
International Journal of Engineering Trends and Technology (IJETT) – Volume 20 Number 6 – Feb 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 263

Design of Low Power L1 Cache Using CBF Based

TOB Architecture in Embedded Processors
Mrs.S.BRINDHA

#1
, Ms.B.KAVITHA

#2

#1
Assistant professor,

#2
P.G.Scholar, II M.E.VLSI Design

 #1,#2
Department of Electronics and Communication Engineering,

#1,#2
Avinashilingam Institute for Home Science and Higher Education for Women-University

Coimbatore, India

Abstract- In the embedded processor, a cache could consume

40% of the entire chip power. So, reduce the high power

utilization of cache is very important. To reduce the high power

utilization a new cache method is used in the embedded

processors. This is termed as an Early Tag Access (ETA) method.

For the memory instructions, the early target way can be found

by this ETA. Thereby it can reduce the high power utilization. If

the ETA does not find the way, it search the way in L1 Cache. So

automatically the power gets increased. Here a new energy

efficient matching mechanism referred to as Counting Bloom

Filter (CBF) based Tag Overflow Buffer (TOB) is proposed. This

TOB uses reduced number of tag bits thereby the power gets

reduced. The ETA can be activating only when the TOB hit is

occurred. Compared to the previous technique the power

consumption gets decreased up to 40%.

Key words- Cache, LSQ tag, LSQ TLB, LFSR, Comparator, Hass

table, Low Power

I. INTRODUCTION

In embedded processors the most common

and critical problem is to reducing the large power

utilization of cache memory. Because it focuses

only the low-power consideration in embedded

processors. In the total chip power, the cache

consumes 40% [1]-[3]. Because of this large power

utilization, thermal effects and reliability

degradation issues may be generated in the cache.

Usually the caches are performed critically because

of this large power utilization. Therefore, reduce the

large power utilization in the cache is more

important. To show the tradeoff between the power

and efficiency of the cache, many cache design

methods [4]-[13] have been designed under various

level of the design abstract. Here, to reduce the high

power utilization a new cache matching mechanism

termed as a CBF based TOB can be defined. The

CBF is area-effective probabilistic data structure; it

is used to check whether a tag bit is present in the

cluster or set. From which it can reduce the power

consumption. For sample, CBFs have been used to

Increase the action in multiprocessor snoop-

coherent multi-core system [14],[15]. It is also used

to reduce the quick miss decision at the L1 cache

[16] and to increase the adaptability of load/store

ordering queues [17]. There are two types of CBFs

are present. That is SRAM CBF (S-CBF) and LFSR

CBF (L-CBF). Related to the S-CBF, the L-CBF is

more efficient one. Because the LFSR is high

efficiency feedbacks shift register. The TOB is the

identical mechanism that handles minimum address

bits i.e., it use only the most significant bits for

matching [18]-[22].

On a hit in the TOB, the restricted-tag cache

is approached usually through the ETA. On a miss,

common miss method is used i.e., it goes to the L2

cache to searching the particular tag. The following

are the main strength of the TOB: 1) In the cache it

uses a planned count of address bits. 2) It uses

much smaller hardware, so it accomplishes a tag

power minimization similar to the other methods. 3)

It achieves a reduction of leakage power. In the

ETA, the Transition look ahead buffer (TLB) can

perform the conversion between the Physical

address and the Virtual address. During that

conversion a portion of the physical tag is saved in

the tag array, in a physical tag and virtual index

cache. During the Load Store Queue (LSQ) stage

by approaching tag arrays and TLB, the target way

can be resolved previously approaching the L1

cache. At the final, the energy consumption can be

reduced significantly by accessing single way in the

L1 cache. Note that at the LSQ stage the TLB can

generate the Virtual addresses that can also be used

for succeeding cache approaches. The energy

utilities of way resolution at the LSQ stage can be

decreased by avoiding the TLB approaches over the

cache approaches stage for most of the memory

instruction. At the LSQ stage the destination ways

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 20 Number 6 – Feb 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 264

cannot be determined for memory instruction. For

that an improved technique of the ETA cache is

designed at the cache access stage to minimize the

number of ways accessed. Note that approaching L2

cache is complete correspond with the approaches

to the L1 cache in many high-end processors. Our

CBF based TOB technique is fundamentally

performed at the L1 cache. For embedded

processors, the proposed TOB cache is more

effective to take advantage for reducing cache

traffic and power utilization by series approaches to

the ETA and L1 cache. As correlated with the

associated work the output results determine that

the considered TOB cache is higher efficient in

power minimization.

 II.WORKING PRINCIPLE

A. Early Tag Access

In a conventional cache, based on the cache

hit the corresponding way of the data only activate.

Other ways gets inactive. But the cache miss

occurring means automatically it goes to the L1

cache to search the address, so the power gets

increase. In this segment, a new cache matching

mechanism termed as TOB will be established. This

method will decrease the power consumption by

reducing the number of tag bits.

Fig. 1 Operation flow of L1 cache under the ETA cache [1]

To get various powers and efficiency condition in

embedded processors, the ETA cache can be

explored in the Basic mode.

A.1 Basic Mode

Due to the possibility of memory addresses

it is likely to access an operation to the address

arrays at the LSQ stage. In the basic mode of ETA

cache, a novel group of address arrays and TLB

(termed as LSQ tag arrays and LSQ TLB) is

executed; when the memory information is go to

the LSQ. This new group of LSQ tag array and

LSQ TLB is the reproduction of the tag array and

TLB of the L1 cache correspondingly, to ignore the

data assertion with the L1 cache. In the course of

the LSQ lookup performance if the hit happen, that

specific way can be used as a target way of the

information. If this target way is correct, then that

specific way can be activated and other ways get

inactive. This enables power saving. On the other

hand, if the way miss occurring in the LSQ tag

array or in the LSQ TLB during the lookup

operation then the L1 cache will be performed in

the Normal mode, i.e., in the tag array and data

array of the L1 cache, all ways will be activated.

From Fig. 1, shows the operation flow of the L1

cache under the ETA cache. Here by using the

physical address and the data, the particular way

can be determined and activated in the L1 cache.

B. Tag Overflow Buffer

The TOB is the matching mechanism; it

uses minimum number of address bit. The main

thought of this planned design is to send the most

significant bit of the address bits from the cache

into an independent register named as TOB, that act

as an identifier of the memory instructions present

location. In majority of the memory accreditation a

minimized –tag cache can be accessed to achieve

the dynamic energy efficiency. Various classes of

methods are present to minimize the power

utilization of the cache by decreasing the number of

bits. In some cases a miss may be unfortunately

represented as a hit. Because in these cases a subset

can be used to compare the address. Therefore that

case must be compact with misinterpretation. Some

authors will use this design where the

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 20 Number 6 – Feb 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 265

misinterpretation cost is low, such as in branch

prediction engines [18], [19]. The approach

designed by Peng et al.[23] mingle the minimized

data array power induced by the modified way-

predicting cache design as proposed in [24] with the

minimum tag power achieved by restricted tag

comparison.

Fig. 2 CBF based TOB architecture

Fig.2 shows the Block Diagram of CBF

based TOB architecture. The dotted lines in the

figure denote the extra hardware needed to achieve

the minimized-tag architecture. For every memory

references the TOB and the cache are always

performed compliment with each other. The block

diagram operates as follows. For each memory

references, the most significant bits of the tag are

sent to the CBF. If both the address are equal (a

CBF hit occurs), then we can easily perform the

minimized-tag cache.

C. Counting Bloom Filter

Fig. 3 shows the CBF architecture. A CBF

is a group of up/down linear feedback shift register

and local zero detectors listed via hash function of

the address in membership check.

Fig. 4 shows the user defined 32 bit hash

table. Because of hashing, within the same array

entry, multiple element addresses are mapped.

Normally, the CBF is a limited cluster and the tags

are hashed onto this little cluster only.

Fig. 3 CBF architecture

Fig. 4 Hash table (32 bit)

In this hash table, the address present in the

cache is denoted as one and others are denoted as

zero. For example, 00001,00011,00101,01000 and

01010 are present in the cache means that will be

denoted as one. If the particular input address tag is

present in cache, then the CBF will be activated. A

CBF has three function: 1) increment count (INC);

2) decrement count (DEC); and 3) test if the count

is zero or not (PROBE). The INC and DEC

operations can increment or decrement the

respective count by one based on the hit, and the

third one checks weather the count is zero and

returns true or false single-bit output. The first two

functions are referred as a updates and the third

operation will be consider as a probe. Based on the

number of inputs and the size of the count per entry,

a CBF is characterized. A CBF give any one of the

two answers: 1) “Definite no,” indicating that the

particular address is surely not a member of large

set and 2) “I don‟t know,” denote that a CBF cannot

find the address in the membership check, and must

looking for the large group. The CBF is capable of

determine the required answers to the membership

check, it saves power and much faster on two

conditions. First, CBF serves most membership

tests. Second, compared to accessing the large

group, the CBF is much sooner and needs less

energy. The CBF is performed as follows, at first

the large group is empty and all the count is put into

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 20 Number 6 – Feb 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 266

zero. In the large set, when the address is added or

deleted, the respected CBF gets incremented or

decremented by one. The corresponding CBF

denotes that in the large set, whether an element is

exits or not. If the count is zero, the large set does

not have that particular element. If the count is one,

then the large set must be searched for that element.

Fig.5 L-CBF architecture; LFSR holds the CBF count; INC/DEC: read-

modify-write sequences; PROBE: read-compare sequence

Fig. 5 shows the L-CBF architecture. Here

the up/down Leaner Feedback Shift Register is used

to generate random number of addresses. By using

the comparator both the addresses are correlated to

test whether the address is member or not. Fig. 6

indicating the LFSR block diagram. The number of

D-flip flops and the XOR gates are used here to

generate different addresses. Every LFSR has the

following limits: 1) the number of bits in the shift

registers is parallel to the width and size of the

LFSR. 2) in the LFSR, taps are the output of D-flip

flop that have been connected with the feedback

loop. 3) at starting state, the LFSR can be any

value, except one. Here the total numbers of tag bits

are 5. So, the feedback polynomial will be X
5

+ X
3

+ 1. So, the output is taken from 3
rd

 and 5
th

 output

of D-flip flop and Xored both of them and feedback

to the 1
st
 flip flop.

The input of the LFSR is Clock and reset.

The memory core is used to tell whether the

element is member or not in the large set.

Fig. 6 LFSR Block diagram

It is a single bit output. It can increment the

address bits and read the address bits. But it cannot

able to decrement it.

D. LSQ Tag Array and LSQ TLB

The LSQ tag array and LSQ TLB are the

reproduction of the tag array and TLB of L1 cache

accordingly, to ignore the data assertion with the L1

cache. In the LSQ tag array and LSQ TLB the

lookup operation can be takes place. When the

address go to the LSQ, both the LSQ tag array and

LSQ TLB search the early destination way by using

the lookup operation. If the hit is occur (the

particular address present in the LSQ tag array or

TLB), then that particular way gets activate in the

L1 cache. Otherwise, the information will be either

an early tag miss or early TLB miss.

E. Way Decoder and Way Hit/Miss Decoder

Here the way decoder is used to decode the

early destination way from the recently accessed

ways by using the way enabling signal. Whether the

particular destination way will be correct or not can

be denoted by the way hit/miss decoder. The cache

performance can be considered as a hit only when

both the cache hit/miss and the way hit/miss signals

denote a hit. If both the cache hit/miss and the way

hit/miss indicating a miss signal means, then the

cache process will be consider as a miss. A cache

connection problem is found when the cache

hit/miss denotes hit and the way hit/miss denotes

miss or the early target way does not similar with

the actual target way.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 20 Number 6 – Feb 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 267

III. OVER ALL FLOW OF THE CBF BASED TOB

Fig. 7 shows the flow diagram of the CBF

based TOB architecture. The dotted lines denote the

CBF based TOB architecture and the ETA. Here the

TOB is connected between the address generation

part and the ETA. The particular tag bit can be

retrieved from the ETA, only when it present in the

TOB. If the tag bit not present in the TOB, then the

L2 cache or main memory will be searched for the

tag bits. It can reduce the search time. So,

automatically the power is also gets reduced.

Fig. 7 Flow diagram of CBF based TOB

By using the hash table the CBF can find

whether the address is member of a set or not. From

that information, the TOB can determine the output.

Each time when the address reaches the LSQ tag

and LSQ TLB, lookup operation can be takes place

to find the early destination way of that particular

address in L1 cache. Here the TLB is nothing but

the Transition Look ahead Buffer. It is used to

convert the physical address to the virtual address.

Basically, the physical address is used to find the

data array and the virtual address is used to find the

tag array. If the particular destination way can be

found, then that way can be activated in the L1

cache. From that way we can easily retrieve the data

of that particular address.

IV IMPLIMENTATION OF CBF BASED TOB

This segment furnish the VLSI

implementation of CBF based TOB cache. Fig. 8

shows the two-way set-associative L1 cache for

demonstration. The key component in the proposed

is CBF, TOB, Hash table, LFSR, LSQ tag array,

LSQ TLB, Information buffer, Way decoder, and

way hit/miss decoder.

Fig. 8 proposed CBF based TOB cache architecture

Initially the address generation can be takes

place by using the CAM. CAM is nothing but

Content Addressable Memory. It can generate the

address for the particular data. This address will be

called as physical address. This address only sent to

the L1 cache. In the 8 bit address, the first 5 bits are

consider as a tag bits, the next 2 bits are consider as

a index bits, and the final bit is consider as a offset

bit. The tag bits only sent to the TOB. Because it

uses minimum number of address bits to matching

the address. If the most significant bits are equal,

more over the other bits are also equal.

Then this tag bits are sent to the CBF. In the

CBF user defined hash table can be used to search

the address bits in the large group. If the address bit

is currently in the Hash table means, then it

activates the CBF. In the CBF, the LFSR is present

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 20 Number 6 – Feb 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 268

to generate the random number of tag bits to

compare with the input tag bit. If both the tag bits

are equal means, then it sent the control signal „1‟

to the memory core. In the memory core three types

of operations are present. 1) INC, 2) DEC, and 3)

PROBE. Increment is used to increase the tag bits

in the CBF. The PROBE is used to read the tag bits

in the CBF. The CBF cannot able to access the

decrement operation.

If the output of LFSR is one means, then the

memory core said that “yes, the element is a

member of a set”. If the output of LFSR is not equal

to „1‟ means, then the memory core output will be

“I don‟t know whether the element is a member of a

set or not”. Then the CBF output will be compared

with the input tag bits in the TOB. If both the tag

bits are equal means, TOB hit is occurred. If the

TOB miss occurring means, then that particular tag

bit is added to the CBF by using Locality Change

Detection (LCD). This LCD is based on both the

input tag bit and the TOB miss. If the TOB miss

occurring, then this tag bit is sent to the LCD. Here

based on the TOB miss, the counter gets increased

by „1‟ and compared with the maximum threshold

value of the cache. Compared to the threshold

value, the input tag bit is minimum means it will

load to the CBF. After this action, the cache will be

flushed. Then the TOB hit information and the

particular tag bit can be sent to the ordering logic.

Here first in first out logic can be used. So, the

highest priority tag bit is first stored in the

information buffer and it is used for the temporary

storage of the tag bits. The dotted lines denote the

ETA. From the ETA the particular destination way

can be determined and it sent to the information

buffer. From the information buffer the way can be

sent to the way decoder. In the way decoder the

recently accessed ways are present. From that ways,

the particular destination way can be decoded by

using the way enabling signal produced by the

comparison of the actual destination way and the

early destination way.

Then the address of that destination way can

be correlated with the address of the L1 cache. If

both the addresses are equal the way hit is occurred,

and that will sent to the controller. From that

address, the data can be retrieved.

Fig. 9 Implementation of way decoder

Otherwise if the addresses are not equal,

then way miss will be occurred. Suppose, if the tag

bits are not present in the TOB means, it can

directly go to the L2 cache or main memory to

retrieve the data.

 V SIMULATION RESULT AND COMPARISION

TABLE

Fig. 10 Simulation result of CBF Based TOB Architecture

 The following Table shows the time and

power variation between the Early Tag Access and

the Counting Bloom Filter based Tag Overflow

Buffer.Compared to the ETA technique, CBF based

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 20 Number 6 – Feb 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 269

TOB architecture give the better power and time

reduction.

TABLE I

COMPARISION TABLE

VI CONCLUSION

A new power efficient cache design for low-power

embedded processors has been implemented here.

By using the reduced tag bits, The TOB can

determine if the address is existing in the cache or

not. If the tag bits existing in the TOB, it will go to

the ETA and retrieve the data. Suppose the tag bit

not present in the TOB, and then it directly goes to

the L2 cache or Main memory to search the address.

This can automatically reduce the power from

compared to the ETA technique. Here the high

power utilization can be minimized with no

compromise in behavior. Simulation results show

the efficiency of the CBF based TOB architecture

as well as the performance impression and design

utilities. The TOB architecture has been

implemented for the L1 cache alone. Further work

is being aimed toward extending this design to

other levels of the cache.

REFERENCES

[1] Jianwei Dai, Menglong Guan, and Lei Wang, “ Exploiting Early Tag
Access for Reducing L1 Data Cache Energy in Embedded Processors,” in

IEEE transaction on very large scale integration (VLSI) systems, Vol. 22, No.

2, Feb 2014, pp. 396-407.
[2] Intel XScale Microarchitecture, Intel, Santa Clara, CA, USA, 2001.

[3] C. Zhang, F. Vahid, and W. Najjar “A highly-configurable cache

architecture for embedded systems,” in Proc. 30th Annu. Int. Symp. Comput.
Archit., Jun. 2003, pp. 136–146.

[4] S. Segars, “Low power design techniques for microprocessors,” in Proc.

Int. Solid-State Circuits Conf. Tuts., Feb. 2001.

[5] S. Manne, A. Klauser, and D. Grunwald, “Pipline gating: Spculation
conrol for energy reduction,” in Proc. Int. Symp. Comput. Archit., Jun.–Jul.

1998, pp. 132–141.

[6] M. Gowan, L. Biro, and D. Jackson, “Power considerations in the design
of the alpha 21264 microprocessor,” in Proc. Design Autom. Conf., Jun.

1998, pp. 726–731.

[7] A. Malik, B. Moyer, and D. Cermak, “A Low power unified cache
architecture providing power and performance flexibility,” in Proc. Int.

Symp. Low Power Electron. Design, 2000, pp. 241–243.
[8] T. Lyon, E. Delano, C. McNairy, and D. Mulla, “Data Cache Design

Considerations for the Itanium Processor,” in Proc. IEEE Int. Conf. Comput.

Design, VLSI Comput. Process., 2002, pp. 356–362.
[9] D. Nicolaescu, A. Veidenbaum, and A. Nicolau, “Reducing power

consumption for high-associativity data caches in embedded processors,” in

Proc. Design, Autom., Test Eur. Conf. Exhibit., Dec. 2003,
pp. 1064–1068.

[10] C. Zhang, F. Vahid, Y. Jun, and W. Najjar, “A way-halting cache for

low-energy high-performance systems,” in Proc. Int. Symp. Low Power
Electron. Design, Aug. 2004, pp. 126–131.

[11] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W.

Dobberpuhl, P. M. Donahue, J. Eno, W. Hoeppner, D. Kruckemyer, T. H.
Lee, P. C. M. Lin, L. Madden, D. Murray, M. H. Pearce, S. Santhanam, K. J.

Snyder, R. Stehpany, and S. C. Thierauf, “A 160-MHz 32-b 0.5- W CMOS

RISC microprocessor,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp.

1703–1714, Nov. 1996.

[12] S. Santhanam, A. J. Baum, D. Bertucci, M. Braganza, K. Broch, T.

Broch, J. Burnette, E. Chang, C. Kwong-Tak, D. Dobberpuhl, P. Donahue, J.
Grodstein, K. Insung, D. Murray, M. Pearce, A. Silveria,

D. Souydalay, A. Spink, R. Stepanian, A. Varadharajan, V. R. van Kaenel, and

R. Wen, “A low-cost, 300-MHz, RISC CPU with attached media processor,”
IEEE J. Solid-State Circuits, vol. 33, no. 11, pp. 1829–1838, Nov. 1998.

[13] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for

architectural-level power analysis and optimizations,” in Proc. Int. Symp.
Comput. Archit., Jun. 2000, pp. 83–94.

[14] A. Moshovos, “RegionScout: Exploiting coarse-grain sharing in snoop-

coherence,” in Proc. Ann. Int. Symp. Comput. Arch., Jun. 2005, pp. 234–245.
[15] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary, “Jetty: Filtering

snoops for reduced energy consumption in smp servers,” in Proc. Ann. Int.

Conf. High-Performance Comput. Arch., Feb. 2001, pp. 85–96.
[16] J. K. Peir, S. C. Lai, S. L. Lu, J. Stark, and K. Lai, “Bloom filtering

cache misses for accurate data speculation and prefetching,” in Proc. Ann.

Int. Conf. Supercomput., Jun. 2002, pp. 189–198.
[17] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W.

Keckler, “Scalable hardware memory disambiguation for high-ILP

processors,” IEEE Micro, vol. 24, no. 6, pp. 118–127, Nov. 2004.
[18] B. Fagin, “Partial resolution in branch target buffers,” IEEE Trans.

Comput., vol. 46, no. 10, pp. 1142–1145, Oct. 1997.

[19] B.-S. Choi and D.-I. Lee, “Cost-effective value prediction micro-
operation using partial tag and narrow-width operands,” in Proc.

IEEEPacific Rim Conf. Commun., Comput. Signal Process., Aug. 2001, pp.

319–322.
[20] L. Liu, “Partial address directory for cache access,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 2, no. 2, pp. 226–240, Jun. 1994.

[21] R. Min, Z. Xu, Y. Hu, and W.-B. Jone, “Partial tag comparison: A new
technology for power-efficient set-associative cache designs,” in Proc. 17th

Int. Conf. VLSI Des. (VLSID), Jan. 2004, pp. 183–188.

[22] P. Petrov and A. Orailoglu, “Data cache energy minimizations through
programmable tag size matching to the applications,” in Proc. Int. Symp.

Syst. Synth. (ISSS), Sep./Oct. 2001, pp. 113–117.

[23] M. Peng, Y. Pan, and B. Liu, “Low energy partial tag comparison cache
using valid-bit pre-decision,” in Proc. IEEE Region 10 Conf. (TENCON),

Nov. 2006, pp. 1–4.
[24] H.-C. Chen and J.-S. Chiang, “Low-power way-predicting cache using

valid-bit pre-decision for parallel architecture,” in Proc. 19th Int. Conf. Adv.

Inf. Netw. Appl., Mar. 2005, pp. 203–206.

Methods Used Time

(ns)

Power

 (mW)

 ETA

11.409

141

CBF Based

TOB

6.420

133

http://www.ijettjournal.org/

