
International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013 

ISSN: 2231-5381      http://www.ijettjournal.org  Page 3025 

 

Design of Vedic Multiplier for Digital Signal 
Processing Applications 

 
R.Naresh Naik1, P.Siva Nagendra Reddy2, K. Madan Mohan3 

1P.G. Scholar (M. Tech), Dept. of ECE, Intell Engineering College, Anantapur 

2P.G. Scholar (M. Tech), Dept. of ECE, Intell Engineering College, Anantapur 
3Asst.Professor, Dept. of ECE, Intell Engineering College, Anantapur 

 
 

Abstract— Multiplier is one of the most important part in 
any processor speed which improves the speed of the 
operation like in special application processors like Digital 
Signal Processor (DSPs).To Increase the speed of operation 
we should take care of the precision previously we used the 
floating point multipliers which were consume more silicon 
area and take more clock frequency than fixed point (Q-
format) multipliers. Now we propose a method which is 
faster multiplication technique by using Vedic mathematics 
formula Urdhava Tiryakbhyam method which means 
vertically and cross wire. All the operations in Vedic 
multiplier were executed concurrently and also we will get 
the output same as input bit length so Vedic multiplier is 
time, space and power efficient .The coding is done for 16-
bit (Q-15) and 32-bit (Q-31) fractional fixed point 
multiplications using Verilog and synthesized using Xilinx 
ISE version 14.3. Further the speed comparisons of this 
multiplier with Normal Booth multiplier were presented. 
The results clearly show that our Urdhava Tiryakbhyam 
multiplier can have great amount of impact on the DSP 
applications to improve the execution speed of the DSP 
processors when compared to other multipliers.    
Keywords- Q-format, Urdhava Tiryakbhyam, Vedic 
Mathematics, Fractional fixed point. 

 
I.INTRODUCTION 

The striking feature of Vedic Mathematics is the 
easiest and fastest way to perform any mathematical calculation 
mentally. Vedic Mathematics was discovered between 1911 to 
1918 by Sri Bharti Krishna Tirthaji (1884-1960).He organized 
and classified the whole of Vedic Mathematics into 16 formulae 
or also called as sutras. These formulae form the backbone of 
Vedic mathematics.  

Great amount of research has been done all these years 
to implement algorithms of Vedic mathematics on digital 
processors. It has been observed that due to coherence and  

 

 

symmetry in these algorithms it can have a regular 
silicon layout and consume less area [2,3] along with lower 
power consumption.  Normally signal processing 
algorithms are developed using high level languages like C or 
Mat lab using floating point number representations. The 
algorithm to architecture mapping using floating point number 
representation consumes more hardware which tends to be 
expensive.  

Fixed point number representation is a good option to 
implement at silicon level.Hence our focus in this work is to 
develop optimized hardware modules for multiplication 
operation which is one of the most frequently used operation in 
signal processing applications like Fourier transforms, FIR and 
IIR filters, image processing systems, seismic signal processing, 
optical signal processing etc. Any attempt to come out with an 
optimized architecture for this basic block is advantageous 
during the product development stages. Considering fixed point 
representation, 16 bit Q15 format and 32 bit Q31 format 
provide required precision for most of the digital signal 
processing applications and it is best suited for implementation 
on processors. The advantage it provides over floating point 
multipliers is in the fact that Q format fraction multiplications 
can be carried out using integer multipliers which are faster and 
consume less die area. DSP Processors like TMS320 series 
from Texas Instruments work on 16 bit Q15 format. In this 
paper we propose the implementation of fixed point Q-format 
[6] high speed multiplier using Urdhava Tiryakbhyam method 
of Vedic mathematics. Further we have also implemented 
multipliers using normal booth algorithm and presented a 
comparative study on maximum frequency or speed of these 
multipliers.  

II. FIXED POINT ARITHMETIC  

An N-bit fixed point number can be interpreted as either an 
integer or a fractional number. Integer fixed point is difficult to 
use in processors due to possible overflow. For e.g. In a 16-bit 
processor for signed integers the dynamic range is from -215 to 
215 -1 i.e. 32768 to 32767. If 500 is multiplied by 800 the result 
is 40000 which is an overflow. In order to overcome this 
situation fractional fixed point representation also known as Q-
format is used. 

A. Q-format Representation 



International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013 

ISSN: 2231-5381      http://www.ijettjournal.org  Page 3026 

 

Q is a fixed point number format where the number of 
fractional bits (and optionally the number of integer bits) is 
specified. For example, a Q15 number has 15 fractional bits; a 
Q1.14 number has 1 integer bit and 14 fractional bits. Q format 
is often used in hardware that does not have a floating-point 
unit and in applications that require constant resolution.  

 

      Q format numbers are (notionally) fixed point numbers (but 
not actually a number itself); that is, they are stored and 
operated upon as regular binary numbers (i.e. signed integers), 
thus allowing standard integer hardware/ALU to perform 
rational number calculations. The number of integer bits, 
fractional bits and the underlying word size are to be chosen by 
the programmer on an application-specific basis — the 
programmer's choices of the foregoing will depend on the range 
and resolution needed for the numbers. The machine itself 
remains oblivious to the notional fixed point representation 
being employed — it merely performs integer arithmetic the 
way it knows how. Ensuring that the computational results are 
valid in the Q format representation is the responsibility of the 
programmer.  

The Q notation is written as Qm.n, where: 
1. Q designates that the number is in the Q format notation — 

the Texas Instruments representation for signed fixed-point 
numbers (the "Q" being reminiscent of the standard symbol 
for the set of rational numbers). 

2. m is the number of bits set aside to designate the two's 
complement integer portion of the number, exclusive of the 
sign bit (therefore if m is not specified it is taken as zero). 

3. n is the number of bits used to designate the fractional 
portion of the number, i.e. the number of bits to the right of 
the binary point. (If n = 0, the Q numbers are integers — 
the degenerate case). 

Note that the most significant bit is always designated 
as the sign bit in order to allow standard arithmetic-logic 
hardware to manipulate Q numbers. Representing a signed 
fixed-point data type in Q format therefore always requires 
m+n+1 bits to account for the sign bit. Hence the smallest 
machine word size required to accommodate a Qm.n number is 
m+n+1, with the Q number left justified in the machine word. 

 
For a given Qm.n format, using an m+n+1 bit signed 

integer container with n fractional bits: 
 its range is [-2m, 2m - 2-n] 
 its resolution is 2-n 

For example, a Q14.1 format number: 
 Requires 14+1+1 = 16 bits 
 Its Range is [-214, 214 - 2−1] = [-16384.0, +16383.5] = 

[0x8000, 0x8001 … 0xFFFF, 0x0000, 0x0001 … 
0x7FFE, 0x7FFF] 

 Its resolution is 2−1 = 0.5 
Unlike floating point numbers, the resolution of Q numbers will 
remain constant over the entire range. 
 

B.  Q-format Multiplication 

When two Q15 numbers are multiplied their product 

is 32 bits long as illustrated in Fig. 1. The product has a 
redundant or extended sign bit. Since the product stored 
in memory should also be a Q15 number we left shift the 
product by one bit and the most significant 16 bits 
(including sign bit) is stored in the memory.  

Fig. 1 demonstrates multiplication of two Q15 format 
numbers. The process remains same for Q31 format 
wherein after left shifting the product by one bit, the most 
significant 32 bits are stored in the memory. Therefore 
with Q-format, multiplications of two fractional numbers 
can be carried out by using integer multiplications. 
Integer multiplications consume less area and are faster 
compared to floating point multipliers which is the major 
advantage of Q- format representation. 

 

Fig.  1. Multiplication of two Q15 format numbers 
yielding the product in Q15 formats itself. 

III. URDHAVA TIRYAKBHYAM METHOD 

Urdhava Tiryakbhyam [2]   is based on a novel 
concept through which all partial products are generated 
concurrently. Fig.2 demonstrates a 4x4 binary multiplication 
using this method. The method can be generalized for any N x 
N bit multiplication. This is independent of the clock frequency 
of the processor because the partial products and their sums are 
calculated in parallel. The net advantage is that it reduces the 
need of microprocessors to operate at increasingly higher clock 
frequencies. As the operating frequency of a processor increases 
the number of switching instances also increases. This results in 
more power consumption and also dissipation in the form of 
heat which results in higher device operating temperatures. 
Another advantage is its scalability. The processing power can 
easily be increased by increasing the input and output data bus 
widths since it has a regular structure [3]. Due to its regular 
structure, it can be easily layout in a silicon chip and also 
consumes optimum area [2]. As the number of input bits 
increase, gate delay and area increase very slowly as compared 
to other multipliers. Therefore Urdhava Tiryakbhyam multiplier 
is time, space and power efficient. 

The line diagram in fig. 2 illustrates the algorithm for 
multiplying two 4-bit binary numbers and  . 
The procedure is divided into 7 steps and each step generates 
partial products. Initially as shown in step 1 of fig. 2, the least 



International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013 

ISSN: 2231-5381      http://www.ijettjournal.org  Page 3027 

 

significant bit (LSB) of the multiplier is multiplied with least 
significant bit of the multiplicand (vertical multiplication) 

 

 

 

Fig. 2 Multiplication of two 4 bit numbers using Urdhava 
Tiryakbhyam method.[7] 

This result forms the LSB of the product. In step 2 
next higher bit of the multiplier is multiplied with the LSB of 
the multiplicand and the LSB of the multiplier is multiplied 
with the next higher bit of the multiplicand (crosswire 
multiplication). These two partial products are added and the 
LSB of the sum is the next higher bit of the final product and 
the remaining bits are carried to the next step. For example, if in 
some intermediate step, we get the result as 1101, then 1 will 
act as the result bit(referred as rn) and 110 as the carry (referred 
as cn). Therefore cn may be a multi-bit number. Similarly other 
steps are carried out as indicated by the line diagram. The 
important feature is that all the partial products and their sums 
for every step can be calculated in parallel.  

Thus every step in fig. 2 has a corresponding 
expression as follows: 

  r0=a0b0…………………………………..(1)      

  c1r1=a1b0+a0b1………………………...(2)     

  c2r2=c1+a2b0+a1b1 + a0b2……………(3) 

  c3r3=c2+a3b0+a2b1 + a1b2 + a0b3……(4) 

  c4r4=c3+a3b1+a2b2 + a1b3…………….. (5)    

  c5r5=c4+a3b2+a2b3…………………….(6)         

 c6r6=c5+a3b3…………………………….(7)                      

With c6r6r5r4r3r2r1r0 being the final product [5].  

         Hence this is the general mathematical formula applicable 
to all cases of multiplication and its hardware architecture is 
shown in fig. 3.In order to multiply two 8-bit numbers using 4-
bit multiplier we proceed as follows. Consider two 8 bit 

numbers denoted as AHAL and BHBL where AH and BH 
corresponds to the most significant 4 bits, AL and BL are the 
least significant 4 bits of an 8-bit number. When the numbers 
are multiplied according to Urdhava Tiryakbhyam (vertically 
and crosswire) method, we get, 

 

AH  AL 

BH  BL                                                            

 (AH x BH) + (AH x BL + BH x AL) + (AL x BL). 

 

Fig. 3.Hardware architecture of 4 X 4 Urdhva Tiryakbhyam 
multiplier.  

Thus we need four 4-bit multipliers and two adders to 
add the partial products and 4-bit intermediate carry generated. 
Since  product of a 4 x 4 multiplier is 8 bits long, in every step 
the least significant 4 bits correspond to the product and the 
remaining 4 bits are carried to the next step. This process 
continues for 3 steps in this case. Similarly, 16 bit multiplier has 
four 8 x 8 multiplier and two 16 bit adders with 8 bit carry. 
Therefore we see that the multiplier is highly modular in nature. 
Hence it leads to regularity and scalability of the multiplier 
layout.  

IV. ARCHITECTURE 

Urdhava Tiryakbhyam integer multiplier [4]  is faster 
since all the partial products are computed concurrently. 
Considering a 16 bit Q15 multiplier, the product is also a Q15 
number which is 16 bits long. Firstly, if the MSB of input is 1 
then it is a negative number. Therefore 2’s complement of the 
number is taken before proceeding with multiplication. Since 
the MSB denotes sign it is excluded and a ‘0’ is placed in this 
position while multiplying. A Q15 format multiplier consists of 
four 8 x 8 Urdhava multipliers and the resulting product is 32 



International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013 

ISSN: 2231-5381      http://www.ijettjournal.org  Page 3028 

 

bits long as shown in fig. 4. But the product of a Q15 number is 
also a Q15 number which should be 16 bits long. Therefore the 
32 bit product is left shifted by 1 bit to remove the redundant 
sign bit and only the most significant 16 bits of this product are 
considered which constitute the final product. An xor operation 

is performed on the input sign bits to determine the sign of the 
result.  

 

 
 

 
 
 

 

Fig. 4.Architecture of a Q15 format multiplier. Multiplication 
of two Q15 numbers X and Y results in a Q15 product 
denoted by P in the figure 

If the output is ‘1’ it enables the conversion of the 16 
bit final result to its 2’s complement format indicating a 
negative product. Similarly, for a 32 bit Q31 format multiplier 
as shown in fig. 5, four 16 X 16 Urdhava multipliers are used 
and only the most significant 32 bits after left shifting by one 
bit are considered which constitute the final 32 bit  Q31 
format product. An xor operation similar to Q15 multiplier is 
used to change the result to 2’s complement format if it is 
negative. 

 

 

Fig. 5 Architecture of a Q31format multiplier. Multiplication 
of two Q31 numbers X and Y results  in a Q31 product 
denoted by P in the figure 

 

V. IMPLEMENTATION AND RESULTS 

The proposed Urdhava Tiryakbhyam Q-format 
multiplier is designed using Verilog hard ware description 
language and structural form of coding. The basic block of 
both Q15 and Q31 multiplier is a 4 x 4 Urdhava Tiryakbhyam 
integer multiplier which in turn is made up of two 2 x 2 
multiplier blocks. The design is completely synchronized by 
the clock. Further, the Q-format multipliers were also 
implemented using normal booth’s algorithm. 

The code is completely synthesized using Xilinx 
XST and implemented on device family Virtex-5, device 
XC5VL50, package FF324 with speed grade -2. 

 

Simulation Results: 

The design was simulated using Isim on Xilinx ISE 
14.3 version. For Q15 format multiplication as shown in fig. 
6, 

Input1 = -0.45     = 0011 1001 1001 1001 

Input2 = - 0.65    = 0101 0011 0011 0011 

Output = 0.2925 = 0010 0101 0111 0001 

    For Q31 format multiplication as shown in fig. 7. 

Input1=0.333333   = 00101010101010101010011111011111 

Input2= -0.666666 = 10101010101010101011000001000010 

Output= -0.2222217777743935585021972655625= 1111 
1000 1110 0011 0001 1011 1000 0101 

 But the actual value of the product is   -
0.222221777778. Therefore precision loss is involved in this 
multiplication and is found to be 3.60644E-12 which is less 
than the resolution of Q31 representation i.e 2-31. Thus it 
provides 32 bit accurate product which is acceptable for most 
of the DSP applications. 

As shown in table 1, the comparison report suggests 
that a Q31 format Urdhava Qformat multiplier is faster by 
2.61 times than Normal Booth Multiplier . For a Q-15 format 
multiplier, as seen in table 2 the speed factor improvement is 
1.84 times compared to booth multiplier.When Virtex-5 
DSP48E slices were used with Normal Booth multiplier, 
Urdhava multiplier still proved to be faster indicating that it is 
the best choice for implementing faster multipliers on FPGA. 



International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013 

ISSN: 2231-5381      http://www.ijettjournal.org  Page 3029 

 

 

Fig.6.Q15multiplication 

 

Fig.7.Q31multiplication 

 
Table-1Comparison of 32 bit q31-format multipliers 

  
Maximum 
Frequency 
(in MHz) 

 
4-input 

Slice LUT 
Usage 

 

 
Factor by 

which 
Urdhava 

Multiplier is 
faster 

 
Urdhava 

Multiplier 

 

 

233.3 

 

 

3055/17344 

 

 

------- 

 
Normal 
Booth 

Multiplier 

 

 

100 

 

 

2206/17344 

 

 

2.33 times 

 

 

Table-2Comparison of 16 bit q15-format multipliers  

  
Maximum 
Frequency 
(in MHz)  

 

 
4-input 
Slice LUT 
Usage 

 
Factor by which 
Urdhava 
Multiplier isFaster 

 
Urdhava  
Multiplier  

 

 

165.3  

 

355/17344  

 

------ 

 

Normal 
Booth 
Multiplier  

 

100.12 

 

285/17344  

 

 

1.65 times  

 

 

VI. RTL SCHEMATIC 

 

Fig. 8 RTL Schematic of 16 BIT VEDIC 
Multiplier 
 

 

Fig.9 RTL Schematic of 32 BIT VEDIC 
Multiplier 
 

 



International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013 

ISSN: 2231-5381      http://www.ijettjournal.org  Page 3030 

 

VII.CONCLUSION 

This method is a fast multiplier architecture for 
signed Q-format multiplications using Urdhava Tiryakbhyam 
method of Vedic mathematics. Since Q-format representation 
is widely used in Digital Signal Processors the proposed 
multiplier can substantially speed up the multiplication 
operation which is the basic hardware block. They occupy less 
area and are faster than the booth multipliers. Therefore the 
Urdhava Tiryakbhyam Q-format multiplier is best suited for 
signal processing applications requiring faster multiplications. 
Future work lies in the direction of introducing pipeline stages 
in the multiplier architecture for maximizing throughput. 

 
 

VIII.ACKNOWLEDGMENT 
 

We place our gratitude on record to the Department of 
Electronics and Communication Engineering, Intell 
Engineering College for the support rendered to us in 
carrying out this work. 

REFERENCES 

[1]    Jagadguru Swami Sri Bharati Krishna Tirthaji Maharaja, 
“Vedic Mathematics: Sixteen Simple Mathematical Formulae 
from the Veda,” Motilal Banarasidas Publishers, Delhi, 2009, 
pp. 5-45. 

[2] Sandesh S. Saokar. R. M. Banakar. Saroja Siddamal., 
“High Speed Signed Multiplier for Digital Signal. Processing 
Applications,”ieee 2012.  

[3] Himanshu Thapliyal and M. B. Srinivas,“An efficient 
method of elliptic curve encryption using Ancient Indian 
Vedic Mathematics,”48th IEEE International Midwest 
Symposium on Circuits and Systems, 2005, vol. 1, pp. 826-
828.   

[4] M. Pradhan and R. Panda, “Design and Implementation of 
Vedic Multiplier,” A.M.S.E Journal, Computer Science and 
Statistics, France vol. 15, July 2010, pp. 1-19.   

[5] Harpreet Singh Dhillon , Abhijit Mitra, “A Reduced-Bit 
Multiplication Algorithm for Digital Arithmetics,” 
International Journal of Computational and Mathematical 
Sciences, Spring 2008, pp.64-69.  

[6] Sen-Maw Kuo and Woon-Seng Gan, “Digital Signal 
Processor, architectures ,implementations and applications,” 
Pearson Prentice Hall, 2005, pp. 253-323. 

[7] S. S. Kerur, Prakash Narchi, Jayashree C .N., Harish 
M.Kittur and GirishV.A.“Implementation of Vedic Multiplier 
for Digital Signal Processing,” International Journal of 
Computer Applications, 2011, vol. 16, pp. 1-5.  

AUTHORS 

 

 

 

Author 3- Mr. K. Madan Mohan, M.Tech,  Asst.Professor in 
the Department of Electronics and Communication 
Engineering, Intell Engineering College. Areas of interests are 
VLSI System Design, wireless sensors, Digital systems and 
embedded systems.  

 

 
 
 
 

Author 1–R. Naresh Naik, received his Bachelor 
of Technology in Electronics and Communication 
Engineering in N.B.K.R. Institute of 
Science&Technology,Vakadu, A.P., INDIA  in 
2010. He is doing his research on Advanced 
Multiplication Techniques using Multipliers for 
DSP Applications under the guidance of Mr. K. 
Madan Mohan. His areas of interests are doing 
VERILOG based projects. 

Author 2–P.Siva Nagendra Reddy, received his 
Bachelor of Technology in Electronics and 
Communication Engineering in C.M.R. Institute 
of Technology, Kandlakoya, Hyderabad, A.P., 
INDIA in 2011. He is doing his research on 
Advanced Multiplication Techniques using 
Multipliers for DSP Applications under. His areas 
of interests are doing VHDL and VERILOG based 
projects. 

 


