
International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 55

Code Word Generation for Reconfigurable Crosstalk

Elimination
K.Manasa Lakshmi

1
S.Neelima

2

1
PG Student (M.Tech), Dept. of ECE, Gandhiji Institute of Science & Tech., Jaggaiahpeta, AP, India

2
Associate professor, Dept. of ECE, Gandhiji Institute of Science & Tech., Jaggaiahpeta, AP, India

Abstract— One of the greatest challenges in Deep Sub-Micron (DSM) design is inter-wire crosstalk, which

becomes significant with shrinking feature sizes of VLSI fabrication processes and greatly limits the speed and

increases the power consumption of an IC. This monograph presents approaches to avoid crosstalk in on-chip.

The research work presented in the first part of this monograph focuses on crosstalk avoidance with bus

encoding, one of the techniques that effectively mitigates the impact of on-chip capacitive crosstalk and

improves the speed and power consumption of the bus interconnect . This technique encodes data before

transmission over the bus to avoid certain undesirable crosstalk conditions and thereby improves the bus speed

and/or energy consumption. We first derive the relationship between the inter-wire capacitive crosstalk and

signal speed as well as power, and show the data pattern dependence of crosstalk.

Keywords— Cross Talk, Reconfigurable, Code word Generation, Elimination.

I. INTRODUCTION

It has been observed that the bus invert coding is

most effective when the bus is divided into smaller

groups, which implies increased redundancy. Such

method reduces average number of couplings and/or

switching activity thereby reducing the energy

consumption. However, such method would not be

effective against crosstalk induced delay as the capture

mechanism at the receiver end still has to wait for the

worst case delay transmission to settle. Code words

generated in memory-based crosstalk avoidance

encoding satisfy a specified crosstalk upper-bound

requirement with respect to the previous codeword

onthe bus. The codeword is generated based not only

on the current data word, but also on the previously

transmitted codeword. Such a code is therefore called

―memory based code‖. The decoder also uses the

current received codeword and either the previous

received codeword or the previous decoded data word

to decode the current data word. The memory depth of

CACs we consider is one. Memory less crosstalk

avoidance codes are attractive due to the simplicity of

their CODEC implementations. Memory-based codes,

on the other hand, offer the advantage of lower bus

area overhead as reported in [35, 99]. However, they

generally require more complex CODECs. We first

present a memory-based 4C-free CAC design that

requires simple CODEC logic and 33% bus wiring

overhead. We then present two generic memory-based

code design methods: the pruning-based search and

the ROBDD based search.

Conventional wisdom doubts that bus

encoding would ever become a viable solution to the

problem of inter-wire capacitive crosstalk due to its

area overhead and CODEC complexity associated

with such techniques, we presented some of the recent

research in overcoming these obstacles and showed

that such techniques can be highly efficient. Following

a brief overview of techniques in crosstalk avoidance

at the beginning of, we examined the phenomenon of

crosstalk in on-chip busses and illustrated that

capacitive coupling between adjacent parallel bus

wires is the main contributor to the speed and power

degradation in deep sub-micron signal busses. We

introduced the notion of effective capacitance and

showed that both delay and energy consumption of

busses are linearly proportional to it. We introduced a

bus classification system for binary busses to make the

subsequent discussion clear. This classification system

was later generalized to multi-valued busses. With the

establishment of this classification system, we

introduced our first set of crosstalk avoidance codes—

memory less codes. These codes have the inherent

advantage of requiring simpler CODECs. We showed

that there exists a trade off between the area overhead

and the speed-up factor for all the codes. Generally,

higher the speed-up, the larger the area overhead.

Some of the memory less codes we discussed include

the FPF code (3C-free) [36], FTF code (3C-free code

proposed by B. Victor [100]), 2C-free code and 1C-

free configurations [35]. We showed that

mathematical induction based approaches can be used

to effectively generate code words for both 3C-free

codes and the 2C-free code. Such inductive

approaches also allow us to compute the code

cardinality without explicitly enumerating all the code

words.

We found that based on our computation, 3C-

free memory less codes require44% overhead, which

is significantly lower than the conventional static

shielding approaches. The overhead is higher for 2C-

free codes but still lower than shielding techniques. As

part of a complete solution for memory less codes, we

also discussed in detail some efficient CODEC design

approaches for these codes. The bus-partition based

solution is simple and allows us to control the

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 56

CODEC size and speed. Our solutions based on the

Fibonacci Numeral System are advantageous over

conventional solutions because of their significantly

reduced area, simple design, deterministic mapping,

reusable modular structure and most importantly, the

extreme low complexity and high speed. We also

investigated memory-based codes and showed that

they are more efficient in terms of area overhead. A

4C-free code design was given as one of the simplest

memory-based code, with a 33% overhead. We

showed that graph pruning can be used to represent

code words and transitions. Based on a graph

representation, we showed that codeword pruning is a

simple way of finding the minimum encoding

overhead. It, however, requires a large amount of

memory and run time. We proposed an ROBDD-

based approach that represents all the illegal code

words canonically and generates code words

efficiently. It also suffers from the same limitations as

the codeword pruning technique. As a result, realistic

memory based CACs would need to partition large

busses into smaller groups. Finally, we investigated

the crosstalk avoidance coding for multi-valued busses.

We first generalized the classification system into the

multi-valued realm and showed that the speed and

power of a bus are related to the effective crosstalk

coefficient,Xeff, a parameter defined in a manner

similar to the effective capacitance Ceff in the binary

bus case. Noting that the supply voltages are scaling

down continuously, using more than 4 values in a

multi-valued bus is impractical. Hence, we proposed

two code designs specifically for the ternary bus.

These codes use a bit-to-bit direct mapping which

makes the encoding and decoding trivial. By allowing

flexibility onthe signal polarity and establishing a few

coding rules, the encoded busses eliminate bus

patterns with high crosstalk and significantly reduce

the probability of other high crosstalk patterns. These

codes exploit the low signal swing of the multi-valued

signals. As a result, we were able to achieve a

significant speed improvement and power saving.

We believe that the issue of crosstalk

avoidance in on-chip interconnects to reduce delay

and power will attract more and more attention as the

technology marches head. Beyond the research

presented in this monograph, there is room for further

improvement. For example, efficient CODEC design

for memory-based codes is a subject worth further

investigation. Multi-valued logic based bus

interconnect is another area that holds significant

promise. Crosstalk in serial busses is also an important

topic. Even though there have been several

publications on combining crosstalk avoidance codes

with other codes such as forward error correction

codes, an practical, efficient design has yet to be

discovered.

Some of the techniques discussed are not

limited to bus crosstalk avoidance; instead, they can

be applied to other areas. For example, the FPF code

can be of particular interest to certain applications in

digital communication, where certain patterns are

designated to carry higher priority messages, such as

emergency massages. Our FPF codes have 44%

overhead, which is much less compared to existing

schemes.

The FPF code may also be used in serial data

communications, in which back to back toggles are

not allowed. Another potential application is

interference management in wireless communications.

The transmission in a cell (or sector) is considered as

Interference to an adjacent cell (or sector). The

accumulated interference can greatly Summary of On-

Chip Crosstalk Avoidance.

Reduce the capacity of the victim cell. It is

conceivable that some of the crosstalk avoidance

schemes may be applied for interference management.

Another interesting property of the FPF code lies in its

spectrum. Since the high frequency components are

suppressed, we expect that by applying FPF encoding,

high bandwidth efficiency can be achieved. This is

extremely valuable for many wireless communication

systems.

II. PROPOSED SYSTEM

Consider a graph where every codeword is a node

and every edge represents a transition that does not

involve any two neighboring lines switching in

opposite direction. It is mathematically proved that the

largest clique is formed by all of the neighbors of a

codeword that is in the form of alternating 1‘s and 0‘s

(...101010...) . The codebook is implemented as

random logic. This code is referred to as opposing

transitions elimination encoding (OTEE) in the

following thesis.

Method designed as a transition code where every

rising or falling edge is represented by a 1 while a

stable logic value is represented by a 0. As an

example, a codeword 101 indicates that in a three bit

bus, lines on extreme ends are undergoing transitions

while the middle one is stable. As a result, avoiding

any codeword with consecutive 1‘s eliminates any

simultaneous transitions on neighboring bus lines.

Although code proposed relies on code words from

two consecutive time frames, it can be considered as a

memory less code because a simple exclusive-or array

can be used to translate the transitions to 1‘s and 0‘s.

This way for an n bit bus, the decoder logic has only n

inputs and not 2n as in memory based codes. This

code is referred to as no adjacent transitions (NAT) in

the following thesis.

The code proposed achieves the goal by

eliminating any vector that contains pattern b, b_dash,

b on neighbouring bus lines during any given time

frame. In order to maintain simpler code book and

encoder logic, authors rely on bus partitioning and

group complement bits. This, in turn, results in

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 57

significant overhead. As discussed in subsequent

sections, it is possible to extend the proposed method

to implement such code without partitions and group

complement such that total routing area for the bus is

significantly reduced. This kind of encoding

eliminates crosstalk induced slowdown while

maintaining transition speedup, this code is referred to

as slowdown elimination encoding (SEE).

III. IMPLEMENTATION PROCESS

The sequence of steps followed in the proposed

technique is depicted in Figure. The Process begins

with making an initial attempt to identify the

correlation between codewords of different sizes by

classifying them into various classes according to the

most significant bit. This section describes how the

codec generation process can be automated.

Consider an initial classification of a set X(1)

consisting of 1-bit code into two classes, namely, (0, 1)

and (1, 1). In absence of any encoding technique, the

set of 2-bit codewords X(2) is formed by appending a

leading 0 and leading 1 to both of the aforementioned

classes. The resultant section of graph has four nodes

and four edges as shown in Fig. 3(a).

During the first iteration of the graph generation

flow depicted in Fig. 2, a small software module

identifies and lists any invalid codewords that are

present in the newly formed 2-bitcode set. As an

example consider the code in [19] that forbids

consecutive 1‘s in a codeword. The codeword 11

present in class (1, 2) is invalid under this encoding

technique and is flagged by the software tool. The

codeword 11 is formed by appending a leading 1 to a

member of class (1, 1). As a result the solid edge

connecting class (1, 1) and class (1, 2).

Figure 1: Steps of proposed implementation

strategy

Implementation of NAT, OTEE, SEES:

Figure 2: NAT encoder implementation

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 58

The NAT encoder breaks down the input data into

sum ofFb(k+1) values. If Fb(k+1) is present in the

sum, the kthbit isset. Decoder simply adds the Fb(k+1)

values corresponding to every code bit that is set.

The original data Dr from an n-bit codeword can be

given by:

n_i=1 (C(i) ∗ Fb(i+ 1))

where C(i) is the ithcode bit and Fb(i+1) is the i+1st

Fibonacci number. The 3-bit data broken-up as a sum

of kth bit*Fb(k) and the corresponding mapping is

shown in Table II. As shown in Fig. 23 array of

exclusive or gates translate the transitions on the bus

lines to codewords. According to Table II the data ‗2‘

is mapped to code 0010, data ‗4‘ is mapped to0101

while data ‗7‘ is mapped to 1010. It is worth noting

that the actual bits transmitted over the bus depend

upon the initial state. As an example, consider data ‗2‘,

‗4‘ and‗7‘ transmitted over the bus with initial state

0000 during consecutive time frames t0, t1 and t2. The

resultant bus states are enumerated in Table III.

Absence of consecutives in

Figure 3: NAT decoder block

The codewords ensures absence of adjacent

transitions thereby avoiding crosstalk induced delay.

Code bits are individually led to each of the functional

blocks. As long as proper code bits are fed to proper

blocks, the order in which the addition takes place is

irrelevant. Functionality of block D(k, Di) is depicted

in Fig. 22.The length of the codeword is determined

by the number of function blocks. The number of

function blocks (E and D) is proportional to the

number of code bits. An n-bit encoder has n (or n-1

function blocks, depending upon the type of the code).

As an example, the 4-bit encoder/decoder circuits in

Figs. 16, 17, and 28 have four blocks. A 5-bit

encoder/decoder will have five blocks. Each function

block consists of multibit adders and multiplexers. An

n-bit encoder/decoder will requiren-bit adders and

multiplexer.

Figure 4: Otee encoder block

.

Since 3≥Fb (3), C3=1 and Do=3-Fb (3)=1.

The third block performs E1(2, 1). Since 1_Fb(3),

C2=0 and Do=1. Finally, the fourth block performs

E2(1, 1). Since 1≥Fb (1), C1=1 and Do=1-Fb(1)=0.

Irrespective of the input data, Do from the last block is

always 0. The path traversed on the correlation graph

that corresponds to input data 110 is shown in bold. A

closer observation of functions E1 & E2 reveals that

the encoder essentially breaks down the input data into

sum of Fb(k). According to the functionality of

thencoder, if Fb(k)is subtracted from the input data,

the kthbit is set. The decodermust recover the original

data by adding Fb(k) for every kthcode bit that is set.

The decoder simply adds up the Fb(k)corresponding to

every bit that is set. Binary equivalent of the

original data DR is given by:

n_i=1(C(i) ∗ Fb(i))

where C(i) is the ith code bit and Fb(i) is the ith

Fibonacci number. The breakdown of 3-bit data into

Table 3.1: Mapping 4-Bit NAT Code to

3-Bit Data

Table 3.2: Resultant Bus states

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 59

Fb(4), Fb(3), Fb(2), Fb(1)and the resultant mapping is

shown in Table I.

TABLE I Mapping 4-Bit OTEE Code to 3-Bit Data

Fig. 18. OTEE decoder block. NAT code bit

generation. The block diagram of the decoder using

D(k,Di) function blocks is given in Fig. 17. Function

D(k,Di) is given in Fig. 18.Following similar logic,

real-time implementation of the NAT and SEE codes

is achieved as discussed in the reminder of this section.

The first |(0, n)| data words are mapped to all of the

elements in the class (0, n). The remaining data words

are mapped to the first (2d -|(0, n)|) elements of (1, n).

There maining elements of (1, n) are unmapped. For

(4,3,2)-NAT code mapping shown in Table II (|(1,

n)|+|(0, n)|)=2d ; hence, there are no unmapped

codewords.

Hardware architecture for the reconfigurable

crosstalk elimination

The selection line is used for selecting OTEE, NAT,

SEE

The truth table is as follows

Inp

1

Inp

2

Inp

3

S1 S

2

Opt

1

Opt

2

Opt

3

Opt

4

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 1

0 0 1 0 1 0 0 0 1

0 0 1 1 0 0 0 0 1

0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 1 0 0

0 1 0 1 0 0 0 1 1

0 1 1 0 0 0 1 0 0

0 1 1 0 1 0 1 0 1

0 1 1 1 0 0 1 1 0

1 0 0 0 0 0 1 0 1

1 0 0 0 1 0 1 1 1

1 0 0 1 0 0 1 1 1

1 0 1 0 0 1 0 0 0

1 0 1 0 1 1 1 0 0

1 0 1 1 0 1 0 0 0

1 1 0 0 0 1 0 0 1

1 1 0 0 1 1 1 0 1

1 1 0 1 0 1 0 0 1

1 1 1 0 0 1 0 1 0

1 1 1 0 1 1 1 1 1

1 1 1 1 0 1 1 0 0

The above truth table is the functionality of the otee

see and nat encoding and decoder continues as the

same in conventional .the outputs mentioned are k

map designed to obtain the equation and then to

hardware architech.

Output1 kmap

Ab\cs1

s2

00

0

00

1

01

1

01

0

11

0

11

1

10

1

10

0

00

01

11 1 1 1 1 1 1

10 1 1 1

Kmap equation

2 1 1 1 2abs abcs cs a abcs s

For output 2

Kmap

Ab\cs1s2 000 001 011 010 110 111 101 100

00

01 1 1 1 1

11 1 1 1

10 1 1 1 1

Equations

(cs 2) a b(s1s 2) s1 2 1 2ab s b cs s

For output3

Ab\cs1s2 000 001 011 010 110 111 101 100

00

01 1 1 1

11 1 1

10 1 1

Equations

(cs 2) ab(cs1) a b 1 2 1 2 (cs1s 2)ab cs s abcs s ab

For output 4

Ab\cs1s2 000 001 011 010 110 111 101 100

00 1 1 1 1

01 1 1

11 1 1 1 1

10 1 1 1

Equation

1 2 1 2 1 2 1 2 2acs abcs abs s cs s b cs s a abcs

IV. RESULTS & DISCUSSIONS

Number of luts Correlation graph
Fibonacci

OTEE 5 8

NAT 43 90

SEE 8 12

Table 4.1. LUT report for correlation graph and

Fibonacci

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 60

References
1. Kedar Karmarkar, Spyros Tragoudas, ―On-Chip

Codeword Generation to Cope With Crosstalk,‖ IEEE

Transactions on Computer-aided design of integrated

circuits and systems, vol. 33, no. 2, February 2014.
2. M. Anders, N. Rai, R. K. Krishnamurthy, and S. Borkar,

―A transition-encoded dynamic bus technique for high-

performance interconnects,‖ IEEE J. Solid-State Circuits,
vol. 38, no. 5, pp. 709–714, May 2003.

3. R. Ayoub and A. Orailoglu, ―A unified transformational

approach for reductions in fault vulnerability, power, and
crosstalk noise & delay on processor buses,‖ in Proc.

ASP-DAC, vol. 2. Jan. 2005, pp. 729–734.

4. K.-C. Cheng and J.-Y. Jou, ―Crosstalk-avoidance coding
for low-power on-chip bus,‖ in Proc. 15th IEEE Int.

Conf. Electron. Circuits Syst., Aug.–Sep. 2008, pp.

1051–1054.
5. C. Duan, V. H. C. Calle, and S. P. Khatri, ―Efficient on-

chip crosstalk avoidance CODEC design,‖ IEEE Trans.

Very Large Scale Integr. Syst., vol. 17, no. 4, pp. 551–
560, Apr. 2009.

6. C. Duan, A. Tirumala, and S. P. Khatri, ―Analysis and

avoidance of cross-talk in on-chip buses,‖ in Proc. Hot
Interconnects, vol. 9. Aug. 2001, pp. 133–138.

7. C. Duan, C. Zhu, and S. P. Khatri, ―Forbidden transition

free crosstalk avoidance CODEC design,‖ in Proc.
ACM/IEEE Design Autom. Conf., Jun. 2008, pp. 986–

991.

8. M. Ghoneima and Y. Ismail, ―Delayed line bus scheme:
A low-power bus scheme for coupled on-chip buses,‖ in

Proc. ISLPED, Aug. 2004, pp. 66–69.

9. K. Karmarkar and S. Tragoudas, ―Scalable codeword
generation for coupled buses,‖ in Proc. Design Autom.

Test Eur., Mar. 2010, pp. 729–734.

10. Berkeley predictive technology modeling homepage.
http://www-device.eecs.berkeley.edu/bptm/

11. BSIM4 offcial release site. http://www-

evice.eecs.berkeley.edu/bsim3/bsim4.html
12. Fibonacci number (FromWikipedia)

http://en.wikipedia.org/wiki/Fibonacci_number

13. Moore‘s law. http://en.wikipedia.org/wiki/Moore´s_law
14. Numeral system.

http://en.wikipedia.org/wiki/Numeral_system.

Authors Profile:

K.Manasa Lakshmi is

pursuing her M. Tech in
Department of Electronics and

Communication Engineering at

Gandhiji Institute of Science &
Technology, Jaggaiahpeta.

Her specialization is VLSID.

Mrs. S.Neelima is an
Associate professor in the

Department of Electronics and

Communication Engineering at
Gandhiji Institute of Science &

Technology, Jaggaiahpeta. She

is persuing her Ph.D in the field
ov VLSI. She has published

several papers on her interested

area of VLSI signal processing.

http://www.ijettjournal.org/

