes inherited and
attributes available are computed for each class and
shown in the table 1.Mathematically AIF is computed
as:

 AIF=∑ Ai(Ci)/∑Aa(Ci) ,
where i is from 1 to total number of classes.

Value of numerator and denominator comes out to be
18 and 42 respectively. Hence, the value of AIF
comes out to be 0.42 as follows:
 AIF = 18/42
 = 0.42

Interpretation: For the class diagram shown in figure
1, the computed value of AIF is 0.42. According to
one source, the acceptable range of AIF is from 0 to
48% [5]. The value computed is in this range and
this shows that the project is not complex. As the
complexity is lesser, it implies more reliability. It
further implies that the testability effort required will
also be lesser.

Method Inheritance Factor (MIF): The MIF is the
ratio of sum of the inherited methods in all classes of
the system to the total number of available methods
for all classes. MIF is a system level metric. The
values for number of methods inherited and methods
available are computed for each class and shown in
the table 1. Mathematically MIF is computed as:

 MIF =∑ Mi (Ci) / ∑Ma (Ci)
where i is from 1 to total number of classes.
Value of numerator and denominator comes out to be
8 and 18 respectively. Hence the value of MIF comes
out to be 0.44 as follows:
 MIF=8/18
 =0.44

Interpretation: MIF acceptable range is within 20% to
80% [5]. For the class diagram in figure 1, the
computed value of MIF is 0.44 which is in the
acceptable range. This shows that the inheritance
used will not make the system complex. So, the
reliability will be more and the required testability
effort will be lesser.

Depth of Inheritance Tree (DIT): DIT is the
maximum length from node to the root of the tree. It
is a class level metric. Values are normalized for each
class and are shown in table 2.

Interpretation: Sum of normalized values of DIT of
all the classes comes out to be 0.54 and the maximum
possible value could have been 12. As compared to
the maximum value, it is very small. So, in this
project the use of inheritance is very less which
implies that the complexity and reusability of project
will be lesser. It further implies that as complexity is
less, the amount of effort required to test will also be
lesser. Therefore, more depth should be avoided for a
project to be reliable and effective.

Number of Children (NOC): NOC is defined as the
number of immediate subclasses subordinated to a
class in the class hierarchy. Values are normalized
w.r.t. 11 for each class as shown in table 2. After the
summation of the values for all classes, the total
value comes out to be 0.54.

Interpretation: Value computed for NOC i.e. 0.54 is
very less as compared to the maximum value of 12.
This shows that reusability is less due to low
inheritance and the amount of testing required will
be less due to less children. Therefore, it shows that
the project is not complex and hence more reliable.

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2906

METRIC VALUES CLASSES

1 2 3 4 5 6 7 8 9 10 11 12 TOTAL

DIT COMPUTED 0 0 0 0 0 0.09 0.09 0 0.09 0.09 0.09 0.09 0.54

MAXIMUM 1 1 1 1 1 1 1 1 1 1 1 1 12

NOC COMPUTED 0 0 0 0 0.18 0 0 0.36 0 0 0 0 0.54

MAXIMUM 1 1 1 1 1 1 1 1 1 1 1 1 12

MFA COMPUTED 0 0 0 0 0 1 1 0 0.5 0.5 0.5 0.5 4

MAXIMUM 1 1 1 1 1 1 1 1 1 1 1 1 12

NAC COMPUTED 0 0 0 0 0 0.09 0.09 0 0.09 0.09 0.09 0.09 0.54

MAXIMUM 1 1 1 1 1 1 1 1 1 1 1 1 12

NDC COMPUTED 0 0 0 0 0.18 0 0 0.36 0 0 0 0 0.54

MAXIMUM 1 1 1 1 1 1 1 1 1 1 1 1 12

 TABLE 2 CLASS LEVEL INHERITANCE METRICS

Measure of Functional Abstraction (MFA): MFA
is the ratio of number of methods inherited by a class
to the total number of methods of the class. Its range
is from 0 to 1.The summation of MFA values for
each class comes out to be 4 as shown in table 2.

Interpretation: Maximum value of MFA could have
been 12and the computed value is 4 that is very less
and this shows that inheritance used in the project is
very less and therefore the reusability is lesser. It
helps in predicting that the inheritance used is not
making the project complex and is reliable as well
this also proves that the testability will be lesser.

Number of Ancestor Classes (NAC): This metric
measures the total number of ancestor classes from
which a class inherits in the class inheritance
hierarchy. It is also a class level metric. Values of
NAC for each class are normalized w.r.t. 11.

Interpretation: From the table 2, the value of NAC is
0.54 which is very small compared to the maximum
value of 12. It implies that the complexity is less. As
the complexity is lesser, reliability is more and the
testability effort is lesser.

Number of Descendant Classes (NDC): This metric
measures the number of classes that may potentially
be influenced by the class because of inheritance
relations. Li proposed this metric addressing a
problem in CK’s NOC that measures only the
immediate subclasses and not the further
classification. In this project, computed value of
NDC is same as that of NOC that is 0.54.

Interpretation: The computed value of 0.54 is very
less than the maximum value of 12. NDC measures
inheritance better than NOC as it takes into account
the grandchildren. Also, it tells better about the
testability, complexity etc. In class diagram,
computed value is same as NOC.

4.2. Coupling Metrics

Coupling indicates the relationship or
interdependency between modules. Strong coupling
complicates a system. Coupling should be kept as
low as possible. The following four coupling metrics
are used for the quality estimation of the project.

Coupling between Objects (CBO): CBO for a class
is a count of number of classes to which it is coupled.
It is a class level metric and the couplings due to

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2907

METRIC VALUES CLASSES

1 2 3 4 5 6 7 8 9 10 11 12 TOTAL

CBO COMPUTED 0.02 0.15 0.02 0.02 0.03 0.007 0.007 0.04 0.007 0.007 0.007 0.007 0.28

 MAXIMUM 1 1 1 1 1 1 1 1 1 1 1 1 12

DAC COMPUTED 0.27 0.18 0.27 0.27 0.18 0.09 0.09 0.18 0.09 0.09 0.09 0.09 1.89

MAXIMUM 1 1 1 1 1 1 1 1 1 1 1 1 12

RFC COMPUTED 0.3 0.3 0.4 0.4 0.3 0.2 0.2 0.4 0.2 0.2 0.2 0.2 3.3

MAXIMUM 1 1 1 1 1 1 1 1 1 1 1 1 12

 Table 3 Class Level Coupling Metrics

inheritance are also computed in CBO.

Interpretation: Value of CBO is 0.28 which is very
small compared to the maximum value of 12 as
shown in Table 3. This shows that the classes are not
much dependent on each other .This independency of
classes show that the project is not complex and the
testability effort required will be lesser as well as
reusability will be easier.

Data Abstraction Coupling (DAC): DAC is the
number of abstract data types (ADT) defined in a
class. The metric which measures the coupling
complexity caused by ADT’s is DAC. The more
ADT’s in a class indicates large amount of coupling.

Interpretation: DAC’s value computed is 1.89 and
the value possible could have been 12.This shows
that there are not many ADT’s defined in a class.
Therefore, the couplings are less and indicate that the
project need less effort to test and is reliable also.

Coupling Factor (CF): It is the number of couplings
to the total number of couplings possible in a system.
Coupling due to inheritance are not included in it. It
is a system level metric.

 Coupling Factor =15/132
 =0.11
Numerator comes out to be 15 by summing the
values of CF for each class as shown in Table 4.

Interpretation: Value of CF comes out to be 0.11.This
value is very less from the maximum value i.e. 132.
It shows that the system is not complex and therefore
the required testability effort will be lesser.

Response for a Class (RFC): The response set of a
class is defined as set of methods that can be
potentially executed in response to a message
received by an object of that class.
RFC=│RS│,where RS is the response set for the
class.
It can be expressed as
 RS={M} Uall i {Ri},
 Where {Ri} = set of methods called by method I
 {M}=set of methods in the class.
Values computed are shown in Table 3.

Interpretation: Computed value of RFC comes out to
be 3.3 and the possible could have been 12. This
shows that the project is not complex and the effort
required to test would be lesser.

METRIC CLASS 1 2 3 4 5 6 7 8 9 10 11 12 TOTAL

CF COUPLINGS 3 2 3 3 2 0 0 2 0 0 0 0 15

 Table 4: Coupling Factor

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2908

Coupling in a system increases complexity, reduces
reusability. In the class diagram, RFC tells better about
coupling as it tells about methods of the same class to be
executed.

5. Conclusion
Inheritance promotes reusability but it should be used in
a proper range so that the project doesn’t become
complex. Inheritance metrics at class level - DIT, NOC,
NDC, NAC, MFA and system level - AIF, MIF have
been evaluated in this work. For evaluation, class
diagram of the ATM system has been used. It has been
found that MFA is more predictive than MIF about
inheritance. Secondly, it has been observed that single
metric is not fully indicative of inheritance rather
multiple metrics should be used. For instance, DIT gives
depth of inheritance and NOC gives information about
the width of inheritance tree.
Coupling indicates the relationship or interdependency
between modules. Strong coupling complicates a system.
Coupling should be kept as low as possible. Coupling
Metrics at class level - CBO, RFC, DAC and at system
level - CF have been evaluated and CF value found was
lesser as compared to CBO because CF did not include
inheritance. RFC value was found higher and more
predictive of telling the effectiveness of the system as it
also tells about methods of the same class to be
executed.

 References
[1] Abreu, B.F. and W.L. Melo (1996): “Evaluating the impact of
Object-Oriented Design on Software Quality”, Proceedings of
METRICS ’96, IEEE, 1996.pp. 90-99.

[2] Abreu F.B. and R.Carapuca.“Object-Oriented Software
Engineering:Measuring and Controlling the Development
Process”. Proceedings of the 4th International Conference on
Software Quality, McLean,Virginia, USA,October ,1994.

[3] Bansiya J. and C. G. Davis (2002): A Hierarchical Model for
Object-Oriented Design Quality Assessment, IEEE Transactions
on Software Engineering, pp. 4-17, 2002

[4] Chidamber, S. R. and C. F. Kemerer (1994):“A Metrics Suite
for Object Oriented Design”, IEEE Transactions on Software
Engineering, 20(6), 1994, pp. 476–493.

[5] E Da-wei: “Analysis and Implementation of Software Metric
for Object-Oriented “,IEEE International Conference, pp.1-4,
2009

[6] Lorenz, M. and J. Kidd (1994): “Object-Oriented Software
Metrics”, Prentice Hall, 1994.

[7] Li, W.“Another Metric Suite for Object-Oriented
Programming”Joumal of Systems and Software, Vol.44 Issue 2,
pp. 155- 162, 1998.

[8] Pressman,R.S., “Software Engineering-A Practitioner’s
Approach”, The McGraw-Hill ,Fifth Edition, 2001.

[9] Rosenberg L. H. and L. Hyatt (1995): “Software Quality
Metrics for Object-Oriented Environments”, SATC, NASA
Technical Report SATC-TR-95-1001, 1995.

[10] W.Li and S.Henry, “Object Oriented Metrics that Predict
Maintainability,”J.Systems and Software, vol.23, pp.111-122,
1993.

