
International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4113

Performance Transaction’s Assessment Of Real Time Database System In
Distributed Environment
Shetan Ram Choudhary1, Dr. C.K. Jha2

Department of Computer Science, Banasthali University, P.O. Banasthali Vidyapith-304022,Rajasthan, India

Abstract
Database performance is a very important aspect of database
usability. The objective of this paper is to proposed policy to
forecast the performance of transaction under real time
database system in distributed environment. A real time
database system in distributed environment is a transaction
processing system design to handle the workload within a
deadline. The objective of such scheme is to complete the
processing of transaction before the deadline expires. The
performance of the system depends on the factors like as
database system architectures, underlying processors, various
operating conditions, disks speeds and workloads. Our works
involves of forecasting the transaction performance depends
on the basis of comparing with commit and abort of a
transition in the scheme to give the result through simulation.

Key words: Real Time Database System, Distributed Sites,
Transaction, Deadline, Distributed Environment.

1. INTRODUCTION
Today’s Information Era database is an essential component
of any Information system and in any environment either it is
traditional, network, distributed, real-time. Data and the way
it is organized is more important in any system. A database is
a structured way to organize information. A real-time
database is a processing system designed to handle
workloads whose state is constantly changing. This differs
from traditional databases containing persistent data, mostly
unaffected by time. Real time applications are increasingly
being implemented on different platforms such as centralize,
distributed and mobile.
Many real time database applications are distributed in nature
[2,6,17]. These include the like as factory automation,
robotics, military tracking, aircraft control, shipboard control,
stock arbitrage system, communication system, mobile
communication systems, medical monitoring, computer
integrated manufacturing (CIM), telephone switching, virtual
environment, railway reservation, traffic control, sensory and
banking systems etc [17,21,5]. The real time performance of
Real time distributed database system (RTDBS) depends on
several factors like as the database system architecture, disk
speed, the underlying processor etc. Proposed model can be

used to study the transaction atomicity for real time database
system in distributed environment. The proposed model can
be used under variety of workloads, setting and workload
parameters. We mainly concentrate on the scheduling arrival
rate of the workloads applied to the transaction deadline to
measure the transaction performance. Distributed computing
is a technique that is used to solve a single problem in a
heterogeneous computer network system. A major issue in
building a distributed database system is the transactions
atomicity. When a transaction runs across into two sites, it
may happen that one site may commit and other one may fail
due to an inconsistent state of transaction. Two-phase commit
protocol is widely used [19,2] to solve these problems. The
choice of commit protocol is an important design decision for
distributed database system. A commit protocol in a
distributed database transaction should uniformly commit to
ensure that all the participating sites agree to the final
outcome and the result may be either a commit or an abort
situation.

2. DATABASE SYSTEM IN DISTRIBUTED

ENVIRONMENT
Database system (DBS) can be viewed as a collection of the
data items which are shared by many users [26,27]. They are
designed to manage huge amount of the data. The
management of data basically involves the definition of
structures for its storage and provision of mechanisms for
manipulation of this stored information as per requirement.
Thus, a DBS is a collection of objects, which satisfy the need
of users besides a set of integrity constraints. Database
Systems can be generally categorized as I. Centralized
Database System and II. Distributed Database System
I. Centralized Database System: The centralized database
systems are those that run on a single computer system.
These systems may range from single-user database systems
running on personal computers to high-performance database
systems running on mainframe systems.
II. Distributed Database System: The distributed database
systems (DDBS) consist of a collection of sites, connected
together via some means of communication networks, in
which, each site is a database system site in its own right but

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4114

the sites have agreed to work together, so that a user at any
site can access data from anywhere in the network, exactly as
if, the data are all stored at the user’s own site [29].

3. REAL TIME DATABASE SYSTEMS IN

DISTRIBUTED ENVIRONMENT
Real Time systems (RTS) are those for which accuracy
depends not only on the logical properties of the produced
results, but also on the temporal properties of these results
[30, 31,32]. Typically, real time systems are associated with
critical applications, in which human lives or expensive
machineries may be at stake [33]. Hence, in such systems, an
action performed too late (or too early) or a computation
which uses temporally invalid data may be useless and
sometimes harmful even if such an action or computation is
functionally correct. The RTS continue to evolve; their
applications become more and more complex, and often
require timely access and predictable processing of massive
amounts of real time data [34].
Real time databases have two properties. First, data has a
finite life time after which it is aged out or becomes invalid.
Second transactions have a life time after which their
returned results are no longer useful and in addition could be
harmful or catastrophic to the system if not returned within
the specified lifetime called its deadline. The systems with
deadlines are called as real time system (RTDBS). A
transaction in a database system can have any real time
constraints. A real time database system is a transaction
processing system that is designed to handle workloads,
where each transaction has completion deadline. The
deadlines are fall into three categories: (I) Hard deadlines,
(II) Firm deadlines and (III) Soft Deadlines.
(I) Hard deadlines: serious problem, this type of problem

occurs when a task is not completed within the
deadlines,

(II) Firm deadlines: the task is completed after the
deadlines, and

(III) Soft Deadlines: the task diminishes its value if the task
is completed after the deadlines.

NG considered on a commit protocol for check pointing
transactions [35]. A distributed transaction is executed at
various sites. The transaction may decide to commit at some
sites whereas at one another sites it could decide to abort
resulting in a violation of transaction atomicity in distributed
environment [26].
Al-Houmaily et al. took atomicity with incompatible
presumptions [37]. To overcome this problem distributed
databases systems use a distributed commit protocol which
ensures the uniform commitment of the distributed

transaction, i.e. all the participating sites agree on the final
outcome commit/abort of the transaction. Lee Inseon et al.
worked on a causal commit protocol such as a new approach
for distributed main memory database systems [38].
Commit protocol is required to ensure that either all the
effects of the transaction persist or none of them persist in
spite of the site or communication link failures and loss of
messages.
Designing the real time system involved ensuring that there is
enough processing power to meet the deadlines without the
need of excessive hardware resources. The objective of
system is to meet these deadlines, that is, to complete
processing transaction before their deadlines expire. In
RTDBS, the performance of the transaction commit is
usually measured in terms of the numbers of transactions that
complete before their deadlines.
There are collection of multiple, logically interrelated
databases distributed over a computer network where
transactions have explicit timing constraints, usually in the
form of deadlines, it is called real time database system in
distributed environment (DRTDBS).
The transaction that misses the completion of processing
before its deadline is just considered as killed or aborted and
discarded from the system without being executed to
completion [5].
Database researchers have been working in this area for
many early years and a variety of commit protocols have so
far been proposed. These protocols include one phase
protocols like Early Prepare (EP) [39,40], two phase
protocols like the classical Two Phase Commit (2PC) [4],
three phase protocol like Three Phase Commit (3PC) [11]
and many of their optimizations.
A survey in RTDBS is in [14,15] and a detail of deadlines is
discussed in [21,25,16, 36]. Early Prepare (EP) commit
protocol & two-phase commit protocol in real-time
designation has been investigated in [39,40, 16,22,3,18]. The
works concentrated in management of deadline applied to a
transaction and scheduling of arrival rates of workload with
experimental performance of system under variety of
workloads and different methods.

4. PROPOSED MODEL
The performance evaluation of the early prepare commit
protocol (EP), we develop a detailed proposed model of a
real time database system in distributed environment based
on loose combination of the distributed database model
presented in [5,12,23,24]. More details on the definitions and
literature are available in [19,2,6,21,16,3,18,7,8,1,
20,36,39,41]. The proposed model consists of non-replicated

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4115

Resource
Request

CC Request
 Service

Done

CC Reply

End
Transaction

Start
Transaction

Sink

CC
Manager

Resource
Manager

Transaction Manager Source

Recovery
Manager

manner of database distributed to all available sites, say, for
example, 8 sites in our case. According to our study, we
modify the model of the Real Time Database System in
Distributed Environment from the basic model presented in
[5]. The model consists of six different components as shown
in Fig.1.
Source: This component is mainly responsible for generating
the transaction workload for a site. The workload model used
by the source characterizes transactions in terms of the files
that they access and the numbers of pages that they access
and update in each file.
Transaction Manager: The transaction manager is
responsible for accepting transactions from the source and
modeling their execution. Each transaction in the workloads
has a master process, numbers of cohorts and possibly a
number of updaters. The master resides at the site, where the
transaction is submitted. Each cohort makes a sequence of
read and write requests to one or more files that are stored at
its sites. A transaction has one cohort at each site, where it
needs to access data. To select the execution sites for a
transaction’s cohorts, the decision rules is: If a files is present
at the originating site, use the copy there; otherwise choose
uniformly from the sites that have remote copies of the file.

Fig. 1: The Framework of Real Time Database System in

Distributed Environment Model

Recovery Manager: The recovery manager implements the
details commit protocol.
Resource Manager: The resource manager manages the
physical resources of sites like its CPU and its disk for
reading and writing data or message from them. It also
provides the CPU and I/O service to the transaction manager
and concurrency control manager. This component is not
fully implemented in our work.

Concurrency Control Manager:The concurrency control
(CC) manager is responsible for handling concurrency
control requests made by the transaction manager, including
read and write access requests, requests to get permission to
commit a transaction, and several types of master and cohort
management requests to initialize and terminate master and
cohort processes.
Sink: The sink deals with collection of statistics for the
completed transactions.
Network Manager is a communication network interconnects
the sites. All sites communication via messages exchange
over the communication network. The network manager
models the behavior of the communications network.

5. PROPOSED MODEL AND ITS PARAMETERS
Our works adopt the common model of transaction execution
in distributed. There is one process called master which is
executed at the site, where the transaction is submitted. There
are many processes called cohorts, which are executed on
behalf of the transactions at the different sites that are
accessed in the transaction.
So, we called in other words, each transaction has a master
process that runs at its originating site. The master process, in
turns sites up a collection of cohort processes, which are
involved in running the transaction. Cohorts are created by
the master sending a STARTWORK message to local
transaction manager at that site. After each cohort finishes
executing its portions of a query, it sends a WORKDONE
massage to the master and the master initiates the execution
of a process after it receives such message from all its
cohorts. When the transaction is initiated at the site of files
and data items that it will access are chosen by the source, the
master is, then loaded at its site of originating.
The Early Prepare Commit Protocol (EP) uses Presumed
Commit (PC: an optimization over 2PC, where a cohort in
prepared state goes ahead to commit in case of no reply from
its master) to eliminate one round of messages for a
distributed transaction that executes in the absence of
failures. The communication is also reduced by EP, further
by making each cohort enter the prepared state after it
performs its work and before it replies to the master with the
WORKDONE message.
A master using EP may have to force multiple
MEMBERSHIP records, because the transaction membership
may grow as transaction execution progresses. A master
using the presumed commit protocol must record the identity
of a cohort in its stable log before the cohort can enter its
prepared state. Hence a Master using EP must record a
Cohort’s identity in its stable log before sending a work

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4116

request to that cohort. If the master knows the transaction
membership before it begins executing the transaction, the
master can force one membership record. On the other hand,
if the master uses the results obtained from one cohort to
determine the identity of a subsequent cohort and no two
operations are done by the same cohort, the master must
force a MEMBERSHIP record before sending each
transaction operation to the appropriate cohort.
The steps of execution of EP are as: (i) Master forces one or
more MEMBERSHIP log records and sends a
STARTWORK request to each cohort. (ii) Each cohort
executes its work request, forces a PREPARE log record and
replies to master with a WORKDONE message. (iii) Master
forces a COMMIT log record, sends a COMMIT message to
each cohort, and forgets about the transaction. (iv) Each
cohort appends to its log, but need not force, a COMMIT log
record and then forgets about the transaction.
When EP is used and several work requests are sent to each
cohort, each cohort forces several PREPARE log records. In
contrast, when 2PC or PC is used, each cohort involved in a
transaction forces only one PREPARE log record regardless
of the number of work requests it received.
A cohort using EP synchronously forces each PREPARE
record as early as possible, while a cohort using PC
synchronously forces the PREPARE record as late as
possible. A cohort using an intermediate approach could
reply to the master after executing its work request, force the
PREPARE record asynchronously, and notify the master
once the record has been forced. This asynchronous approach
reduces the number of synchronous log forces and may
increase parallelism. It requires one more round of messages
compared to EP, but one less round compared to PC.
We consider assuming that, without loss of generality that
both the master and the cohorts are in an executing state.
From this point, a cohort can move to either aborting or
prepared state, depending upon whether it successfully
finishes its work or not. If it finishes its job successfully, it
forces a PREPARE log record and sends a WORKDONE
message to its master. Once a cohort is in prepared state, it
can no longer unilaterally decide to move to the aborting
state; it has to wait for the master’s decision of commit or
abort, based on which it will move to aborting or committing
state by forcewriting the appropriate log record.
The master makes the decision (commit or abort) about the
fate of the transaction. It can directly move to the aborted
state from the executing state sending ABORT messages to
the cohorts (i.e., if the transaction is aborted by the user).
Master can as well move to the aborting state by sending
ABORT message to all of its successful cohorts. It moves to

the committing state by sending the COMMIT messages to
all the cohorts. Note that the master requires to force write
the ABORT log record while moving to its aborting state.
From the executing state, the master moves to the committing
state (by writing a COMMIT log record) only if it gets all
WORKDONE messages from all the cohorts and then it
forgets about the transaction, because of the PC feature of
EP. Even if one ABORT message is received from any
cohort, the master moves to the aborting state (by
forcewriting an ABORT log record). From the aborting
states, the master moves to the aborted state, by writing an
END log record. The END log record is written only after the
master has received all ACKs from the cohorts that were sent
the decision. Note that, the cohorts do not write any more log
records (that is, no END record) after moving to committing
or aborting states, therefore, for the cohorts, these states are
equivalent to committed or aborted states, respectively.
Finally, the master, after receiving ACK from all the
prepared cohorts, writes an end log record and then “forgets”
the transaction and makes free. Then the statistics results are
collected in the sink. In our simulation experiments, we
consider the transactions that are executed in parallel. A
single formula is used to assign deadlines to all transactions.
Each transaction is assigned a deadline and its formula is
given by the following equation:

DT=AT+SF*RT ……………. (1)

Here,
DT = Deadline of Transaction;
AT = Arrival Time of Transaction;
RT = Resource Time of Transaction (T) and
SF = Slack Factor.
Slack factor (SF) that provides control over the tightness and
slackness of deadlines. The resource for its execution in other
word is an execution time of a transaction.
There are two issues related problem to resource time such as
(i) It is a function of the number of messages and force-
writes, which differ from one commit protocol to another
commit protocol, and (ii) The workload generated utilizes
information about transaction resource requirements in
assigning deadlines. The performance evolution of the
commit protocols of proposed model of a real time database
system in distributed environment has been described. The
settings of workload and system parameters used in our
model. Summary of the proposed model parameters are
given in table 1.

TABLE 1. PROPOSED MODEL PARAMETERS

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4117

Parameters Description

NumSites orSelectfile Number of sites in the Database

Dbsize Number of pages in the database

ArrivalRate Transaction arrival rate/site

Slackfactor Slack factor in Deadline formula

FileSelection Time Degree of Freedom (DistDegree)

WriteProb Page update probability

PageCPU CPU page processing time

PageDisk Disk page access time

TerminalThink Time between completion of 1

transaction & submission of another

Numwrite Number of Write Transactions

NumberReadT Number of Read Transactions

6. PARAMETER SETTINGS
The values of the parameter set in the simulation are given in
table 2. Based on the transaction type, the cohorts may
execute either in parallel or sequential. Each cohort makes a
series of read and update access. In our model, the transaction
has a single master process and multiple cohorts. The number
of sites at which the transaction executed is simplified by the
DistDegree parameters. At each of sites, the number of pages
access by the cohorts varies uniformly between 0.5 to 1.5
times of Cohort Size. These pages are chosen randomly form
among the database pages located at the sites. A page is read
by the WriteProbe parameter. If the transaction’s action
deadline expires either before the completion of its local
processing or before the master has written the global
decision log receive, the transaction is killed and discarded.
The CPU time to process a page is 10 milliseconds and the
disk access time is 20 milliseconds.

TABLE 2. ASSSUMED VALUES OF PROPOSED
MODEL PARAMETERS

Parameters Parameters

NumSites 8

Dbsize vary(max.2400)

ArrivalRate 6 to 8 job/sec

Slackfactor 4

FileSelection Time 3

WriteProb 0.5

PageCPU 10ms

PageDisk 20ms

TerminalThink 0 to 0.5 sec

7. ANTICPATION OF RESULTS
We conducted an broad set of simulation experiments using
the above mentioned parameters in Table 1 & 2 using
simulation languages GPSS [13]. The simulation can use
different simulation languages such as C++SIM, DeNet
[10,9] etc. Commit percentage and Abort percentage were
used as measures for the performance metrics in our
simulation results. Commit percentage is the percentage of
input transactions that the system is able to complete before
their deadline and Abort percentage is the percentage of input
transactions that the system is unable to complete before their
deadline. We conducted simulation under normal and heavy
loads with different settings of workload parameters like as
Numsites, DBsize(File size), DistDegree (File selection
time), and with other corresponding parameter values. We
considered 8 distributed sites, with 8 files and other
parameter values were kept constant. The one phase EP
protocol significantly reduces the overhead of commit
processing by eliminating an entire phase, making it
especially attractive in the real time database system in
distributed environment.

8. CONCLUSIONS
The performance of transactions was performed by
comparison of transactions Commit and Abort percentages
under two different workloads such as normal load and heavy
load. Thus, for heavy load both Commit percentage and
Abort percentage were high, it observed that could have been
problem of improper distribution, like the work was assigned
to a busy site. The increase in file selection time minimized
the Abort percentage and gave improper performance. The
performance improved in all sites under normal load. There is
increase number of sites that the abort percentage was very
low in the transaction.

9. REFERENCE

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4118

1. A.S. Tanenbaum, “Computer Networks”, Third Editions, Prentice Hall
of India Pvt. Ltd, 2001.

2. Bipin C. Desai, “An Introduction to Database System”, Galgotia
Publication Pvt. Ltd., New Delhi.(India), 1st Edition pp.520, 1993.

3. H. Jayant, “Performance Analysis of Real Time Database System”,
Technology Report 92-96. University of Maryland, USA, 1991.

4. J. Gray, “ Notes on Database Operating Systems”, Operating System:
An advanced course, Lecture notes in Computer Science, 60, 1978.

5. Jayant H, J.M.Carey and M. Livney, “Data Access Scheduling in Firm
Real Time Database System”, Real Time System Journal, 4(3), 1992.

6. Jayant H, Ramesh G, Kriti R, and S.Seshadri, “Commit Processing in
Distributed Real Time Database System” Pro of 17th IEEE Real Time
System Symposium USA, December, 1996.

7. Jayant, Krithi, Ramesh, “The PROMPT Real Time Commit Protocol”,
IEEE transaction on Parallel anddistributed System, vol 2, no 2, Feb,
2000.

8. Kenneth Reed, Data Networks (Handbooks), IE: 61-65, 1998.
9. Livny, M, DeNet User’s Guide, Version 1.0, Comp. Sc. Dept University

of Wisconsim, Madison, 1988.
10. M.C. Little and D.L. Mc Cue, C++SIM User’s Guide Public release 1.5,

Dept. of Computing Sc. University of New Castte Upon Tyne, U.K.,
1994.

11. M.Qszu, P.Valdureiz, “Principles of Distributed Database System”,
Prentice Hall, 1991.

12. Michale J.Carey and Miron Livny, “Distributed Concurrency Control
Performance: A Study of Algorithms, Distribution, and Replication”
Proc. Of 14th VLDB conference, Los Angeles, California, August, 1988.

13. Minutesmansoftware,GPSS, world North Carolina ,USA,4E.[GPSS
Book] (Student Version 4.3.5), 2001.
http://www.minutmansoftware.com

14. O. Ulusoy, “ Research Issues in Real Time Database system ” ,
Technology Report BUCEIS-94-32, Department of Computer
Engineering and Information Science, Bilkent University, Turkey, 1994.

15. O. Ulusoy, “Processing Real-time Transaction in a Replicated Database
Systems”, Intel Journal of Distributed and Parallel Database 2(4),
1994.

16. Robert Abbott and Hector Garcia-Molina, “Scheduling Real time
transaction: a performance Evaluation, Programme of 14th VLDB
conference Los Angeles, 1988.

17. S. Son, “Real Time Database System”, A new challenging Data
Engineering, 13 (4), December, 1990.

18. S.Davidson,I.Lee and V. Wolfe., “A protocol for Times Atomic
Commitment”, Proc. of 9th International Conference on Distributed
Computing System”, 1989.

19. Silberchatz, Korth, Surdarshan, “Database System Concept”, 4th
International Edition, McGraw Hills,. New Delhi.(India), pp 91, 1984.

20. Udai Shanker, Manoj Misra, Anil K. Sarje, “Distributed real time
database systems: background and literature review”, Distrib Parallel
Databases, 127-149(23), 2008.

21. Y. Jayanta, S.C. Malhotra, “Management of Atomicity problem in worst
possible environment”, Library progress (International), 22(1), 25,
2002.

22. Y. Yoon, “Transaction Scheduling and Commit Processing for Real time
Distributed database System”, Ph. D thesis Korea Advance Institute of
Sc. And Technology, May, 1994.

23. Y.Jayanta & S.C. Mehrotra, “A new Commit processing under
Distributed Database Real time Database System”, Skyline Business
Journal, Sharjah, UAE, 2005.

24. Y.Jayanta & S.C. Mehrotra, “Performance analysis of a Real Time
Distributed Database System through simulation”, 15th IASTED
International Conference on APPLIED SIMULATION AND

MODELLING(ASM), Rhodes, Greece, June, 2006.
http://www.actapress.com

25. Y.Jayanta & S.C. Mehrotra, “Simulation of commit processing under
Distributed Real Time Database System”, IETE, National Conference,
Aurangabad, India, January, 2004.

26. Ramakrishnan Raghu and Gehrke, Johannes, “Database Management
System,” McGraw Hill Publication, New York, January 2003.

27. Ullman Jeffrey D., “Principle of Database Systems,” Galgotia
Publication Pvt. Ltd. 1992.

28. Gehani Narain, Ramamritham K., Shanmugasundaram, J. and Shmueli,
O., “Accessing Extra Database Information: Concurrency Control and
Correctness,” Information Systems, Vol. 23, Issue 7, 439-462, Nov.
1996.

29. Garcia-Molina Hector and Lindsay Bruce, “Research Directions for
Distributed Databases,” ACM SIGMOD Record, Vol 19, Issue 4,
December, 1990.

30. Aldarmi Saud A., “Real Time Database Systems: Concepts and Design,”
Department of Computer Science, University of York, April 1998.

31. Stankovic John A., “Misconception about Real-Time Computing,” IEEE
Computer, pp. 10-19, Oct. 1988.

32. Vrbsky Susan V. and Tomic Sasa, “Satisfying Timing Constraints of
Real Time Databases,” Journal of Systems and Software, Vol. 41, pp.
63-73, 1998. www.mpcs.org/MPCS98/Final_papers/Paper.48.pdf

33. Lam Kam -Yiu, Law Gary C.K. and Lee Victor C.S., “Priority and
Deadline Assignment to Triggered Transactions in Distributed Real-
Time Active Databases,” Journal of Systems and Software, Vol. 51, No.
1, pp. 49-60, April, 2000.

34. Ulusoy Ozgur, “A study of Two Transaction Processing Architectures
for Distributed Real-Time Database Systems,” Journal of Systems
Software, Vol. 31, No. 2, pp. 97-108, 1995.

35. NG Pui, “A Commit Protocol for Checkpointing Transactions,”
Proceedings of the 7th Symposium on Reliable Distributed Systems,
Columbus, OH, USA, pp. 22–31, Oct. 10-12, 1998.

36. Shetan Ram Choudhary, C.K.Jha, “Performance Evaluation of Real
Time Database Systems in Distributed Environment”, Int. J. Computer
Technology & Applications, Vol 4(5), 785-792, 2013.

37. Al-Houmaily Yousef J. and Chrysanthis P.K., “Atomicity with
Incompatible Presumptions,” Proceedings of the 18th ACM Symposium
on Principles of Database Systems (PODS), Philadelphia, June 1999.

38. Lee Inseon, Heon Y. and Park Taesoon, “A new Approach for
Distributed Main Memory Database Systems: A Causal Commit
Protocol,” IEICE Transactions on Information and System, Vol. E87-D,
No.1, pp. 196-204, January 2004.

39. James W. Stamos and Flaviu Cristian, “A Low_Cost Atomic Commit
Protocol, In Proceedings of the 9th IEEE Symposium on Reliable
Distributed Systems, October, 1990.

40. James W. Stamos and Flaviu Cristian, “Coordinator Log Transaction
Execution Protocol”, International Journal on Distributed and Parallel
Databases, 1(4), 1993

