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Abstract: An Image is often corrupted by noise in its 

acquisition or transmission. The goal of denoising is to 

remove the noise while retaining as much as possible the 

important signal features. Traditionally, this is achieved by 

linear processing such as Wiener filtering. A vast literature 

has emerged recently on signal denoising using nonlinear 

techniques, in the setting of additive white Gaussian noise. 

The seminal work on signal denoising via wavelet 

thresholding have shown that various wavelet thresholding 

schemes for denoising have near-optimal properties in the 

minimax sense and perform well in simulation studies of 

one-dimensional curve estimation. It has been shown to 

have better rates of convergence than linear methods for 

approximating functions. Thresholding is a nonlinear 

technique, yet it is very simple because it operates on one 

wavelet coefficient at a time. Alternative approaches to 

nonlinear wavelet-based denoising can be found in, for 

example and references therein. 
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I. INTRODUCTION 

 

The field of discrete wavelet transforms (DWT) 

has been attracting substantial interest in part due to 

the wavelet analysis being capable of decomposing a 

signal into a particular set of basic functions equipped 

with good spectral properties. Wavelet analysis has 

been used to detect system nonlinearities by making 

use of its localization feature. DWTbasedmulti-

resolution analysis leads to both time and frequency 

localization. Moreover, the proposed architecture is 

sough to be multiplier free. Such design facilitate 

accuracy, speed, relatively smaller area on chip as 

well as cost of design. The new design is 

multiencoded and multi-rate, operating over AI with 

no intermediate reconstruction steps. In this 

framework, error-free computations can be performed 

until the final FRS. Our architecture emphasizes on 

quality of output image and speed by trading 

complexity and power consumption for accuracy. 

The intuition behind using lossy compression for 

denoising may be explained as follows. A signal 

typically has structural correlations that a good coder 

can exploit to yield a concise representation. White 

noise, however, does not have structural redundancies 

and thus is not easily compressable. Hence, a good 

compression method can provide a suitable model for 

distinguishing between signal and noise. The 

discussion will be restricted to wavelet-based coders, 

though these insights can be extended to other 

transform-domain coders as well. A concrete 

connection between lossy compression and denoising 

can easily be seen when one examines the similarity 

between thresholding and quantization, the latter of 

which is a necessary step in a practical lossy coder. 

That is, the quantization of wavelet coefficients with a 

zero-zone is an approximation to the thresholding 

function. Thus, provided that the quantization outside 

of the zero-zone does not introduce significant 

distortion, it follows that wavelet-based lossy 

compression achieves denoising. With this connection 

in mind, this paper is about wavelet thresholding for 

image denoising and also for lossy compression. The 

threshold choice aids the lossy coder to choose its 

zero-zone, and the resulting coder achieves 

simultaneous denoising and compression if such 

property is desired. 

                         Denoising i.e. restoration of 

electronically distorted images is an old but also still a 

relevant problem. There are many different cases of 

distortions. One of the most prevalent cases is 

distortion due to additive white Gaussian noise which 

can be caused by poor image acquisition or by 

transferring the image data in noisy communication 

channels. Early methods to restore the image used 

linear filtering or smoothing methods. These methods 

where simple and easy to apply but their effectiveness 

is limited since this often leads to blurred or smoothed 

out in high frequency regions. All denoising methods 

use images artificially distorted with well defined 

white Gaussian noise to achieve objective test results. 

Note however that in real world images, to 

discriminate the distorting signal from the “true” 

image is an ill posed problem since it is not always 

well defined whether a pixel value belongs to the 

image or it is part of unwanted noise. Newer and 

better approaches perform some thresholding in the 

wavelet domain of an image. The idea of wavelet 

thresholding relies on the assumption that the signal 

magnitudes dominate the magnitudes of the noise in a 

wavelet representation, so that wavelet coefficients 

can be set to zero if their magnitudes are less than a 

predetermined threshold. More recent developments 

focus on more sophisticated methods, like local or 

context-based thresholding in the wavelet domain. 

Some methods are inspired by wavelet-based image 

compression methods. 

The theoretical formalization of filtering additive iid 

Gaussian noise (of zero-mean and standard deviation) 

via thresholding wavelet coefficients was pioneered 

by Donoho and Johnstone.  A wavelet coefficient is 

compared to a given threshold and is set to zero if its 

magnitude is less than the threshold; otherwise, it is 
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kept or modified (depending on the thresholding rule). 

The threshold acts as an oracle which distinguishes 

between the insignificant coefficients likely due to 

noise, and the significant coefficients consisting of 

important signal structures. Thresholding rules are 

especially effective for signals with sparse or near-

sparse representations where only a small subset of the 

coefficients represents all or most of the signal energy. 

Thresholding essentially creates a region around zero 

where the coefficients are considered negligible. 

Outside of this region, the thresholded coefficients are 

kept to full precision (that is, without quantization).  

                       Since the works of Donoho and 

Johnstone, there has been much research on finding 

thresholds for nonparametric estimation in statistics. 

However, few are specifically tailored for images. In 

this project, we propose a framework and a near-

optimal threshold in this framework more suitable for 

image denoising. This approach can be formally 

described as Bayesian, but this only describes our 

mathematical formulation, not our philosophy. The 

formulation is grounded on the empirical observation 

that the wavelet coefficients in a sub band of a natural 

image can be summarized adequately by a generalized 

Gaussian distribution (GGD). This observation is 

well-accepted in the image processing community and 

is used for state-of-the-art image coders. It follows 

from this observation that the average MSE (in a sub 

band) can be approximated by the corresponding 

Bayesian squared error risk with the GGD as the prior 

applied to each in an iid fashion. That is, a sum is 

approximated by an integral. We emphasize that this is 

an analytical approximation and our framework is 

broader than assuming wavelet coefficients are iid 

draws from a GGD. The goal is to find the soft-

threshold that minimizes this Bayesian risk, and we 

call our method BayesShrink. 

The GGD, following is 

  
Adaptive wavelet thresholding for image denoising 

and compression is shown in fig 1. 

 

Figure 1: Histogram of the wavelet coefficients of 

four test images 

For each image, from top to bottom it is fine to coarse 

scales: from left to right, they are the HH, HL, and LH 

sub bands, respectively. 

  

II. WAVELET ANALYSIS 

Wavelet analysis represents the next logical step: a 

windowing technique with variable-sized regions. 

Wavelet analysis allows the use of long time intervals 

where we want more precise low-frequency 

information, and shorter regions where we want high-

frequency information. 

 
Here‟s what this looks like in contrast with the time-

based, frequency-based, and STFT views of a signal: 

 

 
You may have noticed that wavelet analysis does not 

use a time-frequency region, but rather a time-scale 

region. For more information about the concept of 

scale and the link between scale and frequency, see 

“How to Connect Scale to Frequency?” 

We‟ve already alluded to the fact that wavelet analysis 

produces a time-scale view of a signal and now we‟re 

talking about scaling and shifting wavelets. What 
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exactly do we mean by scale in this context? Scaling a 

wavelet simply means stretching (or compressing) it. 

To go beyond colloquial descriptions such as 

“stretching,” we introduce the scale factor, often 

denoted by the letter a.  

If we‟re talking about sinusoids, for example the effect 

of the scale factor is very easy to see: 

 

 
 

The scale factor works exactly the same with wavelets. 

The smaller the scale factor, the more “compressed” 

the wavelet. 

 

 
 

It is clear from the diagrams that for a sinusoid sin (wt) 

the scale factor „a‟ is related (inversely) to the radian 

frequency „w‟. Similarly, with wavelet analysis the 

scale is related to the frequency of the signal. Notice 

that the scales in the coefficients plot (shown as y-axis 

labels) run from 1 to 31. Recall that the higher scales 

correspond to the most “stretched” wavelets. The 

more stretched the wavelet, the longer the portion of 

the signal with which it is being compared, and thus 

the coarser the signal features being measured by the 

wavelet coefficients. 

 

 
 

Thus, there is a correspondence between wavelet 

scales and frequency as revealed by wavelet analysis: 

• Low scale a=> Compressed wavelet => rapidly 

changing details => High frequency „w‟. 

• High scale a=>Stretched wavelet=>slowly changing, 

coarse features=>Low frequency „w‟. 

 

III. AI-BASED DAUBECHIES-4 AND -6 

SCALING FILTERS 

An algebraic integer is a real or complex number 

that is a root of a monic polynomial with integer 

coefficients. Algebraic integers can be employed to 

define encoding mappings which can precisely 

represent particular irrational numbers by means of 

usual integers. Considering the roots of the monic 

polynomials  , and 

 we can extend the set of 

integers by including the algebraic integer 

 and 

. Doing so, a given quantity 

can possibly be represented as 

 
where a,b,c,d ,e  and f are integers. Sets (1,dash)and  

 constitute two bases for AI 

encoding. Notice that these two bases are adequate for 

representing the 4- and 6-tap Daubechies filter 

coefficients. Thus, taking apart quantities 

 and  as 

scaling factors, the Daub-4 and -6 filter coefficients 

can be represented as 

 
Therefore, these un normalized low-pass FIR filters of 

4-tap/6-tap can be split into separate filters given by 

 
Where,  
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DAUB-4 DECOMPOSITIONS: 

Therefore, the Daub-4 and -6 filter bank 

analysis can be separated into two/three structures. 

This facilitates a two/four integer channel structure, 

where the integer coefficient filters 

 and are considered. 

All implied computations are necessarily over an 

integer field. Notice that a usual integer can be 

effortlessly represented in either basis: 

 
This is relevant for encoding image pixel values, 

which are integers. In practical terms, this means that 

no circuitry for encoding integer input data is 

necessary. AI based Daub-4 and -6 filter structures are 

shown in Fig. 2. These filters possess zero initial 

condition 

 

Figure 2: Daub-4 AI Filter Structure 

 

2-D Filtering: 

We now provide the mathematical framework to 

describe the operation of the proposed AI-based multi-

level encoding design. The following notation is 

adopted in this work. Let C be an Nby N matrix with 

columns cj j=0,1,...N-1 C=[c0 c1 c2.....cN-1]and be an 

-point column vector. The operation ⦶ is defined 

according to 

 
Where is the convolution operation? Analogously, 

operation is given by: 

 
In other words and ⦶ are the filtering operations along 

the rows and columns of a given image, respectively, 

followed by a dyadic down-sampling stage. 

IV. RESULTS 

The results indicates the image input pixels are stored 

in the memory .the pixels in hexadecimal are shown in 

image_reg storage. 

 

 
the result above indicates the image input pixels are 

stored in the memory .the pixels in hexadecimal are 

shown in image_reg storage. 
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the above simulation shows the pixels values selected 

in a coloum wise format images. 

  

 

Figure 3: input image 

 
(a) 

 
(b) 

 
(c) 

 

 

(d) 

Figure 4: Decomposition of dwt levels 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 25 Number 2- July 2015 

ISSN: 2231-5381                                     http://www.ijettjournal.org                           Page 88 

 

V. CONCLUSION 

In this project 4 tap and 6 tap dwt is done for 

computing DWT/IDWT. Using this 

architecture proposed in this project 

Windowing technique of the paper is to 

provide zoom in and zooms out of image. 

Here, coefficients are used as a tool to 

increase/decrease image size, even though 

image is not of size 
nn 22 where n is an 

integer. Zero padding technique is used for 

images those are not of size 
nn 22  

dimensions. The main advantage of the 

proposed architecture is its inherent speed 

due to elimination of the multipliers in 

computing DWT/IDWT. The algebraic 

integers Algorithm is used for computing 

DWT/IDWT. The proposed architecture 

provides flexibility to implementing and 

provides zoom in and zooms out of images of 

various sizes. Scope for further work is by 

slight modification of the architecture we can 

achieve reduction in size until it reaches two 

pixels. 
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