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Abstract- In the embedded processor, a cache could consume 

40% of the entire chip power. So, reduce the high power 

utilization of cache is very important. To reduce the high power 

utilization a new cache method is used in the embedded 

processors. This is termed as an Early Tag Access (ETA) method. 

For the memory instructions, the early target way can be found 

by this ETA. Thereby it can reduce the high power utilization. If 

the ETA does not find the way, it search the way in L1 Cache. So 

automatically the power gets increased. Here a new energy 

efficient matching mechanism referred to as Counting Bloom 

Filter (CBF) based Tag Overflow Buffer (TOB) is proposed. This 

TOB uses reduced number of tag bits thereby the power gets 

reduced. The ETA can be activating only when the TOB hit is 

occurred. Compared to the previous technique the power 

consumption gets decreased up to 40%. 

Key words- Cache, LSQ tag, LSQ TLB, LFSR, Comparator, Hass 
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I. INTRODUCTION 

In embedded processors the most common 

and critical problem is to reducing the large power 

utilization of cache memory. Because it focuses 

only the low-power consideration in embedded 

processors. In the total chip power, the cache 

consumes 40% [1]-[3]. Because of this large power 

utilization, thermal effects and reliability 

degradation issues may be generated in the cache. 

Usually the caches are performed critically because 

of this large power utilization. Therefore, reduce the 

large power utilization in the cache is more 

important. To show the tradeoff between the power 

and efficiency of the cache, many cache design 

methods [4]-[13] have been designed under various 

level of the design abstract. Here, to reduce the high 

power utilization a new cache matching mechanism 

termed as a CBF based TOB can be defined. The 

CBF is area-effective probabilistic data structure; it 

is used to check whether a tag bit is present in the 

cluster or set. From which it can reduce the power 

consumption. For sample, CBFs have been used to 

Increase the action in multiprocessor snoop-

coherent multi-core system [14],[15]. It is also used 

to reduce the quick miss decision at the L1 cache 

[16] and to increase the adaptability of load/store 

ordering queues [17]. There are two types of CBFs 

are present. That is SRAM CBF (S-CBF) and LFSR 

CBF (L-CBF). Related to the S-CBF, the L-CBF is 

more efficient one. Because the LFSR is high 

efficiency feedbacks shift register. The TOB is the 

identical mechanism that handles minimum address 

bits i.e., it use only the most significant bits for 

matching [18]-[22].  

On a hit in the TOB, the restricted-tag cache 

is approached usually through the ETA. On a miss, 

common miss method is used i.e., it goes to the L2 

cache to searching the particular tag. The following 

are the main strength of the TOB: 1) In the cache it 

uses a planned count of address bits. 2) It uses 

much smaller hardware, so it accomplishes a tag 

power minimization similar to the other methods. 3) 

It achieves a reduction of leakage power. In the 

ETA, the Transition look ahead buffer (TLB) can 

perform the conversion between the Physical 

address and the Virtual address. During that 

conversion a portion of the physical tag is saved in 

the tag array, in a physical tag and virtual index 

cache. During the Load Store Queue (LSQ) stage 

by approaching tag arrays and TLB, the target way 

can be resolved previously approaching the L1 

cache. At the final, the energy consumption can be 

reduced significantly by accessing single way in the 

L1 cache. Note that at the LSQ stage the TLB can 

generate the Virtual addresses that can also be used 

for succeeding cache approaches. The energy 

utilities of way resolution at the LSQ stage can be 

decreased by avoiding the TLB approaches over the 

cache approaches stage for most of the memory 

instruction. At the LSQ stage the destination ways 
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cannot be determined for memory instruction. For 

that an improved technique of the ETA cache is 

designed at the cache access stage to minimize the 

number of ways accessed. Note that approaching L2 

cache is complete correspond with the approaches 

to the L1 cache in many high-end processors. Our 

CBF based TOB technique is fundamentally 

performed at the L1 cache. For embedded 

processors, the proposed TOB cache is more 

effective to take advantage for reducing cache 

traffic and power utilization by series approaches to 

the ETA and L1 cache. As correlated with the 

associated work the output results determine that 

the considered TOB cache is higher efficient in 

power minimization. 

  
                        II.WORKING PRINCIPLE  

 
A. Early Tag Access 

 

In a conventional cache, based on the cache 

hit the corresponding way of the data only activate. 

Other ways gets inactive. But the cache miss 

occurring means automatically it goes to the L1 

cache to search the address, so the power gets 

increase. In this segment, a new cache matching 

mechanism termed as TOB will be established. This 

method will decrease the power consumption by 

reducing the number of tag bits. 

 

 
Fig. 1 Operation flow of L1 cache under the ETA cache [1] 

To get various powers and efficiency condition in 

embedded processors, the ETA cache can be 

explored in the Basic mode. 

A.1 Basic Mode 

Due to the possibility of memory addresses 

it is likely to access an operation to the address 

arrays at the LSQ stage. In the basic mode of ETA 

cache, a novel group of address arrays and TLB 

(termed as LSQ tag arrays and LSQ TLB) is 

executed; when the memory information is go to 

the LSQ. This new group of LSQ tag array and 

LSQ TLB is the reproduction of the tag array and 

TLB of the L1 cache correspondingly, to ignore the 

data assertion with the L1 cache. In the course of 

the LSQ lookup performance if the hit happen, that 

specific way can be used as a target way of the 

information. If this target way is correct, then that 

specific way can be activated and other ways get 

inactive. This enables power saving. On the other 

hand, if the way miss occurring in the LSQ tag 

array or in the LSQ TLB during the lookup 

operation then the L1 cache will be performed in 

the Normal mode, i.e., in the tag array and data 

array of the L1 cache, all ways will be activated. 

From Fig. 1, shows the operation flow of the L1 

cache under the ETA cache. Here by using the 

physical address and the data, the particular way 

can be determined and activated in the L1 cache.  

B. Tag Overflow Buffer 

The TOB is the matching mechanism; it 

uses minimum number of address bit. The main 

thought of this planned design is to send the most 

significant bit of the address bits from the cache 

into an independent register named as TOB, that act 

as an identifier of the memory instructions present 

location. In majority of the memory accreditation a 

minimized –tag cache can be accessed to achieve 

the dynamic energy efficiency. Various classes of 

methods are present to minimize the power 

utilization of the cache by decreasing the number of 

bits. In some cases a miss may be unfortunately 

represented as a hit. Because in these cases a subset 

can be used to compare the address. Therefore that 

case must be compact with misinterpretation. Some 

authors will use this design where the 
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misinterpretation cost is low, such as in branch 

prediction engines [18], [19]. The approach 

designed by Peng et al.[23] mingle the minimized 

data array power induced by the modified way-

predicting cache design as proposed in [24] with the 

minimum tag power achieved by restricted tag 

comparison. 

 

Fig. 2 CBF based TOB architecture  

Fig.2 shows the Block Diagram of CBF 

based TOB architecture. The dotted lines in the 

figure denote the extra hardware needed to achieve 

the minimized-tag architecture. For every memory 

references the TOB and the cache are always 

performed compliment with each other. The block 

diagram operates as follows. For each memory 

references, the most significant bits of the tag are 

sent to the CBF. If both the address are equal (a 

CBF hit occurs), then we can easily perform the 

minimized-tag cache. 

C. Counting Bloom Filter   

Fig. 3 shows the CBF architecture. A CBF 

is a group of up/down linear feedback shift register 

and local zero detectors listed via hash function of 

the address in membership check. 

Fig. 4 shows the user defined 32 bit hash 

table. Because of hashing, within the same array 

entry, multiple element addresses are mapped. 

Normally, the CBF is a limited cluster and the tags 

are hashed onto this little cluster only.  

 

Fig. 3 CBF architecture 

 

Fig. 4 Hash table (32 bit) 

In this hash table, the address present in the 

cache is denoted as one and others are denoted as 

zero. For example, 00001,00011,00101,01000 and 

01010 are present in the cache means that will be 

denoted as one. If the particular input address tag is 

present in cache, then the CBF will be activated. A 

CBF has three function: 1) increment count (INC); 

2) decrement count (DEC); and 3) test if the count 

is zero or not (PROBE). The INC and DEC 

operations can increment or decrement the 

respective count by one based on the hit, and the 

third one checks weather the count is zero and 

returns true or false single-bit output. The first two 

functions are referred as a updates and the third 

operation will be consider as a probe. Based on the 

number of inputs and the size of the count per entry, 

a CBF is characterized. A CBF give any one of the 

two answers: 1) “Definite no,” indicating that the 

particular address is surely not a member of large 

set and 2) “I don‟t know,” denote that a CBF cannot 

find the address in the membership check, and must 

looking for the large group. The CBF is capable of 

determine the required answers to the membership 

check, it saves power and much faster on two 

conditions. First, CBF serves most membership 

tests. Second, compared to accessing the large 

group, the CBF is much sooner and needs less 

energy. The CBF is performed as follows, at first 

the large group is empty and all the count is put into 
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zero. In the large set, when the address is added or 

deleted, the respected CBF gets incremented or 

decremented by one. The corresponding CBF 

denotes that in the large set, whether an element is 

exits or not. If the count is zero, the large set does 

not have that particular element. If the count is one, 

then the large set must be searched for that element. 

 

 

Fig.5 L-CBF architecture; LFSR holds the CBF count; INC/DEC: read-

modify-write sequences; PROBE: read-compare sequence 

Fig. 5 shows the L-CBF architecture. Here 

the up/down Leaner Feedback Shift Register is used 

to generate random number of addresses. By using 

the comparator both the addresses are correlated to 

test whether the address is member or not. Fig. 6 

indicating the LFSR block diagram. The number of 

D-flip flops and the XOR gates are used here to 

generate different addresses. Every LFSR has the 

following limits: 1) the number of bits in the shift 

registers is parallel to the width and size of the 

LFSR. 2) in the LFSR, taps are the output of D-flip 

flop that have been connected with the feedback 

loop. 3) at starting state, the LFSR can be any 

value, except one. Here the total numbers of tag bits 

are 5. So, the feedback polynomial will be X
5 

+ X
3
 

+ 1. So, the output is taken from 3
rd

 and 5
th

 output 

of D-flip flop and Xored both of them and feedback 

to the 1
st
 flip flop. 

The input of the LFSR is Clock and reset. 

The memory core is used to tell whether the 

element is member or not in the large set. 

         

 

Fig. 6 LFSR Block diagram  

It is a single bit output. It can increment the 

address bits and read the address bits. But it cannot 

able to decrement it. 

D. LSQ Tag Array and LSQ TLB 

The LSQ tag array and LSQ TLB are the 

reproduction of the tag array and TLB of L1 cache 

accordingly, to ignore the data assertion with the L1 

cache. In the LSQ tag array and LSQ TLB the 

lookup operation can be takes place. When the 

address go to the LSQ, both the LSQ tag array and 

LSQ TLB search the early destination way by using 

the lookup operation. If the hit is occur (the 

particular address present in the LSQ tag array or 

TLB), then that particular way gets activate in the 

L1 cache. Otherwise, the information will be either 

an early tag miss or early TLB miss. 

E. Way Decoder and Way Hit/Miss Decoder 

Here the way decoder is used to decode the 

early destination way from the recently accessed 

ways by using the way enabling signal. Whether the 

particular destination way will be correct or not can 

be denoted by the way hit/miss decoder. The cache 

performance can be considered as a hit only when 

both the cache hit/miss and the way hit/miss signals 

denote a hit. If both the cache hit/miss and the way 

hit/miss indicating a miss signal means, then the 

cache process will be consider as a miss. A cache 

connection problem is found when the cache 

hit/miss denotes hit and the way hit/miss denotes 

miss or the early target way does not similar with 

the actual target way. 
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III. OVER ALL FLOW OF THE CBF BASED TOB 

Fig. 7 shows the flow diagram of the CBF 

based TOB architecture. The dotted lines denote the 

CBF based TOB architecture and the ETA. Here the 

TOB is connected between the address generation 

part and the ETA. The particular tag bit can be 

retrieved from the ETA, only when it present in the 

TOB. If the tag bit not present in the TOB, then the 

L2 cache or main memory will be searched for the 

tag bits. It can reduce the search time. So, 

automatically the power is also gets reduced. 

 

Fig. 7 Flow diagram of CBF based TOB 

By using the hash table the CBF can find 

whether the address is member of a set or not. From 

that information, the TOB can determine the output. 

Each time when the address reaches the LSQ tag 

and LSQ TLB, lookup operation can be takes place 

to find the early destination way of that particular 

address in L1 cache. Here the TLB is nothing but 

the Transition Look ahead Buffer. It is used to 

convert the physical address to the virtual address. 

Basically, the physical address is used to find the 

data array and the virtual address is used to find the 

tag array. If the particular destination way can be 

found, then that way can be activated in the L1 

cache. From that way we can easily retrieve the data 

of that particular address. 

IV IMPLIMENTATION OF CBF BASED TOB 

This segment furnish the VLSI 

implementation of CBF based TOB cache. Fig. 8 

shows the two-way set-associative L1 cache for 

demonstration. The key component in the proposed 

is CBF, TOB, Hash table, LFSR, LSQ tag array, 

LSQ TLB, Information buffer, Way decoder, and 

way hit/miss decoder. 

 

Fig. 8 proposed CBF based TOB cache architecture 

Initially the address generation can be takes 

place by using the CAM. CAM is nothing but 

Content Addressable Memory. It can generate the 

address for the particular data. This address will be 

called as physical address. This address only sent to 

the L1 cache. In the 8 bit address, the first 5 bits are 

consider as a tag bits, the next 2 bits are consider as 

a index bits, and the final bit is consider as a offset 

bit. The tag bits only sent to the TOB. Because it 

uses minimum number of address bits to matching 

the address. If the most significant bits are equal, 

more over the other bits are also equal.  

Then this tag bits are sent to the CBF. In the 

CBF user defined hash table can be used to search 

the address bits in the large group. If the address bit 

is currently in the Hash table means, then it 

activates the CBF. In the CBF, the LFSR is present 
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to generate the random number of tag bits to 

compare with the input tag bit. If both the tag bits 

are equal means, then it sent the control signal „1‟ 

to the memory core. In the memory core three types 

of operations are present. 1) INC, 2) DEC, and 3) 

PROBE. Increment is used to increase the tag bits 

in the CBF. The PROBE is used to read the tag bits 

in the CBF. The CBF cannot able to access the 

decrement operation.  

If the output of LFSR is one means, then the 

memory core said that “yes, the element is a 

member of a set”. If the output of LFSR is not equal 

to „1‟ means, then the memory core output will be 

“I don‟t know whether the element is a member of a 

set or not”. Then the CBF output will be compared 

with the input tag bits in the TOB. If both the tag 

bits are equal means, TOB hit is occurred. If the 

TOB miss occurring means, then that particular tag 

bit is added to the CBF by using Locality Change 

Detection (LCD). This LCD is based on both the 

input tag bit and the TOB miss. If the TOB miss 

occurring, then this tag bit is sent to the LCD. Here 

based on the TOB miss, the counter gets increased 

by „1‟ and compared with the maximum threshold 

value of the cache. Compared to the threshold 

value, the input tag bit is minimum means it will 

load to the CBF. After this action, the cache will be 

flushed. Then the TOB hit information and the 

particular tag bit can be sent to the ordering logic. 

Here first in first out logic can be used. So, the 

highest priority tag bit is first stored in the 

information buffer and it is used for the temporary 

storage of the tag bits. The dotted lines denote the 

ETA. From the ETA the particular destination way 

can be determined and it sent to the information 

buffer. From the information buffer the way can be 

sent to the way decoder. In the way decoder the 

recently accessed ways are present. From that ways, 

the particular destination way can be decoded by 

using the way enabling signal produced by the 

comparison of the actual destination way and the 

early destination way. 

Then the address of that destination way can 

be correlated with the address of the L1 cache. If 

both the addresses are equal the way hit is occurred, 

and that will sent to the controller. From that 

address, the data can be retrieved. 

                  

Fig. 9 Implementation of way decoder 

Otherwise if the addresses are not equal, 

then way miss will be occurred. Suppose, if the tag 

bits are not present in the TOB means, it can 

directly go to the L2 cache or main memory to 

retrieve the data. 

    V SIMULATION RESULT AND COMPARISION 

TABLE 

 

Fig. 10 Simulation result of CBF Based TOB Architecture 

 The following Table shows the time and 

power variation between the Early Tag Access and 

the Counting Bloom Filter based Tag Overflow 

Buffer.Compared to the ETA technique, CBF based 
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TOB architecture give the better power and time 

reduction.   

TABLE I 

COMPARISION TABLE 

 

 

VI CONCLUSION 

A new power efficient cache design for low-power 

embedded processors has been implemented here. 

By using the reduced tag bits, The TOB can 

determine if the address is existing in the cache or 

not. If the tag bits existing in the TOB, it will go to 

the ETA and retrieve the data. Suppose the tag bit 

not present in the TOB, and then it directly goes to 

the L2 cache or Main memory to search the address. 

This can automatically reduce the power from 

compared to the ETA technique. Here the high 

power utilization can be minimized with no 

compromise in behavior. Simulation results show 

the efficiency of the CBF based TOB architecture 

as well as the performance impression and design 

utilities. The TOB architecture has been 

implemented for the L1 cache alone. Further work 

is being aimed toward extending this design to 

other levels of the cache.  
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Methods Used Time 

( ns) 

Power 

 (mW) 

        

       ETA 

 

11.409 

 

141 

 

CBF Based 

TOB 

 

6.420 

 

133 
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