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Abstract – This article describes an implementation for the 
method from Texas Instruments for a random number 
generator in the ultra-low power microcontroller MSP430x5xx 
Families and the analysis of this generator in the concrete 
microcontroller MSP430f5438A. The generator may be used to 
generate numbers for cryptography security methods (for 
example in the cryptosystem Diffie-Hellman). A short theoretical 
introduction to the cryptography generators, a description of 
implementation, some practice examples and an analysis (and its 
description) for con- Crete example of the generator are provided 
in this article. 
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I.       INTRODUCTION 

The random number generators (RNG) are today used in 
everyday life in banking systems [1], data transfers [2], lottery 
systems [3], electronic communications [4], it is evident the 
random numbers today touching nearly all possible technical 
and also everyday life fields. 

Two basic types of number generating are existing, hard- 
ware (called also as Non-Pseudo Random generator – NPRGN 
or True Random Generator – TRGN) and software (called also 
as Pseudo Random Generator – PRGN). The hardware 
generating using physical random events for example shot 
noise [5], radioactive decay [6], spontaneous parametric 
down- conversion [7], etc. The hardware generators are 
slower (than software) with pretended higher randomness, this 
is mostly mean truly random numbers. These generators 
require special modules (events) for creating random process 
and it is necessary periodically test the randomness, because 
the events are changing in time and that is also mean the 
reconstruction of the same generating process is not possible). 
The software generating is mostly faster with smaller 
randomness, pseudo- randomness. Pseudo-random numbers 
mean that these numbers are periodically repeated after some 
concrete time (value of number). The software generators 
using mathematical apparatus and the randomness depend on 
difficulty of this apparatus, which also define the periodicity. 
[8][9] 

In general all types of generators are used, but it is 
necessary  to  count  with  advantages and  disadvantages of  
these 

generators and choose the best (or better) one for concrete 
situation. 

This article is focused on random number generators for 
low-power devices, concretely the microcontrollers 
MSP430x5xx Families from Texas Instruments Company. It 
is used in many devices for its good energy properties as 
battery saving in portable devices [10], real-time capability 
with ultra-low power consumption, active and low power 
mode [11] and many more. 
 

II.      POSSIBILITIES OF RNG IN MSP430 
The random number generator for MSP430 can be 

created with the function rand(), which is included in the 
library stdlib. This generator (method) is PRGN and is 
called Linear Congruential Generator (LCG). This genera- 
tor is really fast and do not need big memory space. But it 
is used only for basic examples of numbers generating or 
some beta-testing in phases, where is not necessary 
generate truly (or enough strong) random numbers. For 
practical devices (real use) the randomness of this numbers 
is insufficient [12], even when the better seed is used is not 
poss ible this function use in situation,  where we need 
strong security level of random number generating . 

It can be also used many kind of implementations from 
various  different  authors,  but  this  generators  will  every 
time generate only pseudo-random combinations of 
numbers [13] and from basic description of PRGN is 
evident it have bigger requirements for memory or energy 
compare to hardware generators, which use for generating 
physical events and not mathematical apparatus . This is 
big disadvantages for ultra-low-power devices and also 
the reason for choosing some hardware solution. When the 
generator is used in practical situations ( devices) it is also 
necessary to count the final price. When it will be used 
some external module, it is evident the final price will 
grove and also reason for using internal modules (if it is 
possible). 
 
A. BASIC WORK WIT H MSP430 

This is a basic introduction to the work with MSP430. It 
is simply described work with the parts of MSP430, which 
are used for random number generator.
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MCx     
Mode Stop  Continuous Up/Down 

 

1) Diode and Watchdog:  One green diode is included in 
MSP430x5xxx. This diode is used as a control device, for 
example each state can blink by different frequency. In Code 
2.1 the basic control of the diode is showed. For blinking is 
necessary to put the control orders in some loop function [14]. 

P1DIR |= 0x41; // Set the diode PIN 
P1OUT = 1; // 1 for ON, 0 for OFF diode 
P1OUT ^= 0x41; // negation of diode stat 

Code 2.1: Diode control 
 

The Watch Dog Timer (WDT) is a hardware timer used to 
trigger a system reset if software neglects to regularly service 
the watchdog (after a certain amount of time). The WDT have 
some events, what may control some situations, but for most 
situations it is better to create own events and the WDT is 
better to set off (Code 2.2). [15] In general the WDT was 
created for system control to not fall in to the infinitive loop or 
some other system collapse [16], but for development new 
applications may be really difficult to set the WDT right and 
that is also the major reason for put it off. 

WDTCTL = WDTPW + WDTHOLD; // Stop WDT 
Code 2.2: Stop watch-dog timer 

 

But the WDT may be also used for creating interruption be- 
tween diode blinking but this may be also handled by simple 
for cycle (Code 2.3). 

for (int i;i<10;i++) { 
for (int j;j<6000;j++) {} 
P1OUT ^= 0x41;} 

Code 2.3: Cycle for diode blinking 
 

First for (with variables i) provide blinking, number of 
blinks is in example 5 (10 times change state). Second for 
(variables j) provide pause between state changing. Variants 
for this are many (for one more example “delay cycle”, which 
may be used as pause between blinking (Code 2.4)). 

for (int i;i<10;i++) { 
  delay cycles(5000) 
P1OUT ^= 0x41;} 
Code 2.4: Delay cycle for diode blinking 

 

But the final influence for program function is minimal. 
 

2) Clock modules:  MSP430 has three basic clock mo d- 
ules Auxiliary clock (ACLK), Master clock (MCLK), and 
Subsystem Master Clock (SMCLK) (figure 2.1). Two of 
them can be used as a signal for Timers [17]. 

16 MHz (this is a basic divider possibilities, but the DCO may 
be also set to any other frequency by this divider). The 
frequency of the clock module may be changed by changing 
registers BCSCTL (basic clock system control registers) and 
DCOCTL (digital clock control register). Code 2.5 shows how 
to set the frequency to 1 MHz. 

BCSCTL1 = CALBC1_1MHZ;// Set range 
DCOCTL = CALDCO_1MHZ; // DCO step,modul. 

Code 2.5: Setting 1 MHz in DCO 
 

The ACLK is running on a much lower frequency, crystal 
with basic frequency 12 KHz. Similar to DCO the frequency 
of crystal can be re-set by divider (but here it may be only 
strict value of 1, 2, 4, 8 and 16). It is also used the register 
BCSCTL1, but with a different variable. All of the registers 
and possibilities may be found in the library MSP430f5438. 
 

3) Timers and Interrupts:   Two different timers TIM- 
ER_A and TIMER_B are exist. The differences between 
them are only question about queue priority of some regi s- 
ter [18], what is irrelevant. The TIMER_A (figure 2.2) will 
be described, because the work with the both timers is 
similar and the TIMER_A is in the RNG used. 
 

 
 
 
 
 
 
 

Figure 2.2: TIMER A 
 

The TIMER_A is a 16-bit counter, having 4 modes of 
operation  (stop,  up,  continuous  and  up/down),  3   
capture/compare registers  (CCR1 –  CCR4)  and  2  
interrupts vectors (TACCR0 and TAIV) [19]. 

With using Timer Mode Control (MCx) may be set all 
of the four timer modes (Table 2.1). 
 
 
 

Table 2.1: Timers Modes 
 

The Stop Mode halts the timer from counting. Up Mode 
repeatedly counts from zero to the value of TACCR0 regis- 
ter. Up/Down Mode is repeatedly count from zero to the 
value of TACCR0 register and back to zero. Continuous 
Mode repeatedly counts from zero to 0xFFFFh value. The 
example of  continuous mode function is  showed on  the 
figure2.3.

 
 
 
 

Figure 2.1: Clock system in MSP430 
 

The SMCLK is using a digital controlled oscillator (DCO), 
which runs on a frequency around 1 MHz. The DCO can be 
also    re-set    by    divider    to    1,    2,    4,    8,    12    and 

 
Figure 2.3: Interrupt flag with continuous mode [20] 

 

The timer has three basic parts. T he clock input is first, 
which has its  own  source  (ticks at  a  specified rate)  for 
example SMCLK or ACLK. The counter is second, which
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has a specified mode and the interrupt procedure, which is 
called when the concrete value (counter limit) is reached. 

For a better understanding of how to set a timer, it is 
possible to look in the library MSP430f5438, where the 
basic registers of TIMER_A can be found. 

It is showed (Code 2.6) only simple example, when the 
count limit should be set to 12000 (TA0CCR0), with enabled 
interrupt  flag  (TA0CCTL0) and  sources  (TA0CTL)  ACLK 
with 12 KHz (TASSEL_1 + MC_2). Values as MC_2 or 
TASSEL_1 are pre-set values, they may be also found in the 
library  MSP430f5438 (it is only a different and easiest way 
for set the bits in register). 

 
TA0CCR0 = 12000; // count lim.,used CCR0 
TA0CCTL0 = 0x10; // enable interrupts 
TA0CTL = TASSEL_1 + MC_2; 

 
Code 2.6: Simple settings for TIMER_A0 

 

From the code is evident the TIMER_A may have sub- 
timers (threads) of its self (for example in Code 2.6 is used 
thread TIMER_A0). 

The Timers of MSP430 are very complicated and it is no 
space to show all possibilities. This could be a topic for 
another article. 

 
III.     HARDWARE RNG USING TIMERS 

How it is evident from previous chapters this article will 
describe the hardware random number generator, which will 
use internal modules. The basic idea, which will be in this 
article  followed  coming from  Texas  Instruments Company 
[21], the implementation of this method is showed in Fig. 3.1. 

 
1. Set and start ACLK, SMCLK timers 
2. Count ticks of SMCLK 
3. Wait till ACLK will tick 
<ACLK TICK> 
5. Read SMCLK ticks 
6. Save LSB from number of SMCLK ticks 
(in left-shifted register) 
7. Repeat everything again 
(till will be reached required size of 
random number) 

 
Figure 3.1: Basic idea of hardware RNG for MSP430 

 

Concretely it will be two clocks (SMCLK, ACLK) and one 
timer  (TIMER_A  and  two  of  threads  of  it).  The  clocks 
SMCLK and ACLK are two independent clocks. This fact can 
be used for generating numbers if it is done right [21]. The 
ACLK running in basic on 12 KHz, the SMCLK clock 
running in basic on 1 MHz (in real the frequency circling 
around 
0.9 to 1.1 MHz). One of the clocks is ticking slowly and one 
fast (Figure 3.2), then when the slower (ACLK) will have first 
tick the faster (SMCLK) will have n-ticks. 

 
 
 
 
 
 
 

Figure 3.2: Comparison of ACLK and SMCLK 

Because the SMCLK is circling around 1 MHz, the number 
n will be each time different (random). This event may be 
used as physical source for hardware random number genera- 
tor. The LSB (least significant bit) from the number n may be 
used as one single random bit. This means, that if this 
operation is done in loop (circle), it can be easily generate a 
line of random numbers. The basic scheme of functionality for 
this type of generator is showed in the Figure 3.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: RNG in MSP430 using timers 
 

It is used the TIMER_A (two threads of its), two clocks 
(SMCLK, ACLK), CCR register for load a LSB bit and left- 
shifter  register  for  saving  random numbers  (single  LSBs). 
First it is necessary to set an input of TIMER_A (concretely 
two threads of TIMER_A), first Timer_A0 for VLO (Code 
3.1) and second TIMER_A 1 for DCO (Code 3.2). 
 

TA0CCTL0 = CAP | CM_1 | CCIS_1; 
TA0CTL = TASSEL_2 | MC_2; 

 
Code 3.1: First sub-timer (TIMER_A0) 

 

The tag TA0 shows to what thread of TIMER_A belongs 
the register. The register CCTL0 chooses the mode of the 
counter and CTL register chooses the clock source. 
 

TA1CCR0 = 1; 
TA1CTL = TASSEL_1 | MC_1; 
TA1CCTL0 = CCIE | OUTMOD_3; 

 
Code 3.2: Second sub-timer (TIMER_A1) 

 

The tag TA1, register CCTL and CTL doing the same as 
in previous code. The register CCR0 set the limit value of 
the  counter.  This  is  necessary  because  this  thread  will 
count the ticks of ACLK. 

In the Figure 3.4 is showed little differences compare to 
Figure 3.3. These differences will be closer described in 
the following text. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Real schema of the RNG
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The Figure 3.4 shows procedure for generate one single 
random bit. Two threads of TIMER_A (TA0, TA1) are used. 
The DCO source (SMCLK) is used for the timer TA0 and the 
VLO source (ACLK) is used for the timer TA1. The timer 
TA1 is set as a counter, which is counting (in up mode) ticks 
of VLO (in this settings it counts till one tick is reached). 
Between the counting is good use the low power mode (one of 
the main feature of MSP430) for saving energy (Code 3.3) 
[22]. 

 
  bis_SR_register(LPM3_bits | GIE); 

 

Code 3.3: Set the low-power mode 
 

It is very important it will not occur to double interruption 
(Figure 3.5 part A) and also the main generating process will 
be not included in interrupt vector function, because this may 
also create double interruption [23]. The interruption must be 
handled like in Figure 3.5 B. This mechanism will be more 
described in following text. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: (A) Double-Interruption loop (B) Normal Interruption loop 
 

The interruption is handled by interrupt vector TA1IV 
(Timer_A1 interrupt vector) and it occur to interruption, when 
is reached the value of register CCR0 of TA1. The TA0 and 
TA1 in that interruption time should be stopped (Code 3.4). 

 
#pragma vector=TIMER1_A0_VECTOR 
  interrupt void Timer1_A0 (void) { 

// TA1IV interrupt service routine 
TA0CTL = MC_0; 
TA1CTL = MC_0; 

  bic_SR_register_on_exit(CPUOFF); 
 

Code 3.4: Interrupt vector of TIMER_A0 
 

The MC_0 in CTL register set the stop mode for timers. 
The last line is for going out from the low-power mode. For 
better understanding it may be followed Figure 3.6, where is 
the mechanism is described. 

 
1. Set timers 
2. Set interuption events 
3. Set low-power mode ON 
<SAVE THE POSITION> 
<PROGRAM GO IN LOW POWER MODE> 
<INTERRUPTION> 
4. Orders in interrupt vector function 
(program still in low-power mode) 
5. Set low-power mode OFF 
<PROGRAM GO OUT FROM LOW POWER MODE> 
<LOAD THE POSITION> 
6. Following orders in lines 

 
Figure 3.6: Mechanism of Interruption and Low Power Mode 

After the program step back to normal mode, the timers are 
in stop mode and it is possible to read the register TA0R, 
where is number of ticks of the Timer A0 (the number n, 
which was described in previous text). 

This LSB  from this number it  should be  saved to  left- 
shifted register and after that the register TA0R must me re-set 
to zero (code 3.5) and whole mechanism can be repeated for 
generating more random numbers. 
 

if ( (TA0R % 2) != 0 ) { 
Left_Shifted_Register |= (1 << i); } 

 

Code 3.5: Left Shift Register saving random LSB 
 

In Code 3.5 is used modulo operator (%), for decide if the 
last bite is logical “zero” or “one” (also odd or even) [24]. 
This operator includes many instruction cycles, which waste 
time and  energy [25]. The program uses  modulo order x- 
times, where x will be the number of required random bits 
(then for example 192-random bit number will use 192-times 
modulo operations). The easier and energy gentle solution is 
showed in Code 3.6, where is only controlled bit position of 
the number from TA0R register. 
 

if (TA0R & (1 << 0)) 
 

Code 3.6: Gentle solution for LSB control 
 

In following chapter will be showed some possibilities for 
grow a randomness and analysis of this generator. 
 
A. GROWING THE RANDOMNESS 

In this subchapter will be given some tips for increasing 
the randomness of the generator. On the Figure 3.7 some 
additional modules/register are showed, which can be used 
for increasing the randomness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Additional modules for RNG [21] 
 

Register BCSCTL1 (as it was showed in chapter II.A.2) is 
used for set the speed of DCO/VLO. Number five may be 
used for change the speed (increase the speed) of the DCO 
every time when is the LSB shifted (any other number may be 
also  used,  but  five  shows  the  biggest  differences between 
DCO/VLO clock steps) and VLO change is depend on XOR 
function of two LSB bits. 

The next thing what might be done is changing n (number 
of ticks). It could be static or random change in every round,
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x

 e

,

when is generated the LSB bit, but in this case is necessary to 
be careful, because this number even affects the speed of the 
number generating process. 

Figure 3.8 showing the final ideas in order, for growing 
randomness this implementation should be followed. 

 
1. Set and start ACLK, SMCLK timers 
(with different TA1CCR0) 
2. Count ticks of SMCLK 
3. Wait till ACLK will tick 
<ACLK TICK> 
5. Read SMCLK ticks 
6. Save LSB from number of SMCLK ticks 
(in left-shifted register) 
7. Increase speed of DCO by 5 
8. Change speed of VLO by divider 
(depend on xored LSB) 
10. Repeat everything again 
(till will be reached required size of 
random number) 

 
Figure 3.8: Idea for growing the randomness 

 

The first idea (changing VLO/DCO) is already tested by se- 
ries of statistical tests, described by the Federal Information 
Processing Standards (FIPS), concretely in implementation of 
FIPS 140-2 test from Texas Instruments Company [21]. It is 
necessary count the  test  was only implementation and  not 
certified battery of tests. Every time is necessary to create 

   The analysis is inconclusive. 
First hypothesis is proved when critical value is higher than 

P-value, secondary is proved when critical value is lower than 
P-value and the last hypothesis coming from facts of test 
description [29]. This test is called Kolmogorov-Smirnov 
test and it is defined as 

d  Max F x  Ex, 
where F(x) and E(x) are the theoretical and empirical 

distribution function evaluated at x, respectively [30]. 
 

2) Binary Matrix Rank Test:   This test is included in 
DIEHARD, also in NIST battery of tests and in the end it is 
recommended also in online random generator 
(www.random.org – the services for generating random 
numbers via atmospheric noise) as one of the analytical 
methods. [31][32] That it is also reason for using this analysis 
for test this generator. 

The test divides the generated sequence into blocks whose 
length is determined by the sub-matrices and it is counted the 
rank of these matrixes. The truly random number sequence 
should have only a few linear correlations (the number of 
linear correlation depends on ranks of matrixes). The X2 

distribution for (M, Q) matrixes 
2                                             2                                       2 

model of the system and evaluate the entropy that is generated 
 

2 
obs  

 (FM  E1 N )  
 

 (FM 1 E2 N )  
 

 (Fr  E3 N )  
,

[26]. E1 N E2 N E3 N
B. ANALYSIS OF THE GENERATOR 

The following analysis will be focused on model described 
in the Chapter III. From the definition of statistical analysis is 
evident, that any analysis cannot prove the generating process 
is truly random. In each technique we trying to prove two 
assumptions, the generating process is not random (weak) or 
the generating process may be random. Simply we are trying 
to prove one of the input hypotheses. Many analytical 
techniques are existing for example from NIST, DIEHARD, 
STS 
etc. [27]. 

where the F are the calculation of the rank of every sub-matrix 
and the result for them is 

FM = full rank (the number of matrixes with rank is M), 
FM-1 = full rank -1 (the number of matrixes with rank is M-1), 

Fr = N - FM - FM-1 (the number of matrixes remaining) 
and the M is number of rows and the Q is number of 
columns. For the matrix 32x32 is the (E1, E2, E3) [28], 

(E1, E2, E3) = (0.2888, 0.5776, 0.1336). 
For final result of P-value is necessary to use the 
complementary incomplete gamma function (igamc) 

2

The following tests from NIST organization will be used    x 2     
         

xob s 

for this analysis: P-value = igamc 1, obs                 2 


  Binary Matrix Rank Test 
  Discrete Fourier Transformation (Spectral) 

The Random Number Analyzer (RNA) from NIST will be 
used  for  these  tests  [28].  The  240.000 bits  was  generated 
(used) for the following analyses. 

 
1) The NIST RNA testing:  The NIST testing strategy trying 

apply the statistical tests with appropriated parameters to the 
generated sequence of bits and after that trying to examine 
(and analyze) the Probability (P-value) for fixed critical value 
(α) a certain percentage are expected to failure. This 
techniques proving one from three hypotheses (scenarios): 
   The analysis proving non-randomness character 

(inappropriate character). This is the Alternative 
Hypothesis (HA). 

   The analysis proving appropriate character for the anal- 
ysis. This is the Null Hypothesis (H0). 

     2  
If the P-value is between values 0.01 and 0.99, the 

sequence passes the test, otherwise fails [33]. 
The result of the NIST test is for P-value is: 

P-value = 0.7170200592. 
It is evident the value falling to the (0.01, 0.99) interval and 

the null hypothesis is accepted. 
 

3) Discrete Fourier Transformation:  The Fourier 
transformation is used in the randomness analytical methods 
really often and really long, the variants can be different as 
FFT, DFT, but the basic and important stuffs is that this 
analysis is again one of the most used for analysis 
[34][35][36]. This type of analysis is also used in NIST test 
suite and for the online random generator (www.random.org). 
These facts are used for choosing this type of analysis. 

This test detects the periodic features (repetitive patterns 
that are near each other) in the generated sequence. These



         International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 8- Dec 2013 
 

             ISSN: 2231-5381                    http://www.ijettjournal.org                               Page 403 
 

features would indicate a deviation from the assumption of 
randomness. The detecting is based on searching the peak 
heights in the DFT. The basic description of this test is com- 
ing from [26], the main parts of this analysis is sliding win- 
dow, which is using for converting the input sequence (ε) to 
the sequence (X) of -1 and +1. Next parts are DFT function, 
modulus function and the error function (erfc). The simple 
description of this test may be as: 

(1)   The basic values are length of the bit string n, the 
periodic sequence PS (for example “10”). 

(2)   Use sliding window for create the sequence X = x1, 
x2, … xn, where xi = 2εi-1. The ε is transformed to -1 or 
+1 values, depend if the PS match (+1) or not (-1) 

(3)   Apply DFT on X, S = DFT(X) and calculate M = 
mod(S’)   |S|, where S’ is the substring consisting of 

n 
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The result of the NIST test for P-value is: 

P-value = 0.1897834012. 
Compare to critical value the null hypothesis is also accept- 

ed. 
 

IV.     CONCLUSION 
The generator, which is described in this article, was 

successfully tested. The results of this test showing, that 
the generator can be used in practical devices for 
generating random numbers. In the text is also showed the 
implementation and the way how the generator should be 
programmed, followed by practical advices for realization. 
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