
Design and Analysis of a Floating Point Fuse
Multiply Add Unit using VHDL

Farouq Aliyu
Department of Computer Engineering

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia 31261

Email: g201303650@kfupm.edu.sa

Abstract—Ever since the growth of processing speed began
to slow down due to immense heat generated by the processing
units, engineers started looking for other speed up alternatives.
One of such is the ”Fuse Multiply Add” (FMA) unit. This unit
combines multiplication of two operands and their summation
with third operand as a single instruction. As a result, a floating
point primitive is created out of the two arithmetic operations.

This paper describes the design and development of a FMA. It
also points out the limitations of the FMA using VHDL program-
ming language. Furthermore, the paper points the mechanics of
the different parts of the FMA in order to shade more light on
those parts of the FMA that prove costly in terms of speed, power
and area.

Keywords—Computer Arithmetic, Fused Multiply-Add, FMA,
IEEE Floating-point, Leading Zero Detector, Leading Zero Antic-
ipator

I. INTRODUCTION

Floating point multiplications and additions are a norm
in Digital signal Processing and multimedia application [1].
With the optimization of floating-point operations reaching
diminishing return [2], it is apparent that innovative solu-
tions are necessary. Fused Multiply-Add (FMA) operation was
included in IBM RS/6000 in 1990 [3][4]. FMA combines
multiplication and addition into one instruction as described
by Equation 1. Two operands can be added by making B=1
and two operands can be multiplied by making C=0. This
flexibility means there is no need for additional multiplier
(that does only multiplication) or adder (that will perform
addition only) as long as there is a FMA. In general, the
unit increases throughput due to fusing of the two operations
and also increases accuracy since rounding is carried out once
instead of twice.

R = ((A×B) + C) (1)

The FMA can be broken down into six basic operations
that work together to carry out the fused multiply-addition.
The following are the FMA’s basic operations;

1) Multiplication
2) Alignment
3) Addition
4) Leading Zero Anticipation (LZA)
5) Normalization, and
6) Rounding.

First, the two operands (A and B) are multiplied. The
product is shifted left or right in order to decrease or increase
its exponent respectively. This process is known as alignment.
It allows the exponent of the product and that of the third
operand (C) to have the same value, which is necessary for
accurate addition. The alignment could be done in parallel
with the multiplication, such that C is aligned while A and
B are multiplied. This helps save some clock cycles. After
alignment, comes the addition of the product of A and B to
C. However, in order to maintain IEEE (normalized) format
for the final result (i.e. R), it is necessary to locate the leading
one bit of the final sum. This could be done with the help
of LZA, which counts the number of leading zeros before the
first 1 is found. LZA is also known as Leading One Predictor
(LOP) [5]. The process can be implemented in parallel with
the addition. The counts are then collected by a shifter which
shifts the result accordingly, thereby normalizing the sum to
IEEE 754 format. Finally, the sum is rounded with the round-
to-nearest even (RNE) [1].

This project is aimed at developing and evaluating the
performance of a Fused Multiply-Add unit in an FPGA using
Xilinx. The module is equipped with control registers that can
be used to select the rounding method. In addition, the module
is also equipped with flag registers that help notify the user
of the state of the module. The FMA has been designed with
embedded systems in mind, in an effort to provide engineers
with energy efficient FMA solution.

The remaining section of this paper is as follows: Section
II reports a review of advances in FMA designs available in
the literature. Section III presents detailed explanation of the
proposed system. Section IV provides information about how
testing took place and Section V presents the corresponding
results obtained from the experiments carried out. Finally,
Section VI concludes the paper and provides a summary of
future work.

II. LITERATURE REVIEW

Increase in throughput and decrease in latency and reduced
hardware overhead are the key features of FMA [6]. Several
works have been carried out in the effort to improve the design
of FMA unit. Quach et al. [7], reported three techniques for
developing the FMA unit. These are;

1) non-overlapped
2) Fully overlapped (greedy)
3) Partially overlapped

K DURAISAMY
Text Box
International Journal of Engineering Trends and Technology (IJETT) - Volume 24 Number 4- June 2015

K DURAISAMY
Text Box

K DURAISAMY
Text Box
ISSN: 2231-5381 http://www.ijettjournal.org Page 169

K DURAISAMY
Text Box
d

The non-overlapped method is a mere concatenation of the
multiplier and the adder of a floating-point unit. Therefore,
there no speedup is gained. This method was used by earlier
floating point units.

Fully overlapped (also known as the greedy) approach is
the process where the product calculation, the true exponential
calculation and the (right) shifting of the addend overlap.
Therefore the speed up is a factor of two compared to the
non-overlapped FMA. That is to say, shifting of addend is
done before the partial products arrive. The addition between
the product and the addend takes place in a carry save adder.
The partial sums are then added using a full adder and normal-
ization is carried out afterwards. Hokenek et al. [6] proposed
that in order to get the best performance, products should first
be calculated in parallel with true exponent calculations and
aligning the addend in the two possible directions (i.e. either
left or right). Afterwards, post normalization and rounding
may take place. The authors further suggested the use of
modulo shifter for fast shifting. However, the uses of modulo
shifters incur high latency and due to the fact that they are
combinatorial devices make them consumes substantial amount
of power. In an effort to solve this problem, [8] suggested the
use of a multilevel shifter. However, the register for the addend
C must be expanded by one hundred and six bits in order
to be able to shift it in both directions. This has a negative
implication on the area of the multiplier, because the size of
the addend has to be tripled. Louca et al. [9] proposed shifting
right only. In this technique, only fifty three bits are added
to one of the addend registers. The arguments are swapped
depending on which is to be shifted right. Although area is
saved, speed is reduced. Finally, the addition section of the
fully overlapped method has simpler but larger data path than
that of a single floating point adder, hence it has more wires
when implemented [7].

Partially-overlapped FMA, as the name implies, is a tech-
nique whereby the floating point multiply sub-module and the
floating point add sub-module partially overlapped. The true
exponent calculation and the product, right-shift and addition
and left-shift and a final addition are overlapped. Unfortunately
the wiring and area overhead of this method is greater than that
of the greedy approach.

Seidel et al. [10], optimized the adder. The authors believe
that a lower average latency can be achieved, if the addition
section is selected out of several other addition sections base
on the complexity of the product of A and B (i.e. fprod) and
the addend (i.e. fC). Figure 1 shows the cases considered by
the authors.

δ = ea+ eb− ec (2)

Where: ea, eb and ec are the true exponents of the operands
A, B, and C respectively.

The authors categorize this complexity using the identifier
δ. The identifier is described by Equation 2. The possible
values obtainable were grouped into five classes as listed by
Table I. These groups were based on the possible result of the
addition: group one is for cases where one of the arguments
has no significance in the operation and can be approximated
to zero. Example of such cases is Case 1 and 5. Group two,

Fig. 1. Criterion for multiple path selection [10].

these are operations that require no pre-normalization after the
multiplication. In such cases no LZA in needed. Case 2 and
4 fall within this category. Finally, the third group where all
FMA processes are needed and this is where Case 3 falls.

The technique is able to gain 26% more speed that the IBM
system proposed in [4]. However, it is obvious that there is
huge overhead in terms of area and power, given in to account:
1) the system has two adders and two rounding modules and
2) the several stages of comparators that are needed before
decision is made. Furthermore, some of the cases may not be
used over a long period of time, since smaller numbers are
more likely to be involved in a computation compared to their
larger counterparts [8]. For this reasons [11], selected only
three cases in their implementation of a Quadruple Floating-
point Fused Multiply-Add (QPFMA). The chosen cases are the
case are; 1) when fprod is negligible (which is similar to Case
1), 2) when fc is negligible (which is similar to Case 5) and
3) everything in between is considered a third case.

TABLE I. SELECTION CONDITIONS AND THEIR IMPLICATIONS

Case Condition Conclusions
1 δ ≤ −54 If mode is round to infinity then result equal

post norm(fc + 2−53), else result equal fc.
2 −54 ≤ δ ≤ 3 Complementation of fprod (when subtraction op-

eration is been executed) and pre-normatlization
(before addition) can be ignored.

3 −2 ≤ δ ≤ 1 Parallel computation of significand summation,
rounding and leading zero count.
Integrated computation of pre-normalization be-
fore addition and Post-normalization shifts

4 2 ≤ δ ≤ 54 Complementation of fprod (when subtraction op-
eration is been executed) and pre-normatlization
(before addition) can be ignored.

5 54 ≤ δ Contribution of fc is only to the rounding digits

Our aim in this paper is to design a simple implementation
of FMA that will allow us investigate in details the limitations
and avenues for possible optimization in each of a FMA. We
believe that this research will paint a vivid picture of how a
FMA works and will also help scientists figure out ways to
improve its performance.

K DURAISAMY
Text Box
International Journal of Engineering Trends and Technology (IJETT) - Volume 24 Number 4- June 2015

K DURAISAMY
Text Box
ISSN: 2231-5381 http://www.ijettjournal.org Page 170

 Exponent Fraction
Sign (11 bit) (52 bit)

63 52 0

Fig. 3. IEEE 754 floating point format

III. FUSED-MULTIPLY ADDER

Figure 2 shows the block diagram of the FMA developed.
The proposed system consists of an Input stage where data
is collected, an unpacking stage where the significand and
the exponent are extracted, a multiplication stage, an addition
stage and a rounding stage. It should be noted that a simple
module that finds the leading zero was developed instead of
an elaborate LZA.

A. Inputs

Even though the floating point FMA is parameterized such
that it can work with any range of values for the sign, exponent
and mantissa that follow the IEEE 754 floating point format
rules, this paper focuses on the double precision IEEE floating
point numbers. Double precision is chosen because it is half
way between single and extended IEEE floating point format
as can be seen in Table II. IEEE floating point numbers are
composed up of three basic components:

1) Sign bit,
2) Exponent, and
3) Mantissa (i.e. Significand).

The sign bit ”S” is the first bit, when it is one it represents
negative number, else the number is positive. The exponent is
represented by ”E”. The exponent field needs to represent both
positive and negative exponents. This is done when a bias is
added to the true exponent. For double precision, the exponent
field is 11 bits, and has a bias of 1023. The mantissa is denoted
by ”f”. The mantissa ranges [1, 2) and it represents the fraction
part of the number represented. An implicit leading one (1) is
also found in IEEE 754 format. This leaves us with the format
shown in Equation 3. Table II shows the layout of the three
widely used IEEE floating-point formats. The number of bits
for each field are shown (bit ranges are in square brackets):

(−1)S × (E)× (1.f) (3)

The input sub-module is responsible for collecting the
arguments from the user. A user can be any device that is
using the FMA. Therefore, the input is a set of ports that
collect data from the outside world and pass it to the proposed
system without any modifications.

TABLE II. IEEE 754 DOUBLE PRECISION FLOATING POINT FORMAT

Sign Exponent Fraction Bias
Single Precision 1 [31] 8 [30-23] 23 [22-00] 127
Double Precision 1 [63] 11 [62-52] 52 [51-00] 1023
Extended Precision 1 [79] 15 [78-64] 64 [63-00] 16383

B. Unpack

The values are provided in an 8 byte format with no
demarcation whatsoever. The function of unpack is to break

Fig. 4. Schematic diagram of Unpacking module connected to Multiply unit.

Multiplier (A x B) δ=(ea+eb)-ec

fprod

fc

159-106 105-104 103-52 51-0

105-104 103-0

Radix points location

Shift
as a

fxn of
δ

Fig. 5. Multiplier structure and how fC is placed with respect to the radix
point.

the inputs into their respective components. For example sA,
eA and fA shown in Figure 4, represent sign bit of the first
operand (i.e. A), its exponent and its fraction part respectively.
It is worth noting that the mantissa has an implicit bit that is
one (1). Moreover, the implicit digit automatically turns to zero
when the exponent is equal to zero (0). Furthermore, if E = 0
and f = 0 then the floating point number is zero (0). However,
when f 6= 0 then the floating point is a subnormal (also
known as a Denormal) which is very difficult for mathematical
operations. Therefore, in such cases where subnormal number
is formed, our proposed system halts and a flag is set to inform
the user that an error has occurred.

For cases where E = 0 × 7FF meaning all bits of expo-
nents are ones (1). Two possible values are formed depending
on f ; when f = 0 means the value is infinity (positive or
negative depending on the sign bit), when f 6= 0 then it is
”Not-a-Number” (NaN). This module is designed to fish out
these special cases and raise the corresponding flag. Raising
flags is necessary in other to notify the user what halted the
calculation process and to distinguish final answer from error.

C. Multiplier

The main function of the multiplier stage is to add the
exponents eA and eB and multiply the significands 1.fA and
1.fB. The identifier ∆ is calculated at the same time the
multiplication is taking place. The identifier is used to shift
fC either left or right depending on whether ∆ is positive or
negative respectively.

K DURAISAMY
Text Box
International Journal of Engineering Trends and Technology (IJETT) - Volume 24 Number 4- June 2015

K DURAISAMY
Text Box
ISSN: 2231-5381 http://www.ijettjournal.org Page 171

Multiplier Adder Rounder

Inputs Unpack module Done flag Output x

Module enabling mux Combining flag flag reg

Fig. 2. Schematic diagram of the Fused Multiply Add (FMA).

TABLE III. FLAGS USED BY THE FMA

NaN A NaN B NaN C Inf A Inf B Inf C NaN X Inf X Inv Ovfl Ufl Denum A Denum B Denum C Denum X -

NaN : Not a Number
Inf : Infinity
Denum : Denormal
Inv : Invalid
Ovfl : over flow
Ufl : Under flow

Radix point

104 103

Direction of search

Fig. 7. Searching for leading one detector.

In order to achieve addition in the next stage after mul-
tiplication, fC is loaded in a register of size 3f (where f is
the size of a significand – that is 53-bits). The significand fC
is loaded to the register such that it align with the (virtual)
radix point between bit 104 and 103 as shown in Figure 5.
Afterwards, the following steps take place;

1) If ea 6= 0 and eb 6= 0 then eresult ≤ (ea+eb)−bias,
else eresult ≤ ec.

2) ∆ = ((ea+ eb)− ec)− bias
3) if ∆ is ve then shift fc ∆ times to the left, else shift

it ∆ times to the right

Once multiplication is completed, ”fprod” which is the
product of the operation is loaded in a register 2f wide with
the same alignment rule that applied to fC point. That is to
say, its radix point must be between bit 104 and 103. The two
results are then passed to the adder, the connection between
adder and multiplier is shown in Figure 6.

D. Adder

The adder adds or subtracts fprod from fC depending on
their sign. The result is ”fr”. The value fr is then saved on a 3f
wide register and it is passed to a leading one detector LOD,
which is designed to scan the register in both directions from
the radix point.

Algorithm 1 describes how the LOD works. The LOD
scans the register containing fr in order to find the first bit
whose value is one as the register is observed from left to right.
The scanning is started from the center of the register and it
spans out towards both ends. This helps reduce the scanning
time by one-half and ensures that all bit are not missed.

Algorithm 1 Finding the leading zero
1: while not end of register do
2: if (fsum(My radix+ count) =′ 1′) then
3: east marker ← count
4: end if
5: if (fsum(My radix− count− 1) =′ 1′) then
6: if (west one = False) then
7: west marker ← count+ 1
8: end if
9: end if

10: count← count+ 1;
11: end while

The register fr is shown in Figure 7. For every while
loop, a pointer called ”count” shifts one bit away from the
radix point. Both sides of the radix point are checked in each
loop by the two if-statements at step two (2) and five (5) of
Algorithm 1. After the scanning is over, shifting right has high
priority that shifting left. Therefore, if ”east marker” is greater
than zero then a shift right east maker times is carried out
and west marker is neglected. Clearly, this technique is slow,
because it searches for the missing bit in an iterative manner.
Hence it has a complexity of O(n2), where n is the size of the
register. For this reason, LZAs were developed. They search
for the leading one using a non-iterative technique, hence it
has a complexity of O(1). The operation is carried out at the
same time the addition of fprod and fC is carried out.

The new exponent becomes the sum of the old exponent
and the east marker or the west marker depending on whether,

K DURAISAMY
Text Box
International Journal of Engineering Trends and Technology (IJETT) - Volume 24 Number 4- June 2015

K DURAISAMY
Text Box
ISSN: 2231-5381 http://www.ijettjournal.org Page 172

Fig. 6. Schematic diagram of the connection between the multiplier and adder.

Fig. 8. Schematic diagram of connection between the Adder and Rounding
unit.

right- or left shifting took place. The exponent is then checked
for overflow or underflow and the corresponding flag (as shown
in Table III) is set to notify the user. The operation is exited
when either overflow or underflow is found. An underflow
occurs when eresult ≤ 0, while an overflow occurs when
(eresult ≥ 2number of exponentialbits1). The variable eresult
is the resulting exponential after normalization. Finally, when
neither overflow nor underflow has occurred the result of is
forwarded to the rounding unit. The registers connected to the
rounding unit are;

1) eresult
2) fr truncated to 52 bits
3) guard bit
4) round bit and
5) sticky bit.

Gaurd bit and round bit are the 53rd and 54th from the
radix point of fr. The remaining bits are Ored and the result is
the sticky bit. These bits help improve the rounding accuracy.

E. Rounding unit

The rounding unit does the rounding and packing of
data. The rounding unit first checks the control register to
determine which rounding mode is selected by the user. Table
IV shows the control register. Two most significant bits of the
control register (i.e. Controls rounder[7:6]) where used for this
purpose to select between different rounding modes;

00 Round to nearest
01 round to nearest even,
10 round to +ve infinity and
11 Truncate.

The silent control bit helps the user suppress the error
warnings. This control bit comes in handy during system
testing.

TABLE IV. CONTROL REGISTERS

Round1 Round0 Silent - - - - -

Where;
Round1: MSB of the rounding control
Round0: LSB of the rounding control
Silent: (Active low) disable invalid flags

IV. EXPERIMENT

The latency of the FMA was tested using a test bench.
A test bench is a VHDL code that is developed in order to
test and verify the designed circuit [12]. The test bench is
connected to the circuit, an Input file and an output file. The
input file provides the test bench with data with which it tests
the performance of the proposed FMA. Finally, we used the
Xilinx synthesis tools to evaluate the power and area of the
system. The resources for the proposed system and the test
bed can be found in [13].

A. Input file

The system was tested using a test bench developed using
VHDL. The test bench collects input from a text file called

K DURAISAMY
Text Box
International Journal of Engineering Trends and Technology (IJETT) - Volume 24 Number 4- June 2015

K DURAISAMY
Text Box
ISSN: 2231-5381 http://www.ijettjournal.org Page 173

”testing doc/input.txt” — testing doc is the name of the folder
where this file lies. Furthermore, this folder is stored in the
working folder for the project. This arrangement allows the test
bench to access the input file. The input file is in the following
format [A B C X]. It gives the test bench the operands A,
B and C and the last column contains the expected solution
”X” as expressed in Equation 1. The test bench feeds the
unit under test (UUT) with the operands A, B and C. The
solution X is returned from the UUT to the test bench. The
test bench compares the returned result with the solution from
the input file. A variable in the test bench called ”err” is used
to control the percentage error allowed. The percentage error
is represented in terms of number of LSB in error allowed by
the UUT.

B. Input file generator

The file input.txt contains 1500 sets of inputs for testing
the UUT. These inputs were generated by a c++ code. Figure
9 shows the flowchart for the software.

The software generates numbers randomly, user has the
option of selecting number of decimal places and whether
signed (i.e mixture of positive and negative numbers) or posi-
tive numbers only. The software has default settings with one
digit whole number and one digit fraction, but it produces only
positive numbers. For the sake of convenience the software
produces two files and save them in the folder, testing doc
automatically. These two files are;

1) Input.txt: this file contains only hexadecimal numbers
places in three columns. The columns represent A, B,
C and X.

2) Bloody humans.txt: this text file contains a corre-
sponding decimal interpretation of the numbers in the
input.txt file for easy testing and debugging.

C. Output

The output from the test is saved as output.txt. It consists
of three types of columns; the answer, the flags and comment.
The answer column prints the answer produced by the UUT in
hexadecimal form for easy comparison with the actual answer.
The second column prints an abbreviation of the flags set
during a calculation. The third column shows whether the
answer is equal to the expected answer or not. The word ”right”
or ”wrong” is printed depending on whether the two match or
they do not.

V. RESULTS

The test bench is used to test the latency and accuracy
of the system, while the Xilinx synthesis tool was used to
investigate the power and area of the system. The results of
the implementation are as follows;

A. Speed/Latency

In order to measure the speed of the proposed system, the
clock period was continuously decreased from ten and the total
negative slack is checked for negative values. This process was
stopped after a negative value is obtained. A negative value
is obtained at 2.5 ns, hence 3 ns is accepted as the minimum
clock period. Therefore, the system has a speed of 333.33 Mhz.

Start

AS<=SRandom(S)S
B <=SRandom(S)S
C <=SRandom(S)S

X=(AxB)+CS

A64 <=SConvert(A)S
B64S<=SConvert(B)S
C64S<=SConvert(C)S
X64<=SConvert(D)

Count=count-1

Read count

PrintS

A64,SB64,SC64 andSX64

Start

Is Count=0? No

YesS

Fig. 9. Flowchart for file generator.

Figure 10 shows summary of the timing characteristics of the
system. The speed of the system is limited by the shifters and
the Leading One Detector. Finally, Xilinx Modelsim was used
to investigate the number of clock cycles needed for the one
FMA operation. Figure 11 shows a snapshot of the simulation.
Equation 6 shows that it takes the unit 2400 clock cycles for a
single FMA operation to be completed, which is 3× 2400 ≈
7.2msec.

Tclock = 100ns (4)
TFMA = 239950ns (5)

∴ Clock cycleFMA =
TFMA

Tclock
(6)

=
239950

100
≈ 2400cycles

B. Power

Figure 12 shows how the dynamic and static power varies
with frequency. It can be seen that the dynamic power in-
creases exponentially with the logarithm of the frequency
(logfrequency10). The maximum power that can be consumed
by the unit is 112 mW static power and 104 mW dynamic
power, making a total of 216 mW. Furthermore, the system at
its highest speed can be powered with 3.3v power supply and
it will consume only 65.45mA. This power which can easily
be provided by battery from hand-held devices.

K DURAISAMY
Text Box
International Journal of Engineering Trends and Technology (IJETT) - Volume 24 Number 4- June 2015

K DURAISAMY
Text Box
ISSN: 2231-5381 http://www.ijettjournal.org Page 174

WorstdNegativedSlackd2WNS7:ddddd0.305dns
TotaldNegativedSlackd2TNS7:dddddddd0.000dns
NumberdofdFailingdEndpoints:dddd0
TotaldNumberdofdEndpoints:ddddddd556

Setup Hold

WorstdHolddSlackd2WHS7:ddddddddNA
TotaldHolddSlackd2TNS7:dddddddddddNA
NumberdofdFailingdEndpoint:ddNA
TotaldNumberdofdEndpoints:dddNA

PulsedWidth
WorstdPulsedWidthdSlackd2WPWS7:dddddddddddddd1.127dns
TotaldPulsedWidthdNegativedSlackd2TNS7:dddd0.000dns
NumberdofdFailingdEndpoints:dddddddddddddddddddddd0
TotaldNumberdofdEndpoints:ddddddddddddddddddddddddd493

Fig. 10. Summary of timing characteristics of the system.

10
1

10
2

10
3

0

20

40

60

80

100

120
PowerSVsSFrequency

FrequencyS(MHz)

P
ow

er
S(

m
W

)

DynamicSPowerS(mW)

StaticSPowerS(mW)

Fig. 12. Power consumption report.

Fig. 11. Simulation run using modelsim.

C. Accuracy

In order to compare all computations from the c++ com-
plier (i.e. the input file generator) and the FMA unit, a variable
”err” is used to tell the test bench the number of LSBs to
ignore. Table V shows the outcomes of the experiment at
different numbers of err. It is worth noting that this does not
mean the FMA unit in not accurate, because;

1) It is not known which rounding mode is used by the
c++ complier.

2) FMA could be more accurate since rounding is done
after all operations that are carried out.

TABLE V. ACCURACY OF THE SYSTEM

Simulation Total set of inputs No. of Results Accuracy LSBs ignored
Run in error (%) (nibbles)

1 1500 180 88 0
2 1500 3 99.8 1
3 1500 1 99.9333 2
4 1500 0 0 3

D. Area

The area of an FPGA is fixed, therefore we can only report
the percentage of the area utilized in by our implementation on
a given FPGA. Table VI shows the percentage area of FPGA

K DURAISAMY
Text Box
International Journal of Engineering Trends and Technology (IJETT) - Volume 24 Number 4- June 2015

K DURAISAMY
Text Box
ISSN: 2231-5381 http://www.ijettjournal.org Page 175

that is been utilized. The FPGA, ”xc7k160t fbg676-2” was
used [14] for the FMA implementation.

TABLE VI. AREA UTILIZED BY THE PROPOSED FMA

Resource Utilization Available Utilization %
Slice Logic 5086 380250 1
Slice Logic Distribution 10201 263148 4
DSP 9 600 2
IO and GTX Specific 279 2342 12
Clocking 9 248 4

VI. CONCLUSION AND FUTURE WORK

The proposed multiplier is test by random combination of
A, B and C values. The values of X were calculated from
the operands. One thousand five hundred set of A, B, C and
X values were generated and they were fed to the proposed
system. It is observed that the system performs faster than
expected. This is because the system checks the values before
any computation takes place. As such those values that are
infinite or not a number are ignored. This shows us that the
system will perform better than expected in real life situations
where cluster of computations are carried out at a given time.

Our future work will focus on optimizing the multiplier
and the adder. Furthermore multilevel shifter and a leading
zero anticipator will be used in order to speed up the system.

REFERENCES

[1] K.-Y. Wu, C.-Y. Liang, K.-K. Yu, and S.-R. Kuang, “Multiple-mode
floating-point multiply-add fused unit for trading accuracy with power
consumption,” in Computer and Information Science (ICIS), 2013
IEEE/ACIS 12th International Conference on. IEEE, 2013, pp. 429–
435.

[2] N. T. Quach and M. J. Flynn, Suggestions for implementing a fast
IEEE multiply-add-fused instruction. Computer Systems Laboratory,
Stanford University, 1991.

[3] E. Quinnell, E. Swartzlander, and C. Lemonds, “Floating-point fused
multiply-add architectures,” in Signals, Systems and Computers, 2007.
ACSSC 2007. Conference Record of the Forty-First Asilomar Confer-
ence on, Nov 2007, pp. 331–337.

[4] R. Montoye, E. Hokenek, and S. Runyon, “Design of the ibm risc
system/6000 floating-point execution unit,” IBM Journal of Research
and Development, vol. 34, no. 1, pp. 59–70, Jan 1990.

[5] C. N. Hinds and D. R. Lutz, “A small and fast leading one predictor
corrector circuit,” in Proc. 39 Asilomar Conference on Signals, Systems
and Computers, 2005, pp. 1181–1185.

[6] E. Hokenek, R. Montoye, and P. Cook, “Second-generation risc floating
point with multiply-add fused,” Solid-State Circuits, IEEE Journal of,
vol. 25, no. 5, pp. 1207–1213, Oct 1990.

[7] N. T. Quach and M. J. Flynn, Leading one prediction–Implementation,
generalization, and application. Computer Systems Laboratory, Stan-
ford University, 1991.

[8] I. Koren, Computer arithmetic algorithms. Universities Press, 2002.
[9] L. Louca, T. Cook, and W. Johnson, “Implementation of ieee single

precision floating point addition and multiplication on fpgas,” in FPGAs
for Custom Computing Machines, 1996. Proceedings. IEEE Symposium
on, Apr 1996, pp. 107–116.

[10] P. Seidel, “Multiple path ieee floating-point fused multiply-add,” in
Proceedings of The IEEE Midwest Symposium On Circuits And Systems,
vol. 46, no. 3. LIDA RAY TECHNOLOGIES INC.,, 2003, p. 1359.

[11] J. He and Y. Zhu, “Design and implementation of a quadruple floating-
point fused multiply-add unit,” in Proceedings of the 2nd International
Conference on Computer Science and Electronics Engineering. At-
lantis Press, 2013.

[12] P. Ashenden, The Designer’s Guide to VHDL, ser. Systems
on Silicon. Elsevier Science, 2010. [Online]. Available: https:
//books.google.com.sa/books?id=XbZr8DurZYEC

[13] F. M. Aliyu, “Fma source code,” 2015. [Online]. Available:
https://www.researchgate.net/profile/Farouq Aliyu/contributions

[14] Xilinx, “7 series fpgas overview,” 2015. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/data sheets/ds180
7Series Overview.pdf

K DURAISAMY
Text Box
International Journal of Engineering Trends and Technology (IJETT) - Volume 24 Number 4- June 2015

K DURAISAMY
Text Box
ISSN: 2231-5381 http://www.ijettjournal.org Page 176

