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Abstract— One of the greatest challenges in Deep Sub-Micron (DSM) design is inter-wire crosstalk, which 

becomes significant with shrinking feature sizes of VLSI fabrication processes and greatly limits the speed and 

increases the power consumption of an IC. This monograph presents approaches to avoid crosstalk in on-chip. 

The research work presented in the first part of this monograph focuses on crosstalk avoidance with bus 

encoding, one of the techniques that effectively mitigates the impact of on-chip capacitive crosstalk and 

improves the speed and power consumption of the bus interconnect . This technique encodes data before 

transmission over the bus to avoid certain undesirable crosstalk conditions and thereby improves the bus speed 

and/or energy consumption. We first derive the relationship between the inter-wire capacitive crosstalk and 

signal speed as well as power, and show the data pattern dependence of crosstalk. 
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I. INTRODUCTION 

It has been observed that the bus invert coding is 

most effective when the bus is divided into smaller 

groups, which implies increased redundancy. Such 

method reduces average number of couplings and/or 

switching activity thereby reducing the energy 

consumption. However, such method would not be 

effective against crosstalk induced delay as the capture 

mechanism at the receiver end still has to wait for the 

worst case delay transmission to settle. Code words 

generated in memory-based crosstalk avoidance 

encoding satisfy a specified crosstalk upper-bound 

requirement with respect to the previous codeword 

onthe bus. The codeword is generated based not only 

on the current data word, but also on the previously 

transmitted codeword. Such a code is therefore called 

―memory based code‖. The decoder also uses the 

current received codeword and either the previous 

received codeword or the previous decoded data word 

to decode the current data word. The memory depth of 

CACs we consider is one. Memory less crosstalk 

avoidance codes are attractive due to the simplicity of 

their CODEC implementations. Memory-based codes, 

on the other hand, offer the advantage of lower bus 

area overhead as reported in [35, 99]. However, they 

generally require more complex CODECs. We first 

present a memory-based 4C-free CAC design that 

requires simple CODEC logic and 33% bus wiring 

overhead. We then present two generic memory-based 

code design methods: the pruning-based search and 

the ROBDD based search. 

Conventional wisdom doubts that bus 

encoding would ever become a viable solution to the 

problem of inter-wire capacitive crosstalk due to its 

area overhead and CODEC complexity associated 

with such techniques, we presented some of the recent 

research in overcoming these obstacles and showed 

that such techniques can be highly efficient. Following 

a brief overview of techniques in crosstalk avoidance 

at the beginning of, we examined the phenomenon of 

crosstalk in on-chip busses and illustrated that 

capacitive coupling between adjacent parallel bus 

wires is the main contributor to the speed and power 

degradation in deep sub-micron signal busses. We 

introduced the notion of effective capacitance and 

showed that both delay and energy consumption of 

busses are linearly proportional to it. We introduced a 

bus classification system for binary busses to make the 

subsequent discussion clear. This classification system 

was later generalized to multi-valued busses. With the 

establishment of this classification system, we 

introduced our first set of crosstalk avoidance codes—

memory less codes. These codes have the inherent 

advantage of requiring simpler CODECs. We showed 

that there exists a trade off between the area overhead 

and the speed-up factor for all the codes. Generally, 

higher the speed-up, the larger the area overhead. 

Some of the memory less codes we discussed include 

the FPF code (3C-free) [36], FTF code (3C-free code 

proposed by B. Victor [100]), 2C-free code and 1C-

free configurations [35]. We showed that 

mathematical induction based approaches can be used 

to effectively generate code words for both 3C-free 

codes and the 2C-free code. Such inductive 

approaches also allow us to compute the code 

cardinality without explicitly enumerating all the code 

words. 

We found that based on our computation, 3C-

free memory less codes require44% overhead, which 

is significantly lower than the conventional static 

shielding approaches. The overhead is higher for 2C-

free codes but still lower than shielding techniques. As 

part of a complete solution for memory less codes, we 

also discussed in detail some efficient CODEC design 

approaches for these codes. The bus-partition based 

solution is simple and allows us to control the 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 56 

CODEC size and speed. Our solutions based on the 

Fibonacci Numeral System are advantageous over 

conventional solutions because of their significantly 

reduced area, simple design, deterministic mapping, 

reusable modular structure and most importantly, the 

extreme low complexity and high speed. We also 

investigated memory-based codes and showed that 

they are more efficient in terms of area overhead. A 

4C-free code design was given as one of the simplest 

memory-based code, with a 33% overhead. We 

showed that graph pruning can be used to represent 

code words and transitions. Based on a graph 

representation, we showed that codeword pruning is a 

simple way of finding the minimum encoding 

overhead. It, however, requires a large amount of 

memory and run time. We proposed an ROBDD-

based approach that represents all the illegal code 

words canonically and generates code words 

efficiently. It also suffers from the same limitations as 

the codeword pruning technique. As a result, realistic 

memory based CACs would need to partition large 

busses into smaller groups. Finally, we investigated 

the crosstalk avoidance coding for multi-valued busses. 

We first generalized the classification system into the 

multi-valued realm and showed that the speed and 

power of a bus are related to the effective crosstalk 

coefficient,Xeff, a parameter defined in a manner 

similar to the effective capacitance Ceff in the binary 

bus case. Noting that the supply voltages are scaling 

down continuously, using more than 4 values in a 

multi-valued bus is impractical. Hence, we proposed 

two code designs specifically for the ternary bus. 

These codes use a bit-to-bit direct mapping which 

makes the encoding and decoding trivial. By allowing 

flexibility onthe signal polarity and establishing a few 

coding rules, the encoded busses eliminate bus 

patterns with high crosstalk and significantly reduce 

the probability of other high crosstalk patterns. These 

codes exploit the low signal swing of the multi-valued 

signals. As a result, we were able to achieve a 

significant speed improvement and power saving. 

We believe that the issue of crosstalk 

avoidance in on-chip interconnects to reduce delay 

and power will attract more and more attention as the 

technology marches head. Beyond the research 

presented in this monograph, there is room for further 

improvement. For example, efficient CODEC design 

for memory-based codes is a subject worth further 

investigation. Multi-valued logic based bus 

interconnect is another area that holds significant 

promise. Crosstalk in serial busses is also an important 

topic. Even though there have been several 

publications on combining crosstalk avoidance codes 

with other codes such as forward error correction 

codes, an practical, efficient design has yet to be 

discovered. 

Some of the techniques discussed are not 

limited to bus crosstalk avoidance; instead, they can 

be applied to other areas. For example, the FPF code 

can be of particular interest to certain applications in 

digital communication, where certain patterns are 

designated to carry higher priority messages, such as 

emergency massages. Our FPF codes have 44% 

overhead, which is much less compared to existing 

schemes. 

The FPF code may also be used in serial data 

communications, in which back to back toggles are 

not allowed. Another potential application is 

interference management in wireless communications. 

The transmission in a cell (or sector) is considered as 

Interference to an adjacent cell (or sector). The 

accumulated interference can greatly Summary of On-

Chip Crosstalk Avoidance. 

Reduce the capacity of the victim cell. It is 

conceivable that some of the crosstalk avoidance 

schemes may be applied for interference management. 

Another interesting property of the FPF code lies in its 

spectrum. Since the high frequency components are 

suppressed, we expect that by applying FPF encoding, 

high bandwidth efficiency can be achieved. This is 

extremely valuable for many wireless communication 

systems. 
 

II. PROPOSED SYSTEM 

Consider a graph where every codeword is a node 

and every edge represents a transition that does not 

involve any two neighboring lines switching in 

opposite direction. It is mathematically proved that the 

largest clique is formed by all of the neighbors of a 

codeword that is in the form of alternating 1‘s and 0‘s 

(...101010...) . The codebook is implemented as 

random logic. This code is referred to as opposing 

transitions elimination encoding (OTEE) in the 

following thesis. 

Method designed as a transition code where every 

rising or falling edge is represented by a 1 while a 

stable logic value is represented by a 0. As an 

example, a codeword 101 indicates that in a three bit 

bus, lines on extreme ends are undergoing transitions 

while the middle one is stable. As a result, avoiding 

any codeword with consecutive 1‘s eliminates any 

simultaneous transitions on neighboring bus lines. 

Although code proposed relies on code words from 

two consecutive time frames, it can be considered as a 

memory less code because a simple exclusive-or array 

can be used to translate the transitions to 1‘s and 0‘s. 

This way for an n bit bus, the decoder logic has only n 

inputs and not 2n as in memory based codes. This 

code is referred to as no adjacent transitions (NAT) in 

the following thesis. 

The code proposed achieves the goal by 

eliminating any vector that contains pattern b, b_dash, 

b on neighbouring bus lines during any given time 

frame. In order to maintain simpler code book and 

encoder logic, authors rely on bus partitioning and 

group complement bits. This, in turn, results in 
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significant overhead. As discussed in subsequent 

sections, it is possible to extend the proposed method 

to implement such code without partitions and group 

complement such that total routing area for the bus is 

significantly reduced. This kind of encoding 

eliminates crosstalk induced slowdown while 

maintaining transition speedup, this code is referred to 

as slowdown elimination encoding (SEE). 

 

III. IMPLEMENTATION PROCESS   

The sequence of steps followed in the proposed 

technique is depicted in Figure. The Process begins 

with making an initial attempt to identify the 

correlation between codewords of different sizes by 

classifying them into various classes according to the 

most significant bit. This section describes how the 

codec generation process can be automated. 

Consider an initial classification of a set X(1) 

consisting of 1-bit code into two classes, namely, (0, 1) 

and (1, 1). In absence of any encoding technique, the 

set of 2-bit codewords X(2) is formed by appending a 

leading 0 and leading 1 to both of the aforementioned 

classes. The resultant section of graph has four nodes 

and four edges as shown in Fig. 3(a). 

During the first iteration of the graph generation 

flow depicted in Fig. 2, a small software module 

identifies and lists any invalid codewords that are 

present in the newly formed 2-bitcode set. As an 

example consider the code in [19] that forbids 

consecutive 1‘s in a codeword. The codeword 11 

present in class (1, 2) is invalid under this encoding 

technique and is flagged by the software tool. The 

codeword 11 is formed by appending a leading 1 to a 

member of class (1, 1). As a result the solid edge 

connecting class (1, 1) and class (1, 2). 

 

Figure 1: Steps of proposed implementation 

strategy 

 

Implementation of NAT, OTEE, SEES: 

 

Figure 2: NAT encoder implementation 
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The NAT encoder breaks down the input data into 

sum ofFb(k+1) values. If Fb(k+1) is present in the 

sum, the kthbit isset. Decoder simply adds the Fb(k+1) 

values   corresponding to every code bit that is set. 

The original data Dr from an n-bit codeword can be 

given by: 

n_i=1 (C(i) ∗  Fb(i+ 1)) 

where C(i) is the ithcode bit and Fb(i+1) is the i+1st 

Fibonacci number. The 3-bit data broken-up as a sum 

of kth bit*Fb(k) and the corresponding mapping is 

shown in Table II. As shown in Fig. 23 array of 

exclusive or gates translate the transitions on the bus 

lines to codewords. According to Table II the data ‗2‘ 

is mapped to code 0010, data ‗4‘ is mapped to0101 

while data ‗7‘ is mapped to 1010. It is worth noting 

that the actual bits transmitted over the bus depend 

upon the initial state. As an example, consider data ‗2‘, 

‗4‘ and‗7‘ transmitted over the bus with initial state 

0000 during consecutive time frames t0, t1 and t2. The 

resultant bus states are enumerated in Table III. 

Absence of consecutives in 

 
 

 

 

Figure 3: NAT decoder block 

 

The codewords ensures absence of adjacent 

transitions thereby avoiding crosstalk induced delay. 

Code bits are individually led to each of the functional 

blocks. As long as proper code bits are fed to proper 

blocks, the order in which the addition takes place is 

irrelevant. Functionality of block D(k, Di) is depicted 

in Fig. 22.The length of the codeword is determined 

by the number of function blocks. The number of 

function blocks (E and D) is proportional to the 

number of code bits. An n-bit encoder has n (or n-1 

function blocks, depending upon the type of the code). 

As an example, the 4-bit encoder/decoder circuits in 

Figs. 16, 17, and 28 have four blocks. A 5-bit 

encoder/decoder will have five blocks. Each function 

block consists of multibit adders and multiplexers. An 

n-bit encoder/decoder will requiren-bit adders and 

multiplexer. 

 

 

 

Figure 4: Otee encoder block 

. 

Since 3≥Fb (3), C3=1 and Do=3-Fb (3)=1. 

The third block performs E1(2, 1). Since 1_Fb(3), 

C2=0 and Do=1. Finally, the fourth block performs 

E2(1, 1). Since 1≥Fb (1), C1=1 and Do=1-Fb(1)=0. 

Irrespective of the input data, Do from the last block is 

always 0. The path traversed on the correlation graph 

that corresponds to input data 110 is shown in bold. A 

closer observation of functions E1 & E2 reveals that 

the encoder essentially breaks down the input data into 

sum of Fb(k). According to the functionality of 

thencoder, if Fb(k)is subtracted from the input data, 

the kthbit is set. The decodermust recover the original 

data by adding Fb(k) for every kthcode bit that is set. 

The decoder simply adds up the Fb(k)corresponding to 

every bit that is set. Binary equivalent of the 

original data DR is given by: 

n_i=1(C(i) ∗  Fb(i)) 

where C(i) is the ith code bit and Fb(i) is the ith 

Fibonacci number. The breakdown of 3-bit data into 

Table 3.1: Mapping 4-Bit NAT Code to 

3-Bit Data 

 

Table 3.2: Resultant Bus states 
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Fb(4), Fb(3), Fb(2), Fb(1)and the resultant mapping is 

shown in Table I. 

TABLE I Mapping 4-Bit OTEE Code to 3-Bit Data 

Fig. 18. OTEE decoder block. NAT code bit 

generation. The block diagram of the decoder using 

D(k,Di) function blocks is given in Fig. 17. Function 

D(k,Di) is given in Fig. 18.Following similar logic, 

real-time implementation of the NAT and SEE codes 

is achieved as discussed in the reminder of this section. 

The first |(0, n)| data words are mapped to all of the 

elements in the class (0, n). The remaining data words 

are mapped to the first (2d -|(0, n)|) elements of (1, n). 

There maining elements of (1, n) are unmapped. For 

(4,3,2)-NAT code mapping shown in Table II (|(1, 

n)|+|(0, n)|)=2d ; hence, there are no unmapped 

codewords. 

 

Hardware architecture for the reconfigurable 

crosstalk elimination 

The selection line is used for selecting OTEE, NAT, 

SEE 

The truth table is as follows  

Inp

1 

Inp

2 

Inp

3 

S1 S

2 

Opt

1 

Opt

2 

Opt

3 

Opt

4 

0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 

0 0 1 0 1 0 0 0 1 

0 0 1 1 0 0 0 0 1 

0 1 0 0 0 0 0 1 0 

0 1 0 0 1 0 1 0 0 

0 1 0 1 0 0 0 1 1 

0 1 1 0 0 0 1 0 0 

0 1 1 0 1 0 1 0 1 

0 1 1 1 0 0 1 1 0 

1 0 0 0 0 0 1 0 1 

1 0 0 0 1 0 1 1 1 

1 0 0 1 0 0 1 1 1 

1 0 1 0 0 1 0 0 0 

1 0 1 0 1 1 1 0 0 

1 0 1 1 0 1 0 0 0 

1 1 0 0 0 1 0 0 1 

1 1 0 0 1 1 1 0 1 

1 1 0 1 0 1 0 0 1 

1 1 1 0 0 1 0 1 0 

1 1 1 0 1 1 1 1 1 

1 1 1 1 0 1 1 0 0 

The above truth table is the functionality of the otee 

see and nat encoding and decoder continues as the 

same in conventional .the outputs mentioned are k 

map designed to obtain the equation and then to 

hardware architech. 

 

 

 

 

 

 

Output1  kmap 

Ab\cs1

s2 

00

0 

00

1 

01

1 

01

0 

11

0 

11

1 

10

1 

10

0 

00         

01         

11 1 1  1 1  1 1 

10     1  1 1 

 

Kmap equation 

2 1 1 1 2abs abcs cs a abcs s
 

For output 2 

Kmap 

Ab\cs1s2 000 001 011 010 110 111 101 100 

00         

01  1   1  1 1 

11  1   1  1  

10 1 1  1   1  

 

Equations 

(cs 2) a b(s1s 2) s1 2 1 2ab s b cs s
 

For output3 

Ab\cs1s2 000 001 011 010 110 111 101 100 

00         

01 1   1 1    

11       1 1 

10  1  1     

Equations 

(cs 2) ab(cs1) a b 1 2 1 2 (cs1s 2)ab cs s abcs s ab
 

For output 4 

Ab\cs1s2 000 001 011 010 110 111 101 100 

00 1    1  1 1 

01    1   1  

11 1 1  1   1  

10 1 1  1     

 

Equation 

1 2 1 2 1 2 1 2 2acs abcs abs s cs s b cs s a abcs
 
 

IV. RESULTS & DISCUSSIONS 

 

Number of luts Correlation graph 
Fibonacci 

 

OTEE 5 8 

NAT 43 90 

SEE 8 12 

  

Table 4.1. LUT report for correlation graph and 

Fibonacci 
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