
 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 8- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 398

Cryptography in Ultra-Low Power Microcontroller MSP430
Radek Fujdiak1, Jiří Mišurec2, Petr Mlýnek3, Ondřej Rášo4

Department of Telecommunications
Faculty of Electrical Engineering and Communication

Brno University of Technology, Czech Republic

Abstract – This article describes an implementation for the
method from Texas Instruments for a random number
generator in the ultra-low power microcontroller MSP430x5xx
Families and the analysis of this generator in the concrete
microcontroller MSP430f5438A. The generator may be used to
generate numbers for cryptography security methods (for
example in the cryptosystem Diffie-Hellman). A short theoretical
introduction to the cryptography generators, a description of
implementation, some practice examples and an analysis (and its
description) for con- Crete example of the generator are provided
in this article.

Keywords - Cryptography, Implementation, Low-power Micro-
controller, MSP430, Random Generator

I. INTRODUCTION

The random number generators (RNG) are today used in
everyday life in banking systems [1], data transfers [2], lottery
systems [3], electronic communications [4], it is evident the
random numbers today touching nearly all possible technical
and also everyday life fields.

Two basic types of number generating are existing, hard-
ware (called also as Non-Pseudo Random generator – NPRGN
or True Random Generator – TRGN) and software (called also
as Pseudo Random Generator – PRGN). The hardware
generating using physical random events for example shot
noise [5], radioactive decay [6], spontaneous parametric
down- conversion [7], etc. The hardware generators are
slower (than software) with pretended higher randomness, this
is mostly mean truly random numbers. These generators
require special modules (events) for creating random process
and it is necessary periodically test the randomness, because
the events are changing in time and that is also mean the
reconstruction of the same generating process is not possible).
The software generating is mostly faster with smaller
randomness, pseudo- randomness. Pseudo-random numbers
mean that these numbers are periodically repeated after some
concrete time (value of number). The software generators
using mathematical apparatus and the randomness depend on
difficulty of this apparatus, which also define the periodicity.
[8][9]

In general all types of generators are used, but it is
necessary to count with advantages and disadvantages of
these

generators and choose the best (or better) one for concrete
situation.

This article is focused on random number generators for
low-power devices, concretely the microcontrollers
MSP430x5xx Families from Texas Instruments Company. It
is used in many devices for its good energy properties as
battery saving in portable devices [10], real-time capability
with ultra-low power consumption, active and low power
mode [11] and many more.

II. POSSIBILITIES OF RNG IN MSP430
The random number generator for MSP430 can be

created with the function rand(), which is included in the
library stdlib. This generator (method) is PRGN and is
called Linear Congruential Generator (LCG). This genera-
tor is really fast and do not need big memory space. But it
is used only for basic examples of numbers generating or
some beta-testing in phases, where is not necessary
generate truly (or enough strong) random numbers. For
practical devices (real use) the randomness of this numbers
is insufficient [12], even when the better seed is used is not
poss ible this function use in situation, where we need
strong security level of random number generating .

It can be also used many kind of implementations from
various different authors, but this generators will every
time generate only pseudo-random combinations of
numbers [13] and from basic description of PRGN is
evident it have bigger requirements for memory or energy
compare to hardware generators, which use for generating
physical events and not mathematical apparatus . This is
big disadvantages for ultra-low-power devices and also
the reason for choosing some hardware solution. When the
generator is used in practical situations (devices) it is also
necessary to count the final price. When it will be used
some external module, it is evident the final price will
grove and also reason for using internal modules (if it is
possible).

A. BASIC WORK WIT H MSP430

This is a basic introduction to the work with MSP430. It
is simply described work with the parts of MSP430, which
are used for random number generator.

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 8- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 399

MCx
Mode Stop Continuous Up/Down

1) Diode and Watchdog: One green diode is included in
MSP430x5xxx. This diode is used as a control device, for
example each state can blink by different frequency. In Code
2.1 the basic control of the diode is showed. For blinking is
necessary to put the control orders in some loop function [14].

P1DIR |= 0x41; // Set the diode PIN
P1OUT = 1; // 1 for ON, 0 for OFF diode
P1OUT ^= 0x41; // negation of diode stat

Code 2.1: Diode control

The Watch Dog Timer (WDT) is a hardware timer used to
trigger a system reset if software neglects to regularly service
the watchdog (after a certain amount of time). The WDT have
some events, what may control some situations, but for most
situations it is better to create own events and the WDT is
better to set off (Code 2.2). [15] In general the WDT was
created for system control to not fall in to the infinitive loop or
some other system collapse [16], but for development new
applications may be really difficult to set the WDT right and
that is also the major reason for put it off.

WDTCTL = WDTPW + WDTHOLD; // Stop WDT
Code 2.2: Stop watch-dog timer

But the WDT may be also used for creating interruption be-
tween diode blinking but this may be also handled by simple
for cycle (Code 2.3).

for (int i;i<10;i++) {
for (int j;j<6000;j++) {}
P1OUT ^= 0x41;}

Code 2.3: Cycle for diode blinking

First for (with variables i) provide blinking, number of
blinks is in example 5 (10 times change state). Second for
(variables j) provide pause between state changing. Variants
for this are many (for one more example “delay cycle”, which
may be used as pause between blinking (Code 2.4)).

for (int i;i<10;i++) {
 delay cycles(5000)
P1OUT ^= 0x41;}
Code 2.4: Delay cycle for diode blinking

But the final influence for program function is minimal.

2) Clock modules: MSP430 has three basic clock mo d-
ules Auxiliary clock (ACLK), Master clock (MCLK), and
Subsystem Master Clock (SMCLK) (figure 2.1). Two of
them can be used as a signal for Timers [17].

16 MHz (this is a basic divider possibilities, but the DCO may
be also set to any other frequency by this divider). The
frequency of the clock module may be changed by changing
registers BCSCTL (basic clock system control registers) and
DCOCTL (digital clock control register). Code 2.5 shows how
to set the frequency to 1 MHz.

BCSCTL1 = CALBC1_1MHZ;// Set range
DCOCTL = CALDCO_1MHZ; // DCO step,modul.

Code 2.5: Setting 1 MHz in DCO

The ACLK is running on a much lower frequency, crystal
with basic frequency 12 KHz. Similar to DCO the frequency
of crystal can be re-set by divider (but here it may be only
strict value of 1, 2, 4, 8 and 16). It is also used the register
BCSCTL1, but with a different variable. All of the registers
and possibilities may be found in the library MSP430f5438.

3) Timers and Interrupts: Two different timers TIM-
ER_A and TIMER_B are exist. The differences between
them are only question about queue priority of some regi s-
ter [18], what is irrelevant. The TIMER_A (figure 2.2) will
be described, because the work with the both timers is
similar and the TIMER_A is in the RNG used.

Figure 2.2: TIMER A

The TIMER_A is a 16-bit counter, having 4 modes of
operation (stop, up, continuous and up/down), 3
capture/compare registers (CCR1 – CCR4) and 2
interrupts vectors (TACCR0 and TAIV) [19].

With using Timer Mode Control (MCx) may be set all
of the four timer modes (Table 2.1).

Table 2.1: Timers Modes

The Stop Mode halts the timer from counting. Up Mode
repeatedly counts from zero to the value of TACCR0 regis-
ter. Up/Down Mode is repeatedly count from zero to the
value of TACCR0 register and back to zero. Continuous
Mode repeatedly counts from zero to 0xFFFFh value. The
example of continuous mode function is showed on the
figure2.3.

Figure 2.1: Clock system in MSP430

The SMCLK is using a digital controlled oscillator (DCO),
which runs on a frequency around 1 MHz. The DCO can be
also re-set by divider to 1, 2, 4, 8, 12 and

Figure 2.3: Interrupt flag with continuous mode [20]

The timer has three basic parts. T he clock input is first,
which has its own source (ticks at a specified rate) for
example SMCLK or ACLK. The counter is second, which

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 8- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 400

has a specified mode and the interrupt procedure, which is
called when the concrete value (counter limit) is reached.

For a better understanding of how to set a timer, it is
possible to look in the library MSP430f5438, where the
basic registers of TIMER_A can be found.

It is showed (Code 2.6) only simple example, when the
count limit should be set to 12000 (TA0CCR0), with enabled
interrupt flag (TA0CCTL0) and sources (TA0CTL) ACLK
with 12 KHz (TASSEL_1 + MC_2). Values as MC_2 or
TASSEL_1 are pre-set values, they may be also found in the
library MSP430f5438 (it is only a different and easiest way
for set the bits in register).

TA0CCR0 = 12000; // count lim.,used CCR0
TA0CCTL0 = 0x10; // enable interrupts
TA0CTL = TASSEL_1 + MC_2;

Code 2.6: Simple settings for TIMER_A0

From the code is evident the TIMER_A may have sub-
timers (threads) of its self (for example in Code 2.6 is used
thread TIMER_A0).

The Timers of MSP430 are very complicated and it is no
space to show all possibilities. This could be a topic for
another article.

III. HARDWARE RNG USING TIMERS

How it is evident from previous chapters this article will
describe the hardware random number generator, which will
use internal modules. The basic idea, which will be in this
article followed coming from Texas Instruments Company
[21], the implementation of this method is showed in Fig. 3.1.

1. Set and start ACLK, SMCLK timers
2. Count ticks of SMCLK
3. Wait till ACLK will tick
<ACLK TICK>
5. Read SMCLK ticks
6. Save LSB from number of SMCLK ticks
(in left-shifted register)
7. Repeat everything again
(till will be reached required size of
random number)

Figure 3.1: Basic idea of hardware RNG for MSP430

Concretely it will be two clocks (SMCLK, ACLK) and one
timer (TIMER_A and two of threads of it). The clocks
SMCLK and ACLK are two independent clocks. This fact can
be used for generating numbers if it is done right [21]. The
ACLK running in basic on 12 KHz, the SMCLK clock
running in basic on 1 MHz (in real the frequency circling
around
0.9 to 1.1 MHz). One of the clocks is ticking slowly and one
fast (Figure 3.2), then when the slower (ACLK) will have first
tick the faster (SMCLK) will have n-ticks.

Figure 3.2: Comparison of ACLK and SMCLK

Because the SMCLK is circling around 1 MHz, the number
n will be each time different (random). This event may be
used as physical source for hardware random number genera-
tor. The LSB (least significant bit) from the number n may be
used as one single random bit. This means, that if this
operation is done in loop (circle), it can be easily generate a
line of random numbers. The basic scheme of functionality for
this type of generator is showed in the Figure 3.3.

Figure 3.3: RNG in MSP430 using timers

It is used the TIMER_A (two threads of its), two clocks
(SMCLK, ACLK), CCR register for load a LSB bit and left-
shifter register for saving random numbers (single LSBs).
First it is necessary to set an input of TIMER_A (concretely
two threads of TIMER_A), first Timer_A0 for VLO (Code
3.1) and second TIMER_A 1 for DCO (Code 3.2).

TA0CCTL0 = CAP | CM_1 | CCIS_1;
TA0CTL = TASSEL_2 | MC_2;

Code 3.1: First sub-timer (TIMER_A0)

The tag TA0 shows to what thread of TIMER_A belongs
the register. The register CCTL0 chooses the mode of the
counter and CTL register chooses the clock source.

TA1CCR0 = 1;
TA1CTL = TASSEL_1 | MC_1;
TA1CCTL0 = CCIE | OUTMOD_3;

Code 3.2: Second sub-timer (TIMER_A1)

The tag TA1, register CCTL and CTL doing the same as
in previous code. The register CCR0 set the limit value of
the counter. This is necessary because this thread will
count the ticks of ACLK.

In the Figure 3.4 is showed little differences compare to
Figure 3.3. These differences will be closer described in
the following text.

Figure 3.4: Real schema of the RNG

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 8- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 401

The Figure 3.4 shows procedure for generate one single
random bit. Two threads of TIMER_A (TA0, TA1) are used.
The DCO source (SMCLK) is used for the timer TA0 and the
VLO source (ACLK) is used for the timer TA1. The timer
TA1 is set as a counter, which is counting (in up mode) ticks
of VLO (in this settings it counts till one tick is reached).
Between the counting is good use the low power mode (one of
the main feature of MSP430) for saving energy (Code 3.3)
[22].

 bis_SR_register(LPM3_bits | GIE);

Code 3.3: Set the low-power mode

It is very important it will not occur to double interruption
(Figure 3.5 part A) and also the main generating process will
be not included in interrupt vector function, because this may
also create double interruption [23]. The interruption must be
handled like in Figure 3.5 B. This mechanism will be more
described in following text.

Figure 3.5: (A) Double-Interruption loop (B) Normal Interruption loop

The interruption is handled by interrupt vector TA1IV
(Timer_A1 interrupt vector) and it occur to interruption, when
is reached the value of register CCR0 of TA1. The TA0 and
TA1 in that interruption time should be stopped (Code 3.4).

#pragma vector=TIMER1_A0_VECTOR
 interrupt void Timer1_A0 (void) {

// TA1IV interrupt service routine
TA0CTL = MC_0;
TA1CTL = MC_0;

 bic_SR_register_on_exit(CPUOFF);

Code 3.4: Interrupt vector of TIMER_A0

The MC_0 in CTL register set the stop mode for timers.
The last line is for going out from the low-power mode. For
better understanding it may be followed Figure 3.6, where is
the mechanism is described.

1. Set timers
2. Set interuption events
3. Set low-power mode ON
<SAVE THE POSITION>
<PROGRAM GO IN LOW POWER MODE>
<INTERRUPTION>
4. Orders in interrupt vector function
(program still in low-power mode)
5. Set low-power mode OFF
<PROGRAM GO OUT FROM LOW POWER MODE>
<LOAD THE POSITION>
6. Following orders in lines

Figure 3.6: Mechanism of Interruption and Low Power Mode

After the program step back to normal mode, the timers are
in stop mode and it is possible to read the register TA0R,
where is number of ticks of the Timer A0 (the number n,
which was described in previous text).

This LSB from this number it should be saved to left-
shifted register and after that the register TA0R must me re-set
to zero (code 3.5) and whole mechanism can be repeated for
generating more random numbers.

if ((TA0R % 2) != 0) {
Left_Shifted_Register |= (1 << i); }

Code 3.5: Left Shift Register saving random LSB

In Code 3.5 is used modulo operator (%), for decide if the
last bite is logical “zero” or “one” (also odd or even) [24].
This operator includes many instruction cycles, which waste
time and energy [25]. The program uses modulo order x-
times, where x will be the number of required random bits
(then for example 192-random bit number will use 192-times
modulo operations). The easier and energy gentle solution is
showed in Code 3.6, where is only controlled bit position of
the number from TA0R register.

if (TA0R & (1 << 0))

Code 3.6: Gentle solution for LSB control

In following chapter will be showed some possibilities for
grow a randomness and analysis of this generator.

A. GROWING THE RANDOMNESS

In this subchapter will be given some tips for increasing
the randomness of the generator. On the Figure 3.7 some
additional modules/register are showed, which can be used
for increasing the randomness.

Figure 3.7: Additional modules for RNG [21]

Register BCSCTL1 (as it was showed in chapter II.A.2) is
used for set the speed of DCO/VLO. Number five may be
used for change the speed (increase the speed) of the DCO
every time when is the LSB shifted (any other number may be
also used, but five shows the biggest differences between
DCO/VLO clock steps) and VLO change is depend on XOR
function of two LSB bits.

The next thing what might be done is changing n (number
of ticks). It could be static or random change in every round,

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 8- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 402

x

 e

,

when is generated the LSB bit, but in this case is necessary to
be careful, because this number even affects the speed of the
number generating process.

Figure 3.8 showing the final ideas in order, for growing
randomness this implementation should be followed.

1. Set and start ACLK, SMCLK timers
(with different TA1CCR0)
2. Count ticks of SMCLK
3. Wait till ACLK will tick
<ACLK TICK>
5. Read SMCLK ticks
6. Save LSB from number of SMCLK ticks
(in left-shifted register)
7. Increase speed of DCO by 5
8. Change speed of VLO by divider
(depend on xored LSB)
10. Repeat everything again
(till will be reached required size of
random number)

Figure 3.8: Idea for growing the randomness

The first idea (changing VLO/DCO) is already tested by se-
ries of statistical tests, described by the Federal Information
Processing Standards (FIPS), concretely in implementation of
FIPS 140-2 test from Texas Instruments Company [21]. It is
necessary count the test was only implementation and not
certified battery of tests. Every time is necessary to create

 The analysis is inconclusive.
First hypothesis is proved when critical value is higher than

P-value, secondary is proved when critical value is lower than
P-value and the last hypothesis coming from facts of test
description [29]. This test is called Kolmogorov-Smirnov
test and it is defined as

d  Max F x  Ex,
where F(x) and E(x) are the theoretical and empirical

distribution function evaluated at x, respectively [30].

2) Binary Matrix Rank Test: This test is included in
DIEHARD, also in NIST battery of tests and in the end it is
recommended also in online random generator
(www.random.org – the services for generating random
numbers via atmospheric noise) as one of the analytical
methods. [31][32] That it is also reason for using this analysis
for test this generator.

The test divides the generated sequence into blocks whose
length is determined by the sub-matrices and it is counted the
rank of these matrixes. The truly random number sequence
should have only a few linear correlations (the number of
linear correlation depends on ranks of matrixes). The X2

distribution for (M, Q) matrixes
2 2 2

model of the system and evaluate the entropy that is generated

2
obs 

 (FM E1 N)


 (FM 1 E2 N)


 (Fr E3 N)
,

[26]. E1 N E2 N E3 N
B. ANALYSIS OF THE GENERATOR

The following analysis will be focused on model described
in the Chapter III. From the definition of statistical analysis is
evident, that any analysis cannot prove the generating process
is truly random. In each technique we trying to prove two
assumptions, the generating process is not random (weak) or
the generating process may be random. Simply we are trying
to prove one of the input hypotheses. Many analytical
techniques are existing for example from NIST, DIEHARD,
STS
etc. [27].

where the F are the calculation of the rank of every sub-matrix
and the result for them is

FM = full rank (the number of matrixes with rank is M),
FM-1 = full rank -1 (the number of matrixes with rank is M-1),

Fr = N - FM - FM-1 (the number of matrixes remaining)
and the M is number of rows and the Q is number of
columns. For the matrix 32x32 is the (E1, E2, E3) [28],

(E1, E2, E3) = (0.2888, 0.5776, 0.1336).
For final result of P-value is necessary to use the
complementary incomplete gamma function (igamc)

2

The following tests from NIST organization will be used  x 2 
 

xob s

for this analysis: P-value = igamc 1, obs 2


 Binary Matrix Rank Test
 Discrete Fourier Transformation (Spectral)

The Random Number Analyzer (RNA) from NIST will be
used for these tests [28]. The 240.000 bits was generated
(used) for the following analyses.

1) The NIST RNA testing: The NIST testing strategy trying

apply the statistical tests with appropriated parameters to the
generated sequence of bits and after that trying to examine
(and analyze) the Probability (P-value) for fixed critical value
(α) a certain percentage are expected to failure. This
techniques proving one from three hypotheses (scenarios):
 The analysis proving non-randomness character

(inappropriate character). This is the Alternative
Hypothesis (HA).

 The analysis proving appropriate character for the anal-
ysis. This is the Null Hypothesis (H0).

 2 
If the P-value is between values 0.01 and 0.99, the

sequence passes the test, otherwise fails [33].
The result of the NIST test is for P-value is:

P-value = 0.7170200592.
It is evident the value falling to the (0.01, 0.99) interval and

the null hypothesis is accepted.

3) Discrete Fourier Transformation: The Fourier
transformation is used in the randomness analytical methods
really often and really long, the variants can be different as
FFT, DFT, but the basic and important stuffs is that this
analysis is again one of the most used for analysis
[34][35][36]. This type of analysis is also used in NIST test
suite and for the online random generator (www.random.org).
These facts are used for choosing this type of analysis.

This test detects the periodic features (repetitive patterns
that are near each other) in the generated sequence. These

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 8- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 403

features would indicate a deviation from the assumption of
randomness. The detecting is based on searching the peak
heights in the DFT. The basic description of this test is com-
ing from [26], the main parts of this analysis is sliding win-
dow, which is using for converting the input sequence (ε) to
the sequence (X) of -1 and +1. Next parts are DFT function,
modulus function and the error function (erfc). The simple
description of this test may be as:

(1) The basic values are length of the bit string n, the
periodic sequence PS (for example “10”).

(2) Use sliding window for create the sequence X = x1,
x2, … xn, where xi = 2εi-1. The ε is transformed to -1 or
+1 values, depend if the PS match (+1) or not (-1)

(3) Apply DFT on X, S = DFT(X) and calculate M =
mod(S’)  |S|, where S’ is the substring consisting of

n

http://arxiv.org/ftp/cs/papers/0405/0405061.pdf
[3] SCHWARTZ, Jim. Advanced Lottery Theory. 2008. Available from:

http://www.satorimediaworks.com/software/LS/Lottery_theory.pdf
[4] GALLAIS A., CARLE J., SIMPLOT-RYL D., STOJMENOVIČ I.

Localized Sensor Area Coverage With Low Communication Overhead.
2006. Available from:
http://hal.archives-ouvertes.fr/docs/00/07/08/79/PDF/
gallais-percom-06.pdf

[5] JUN B., KOCHER P. The Intel® Random Number Generator. 1999.
Available from:
http://www.cryptography.com/public/pdf/IntelRNG.pdf

[6] KIMURA, Hiroshi. Physical Random Number Generator using Iso-
tropic Radiation. 2001. Available from:
http://isi.cbs.nl/iamamember/CD2/pdf/545.PDF

[7] XAVIER G.B., FERREIRA da S.T., VILELA de F., TEMPORAO
G.P., WEID J.P. Practical Random Number Generation protocol for en-
tanglement-based quantum key distribution. Available from:
http://arxiv.org/ftp/arxiv/papers/0810/0810.0483.pdf

[8] GLOSEMAYER D., KNAPP R. Random Number Generation. 2010.
Available from:

the first elements in S and mod function produces a
2

http://www.wolfram.com/learningcenter/tutorialcollection/RandomNu
mberGeneration/RandomNumberGeneration.pdf

sequence of peak heights.

 1 
[9] TURNER, Noah. Software vs. Hardware RNG’s. 2005. Available

from:
http://www.tstglobal.com/assets/downloads/1268986797a16.pdf

(4) Compute T =

treshold value.

 log


n
.05 

= the 95% peak height [10] Texas Instruments. MSP430 Ultra-Low-Power Microcontroller. 2008.
Available from:
http://www.ti.com/lit/sg/slab034w/slab034w.pdf

[11] Texas Instruments. Noah. MSP430 Microcontroller Family. 2000.
(5) Compute Ni (the actual observed number of peaks in

M that are less than T)
 N1 N 0 

Available from:
http://gse.ufsc.br/~bezerra/disciplinas/Microprocessadores/MSP/Applic
ation%20Book/chp1.pdf

[13] PRESS, H. William. The Art of Scientific Computing (2nd ed.). 1992.(6) Compute d = .
n(.95)(.05) / 2 [14] LITOVSKY, Gustav. Beginning Microcontrollers with the MSP430.

2010. Available from:
http://www.glitovsky.com/Tutorialv0_2.pdf

 d 
(7) Compute P-value = erfc   .  

 2 
The result of the NIST test for P-value is:

P-value = 0.1897834012.
Compare to critical value the null hypothesis is also accept-

ed.

IV. CONCLUSION
The generator, which is described in this article, was

successfully tested. The results of this test showing, that
the generator can be used in practical devices for
generating random numbers. In the text is also showed the
implementation and the way how the generator should be
programmed, followed by practical advices for realization.

ACKNOWLEDGE

Thank to the Project TAČR 02020856 – Aplicated
research of intelligent systems for monitoring energy
networks and to the University of Technology Brno.

REFERENCES

[1] RONCIN, Marcel. Succession des protocols ETEBAC. November
2008. Available from:
http://www.cfonb.org/Web/cfonb/cfonbmain.nsf/DocumentsByIDWeb/
7KUEQA/$File/ETEBAC%2017112008%
20%20V2.pdf

[2] RANGARAJAN A.V., SUGATA S.S., AJITH A., DHARMA P.A.
Jigsaw-based Secure Data Transfer over Computer Networks. 2004.
Available from:

[15] Recursive Labs. Programming the watchdog timer. 2011. Available
from:
http://recursive-labs.com/static/courses/rl100/samples/watchdog.pdf

[16] DAVIES, H. John. MSP430 Microcontroller Basics. 2008.
[17] WISMAN, Ray. MSP430 Timers and PWM. 2012. Available from:

http://homepages.ius.edu/RWISMAN/C335/HTML/msp430Timer.HT
M

[18] QUIRING, Keith. MSP430 Timers In-Depth. 2006.
[19] Texas Instruments. MSP430x2xx Family User’s Guide (Revised Janu-

ary 2012). December 2004.
[20] WANG, Yin. MSP430 Clock System and Timer. 2007. Available from:

http://www.ccs.neu.edu/home/noubir/Courses/CSU610/S07/MSP430-
Clock-Timers.pdf

[21] Texas Instruments. Random Number Generation Using the MSP430.
2006.

[22] OLSON, David. Tutorial 11-a: Going Low Power. October 2010.
Available from:
http://mspsci.blogspot.com.es/2010/10/tutorial-11-going-low-
power.html

[23] KING, Chung-Ta. CS 4101 Introduction to Embedded Systems
(LAB4). 2011.

[24] ALLAIN, Alex. Bitwise Operators in C and C++: A Tutorial. 2011.
Available from:
http://www.cprogramming.com/tutorial/bitwise_operators.html

[25] Texas Instruments. ULP Advisor for MSP430 (5.1). 2013. Available
from:
http://processors.wiki.ti.com/index.php/Compiler/diagnostic_messages/
MSP430/1530

[26] NIST. FIPS PUB 140-2. May 2001. Available from:
http://web.archive.org/web/20070817151620/http://csrc.nist.gov/public
ations/fips/fips140-2/fips1402.pdf

[27] SOTO, Juan. Statistical Testing of Random Number Generators. 2012.
[28] NIST. A Statistical Test Suite for Random and Pseudorandom Number

Generators for Cryptographic Applications. August 2008.

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 Number 8- Dec 2013

 ISSN: 2231-5381 http://www.ijettjournal.org Page 404

[29] KRHOVJÁK, Jan. Statistical Testing of Randomness. 2005. Available

from:
http://www.fi.muni.cz/~xkrhovj/lectures/2005_PA168_Statistical_Testi
ng_slides.pdf

[30] WANG, Hsiao-Mei. Comparison of the Goodness-of-Fit Tests: the
Pearson Chi-square and Kolmogorov-Smirnov Tests. 2008.

[31] FOLEY, Louise. Analysis of an On-line Random Number Generator.
2001. Available from:
http://www.random.org/analysis/Analysis2001.pdf

[32] CHARMAINE, Kenny. Random Number Generators: An Evaluation
and Comparison of Random.org and Some Commonly Used Genera-
tors. 2005. Available from:
http://www.random.org/analysis/Analysis2005.pdf

[33] LI, Liang. Testing several types of random number generators.
2012.Available from:
http://www.cs.fsu.edu/research/theses/Liang_L_Thesis_2012.pdf

[34] DAVIS, Richard A. Introduction to Statistical Analysis of Time Series.
2003.Available from:
http://www.stat.columbia.edu/~rdavis/lectures/Session6.pdf

[35] STEINFOLWF, Alexander. Random Vibration testing Beyond PSD
Limitations. 2007.Available from:
http://www.sandv.com/downloads/0609stei.pdf

[36] HINICH, Melvin J., NEBDES, Eduardo M. A. M. A New Statistical
Approach to Evaluating Random Number Generators. 2009.Available
from:
http://www.la.utexas.edu/hinich/files/Statistics/Bisprandom.pdf

[37] HAMONO, Kenji. The distribution of the Spectrum for the Discrete
Fourier Transform Test Included in SP800-22. 2005. Available from:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.3252&rep
=rep1&type=pdf

