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Abstract— In the past decade, one of the most significant advances in cryptography has been the introduction of 

the first fully homomorphism encryption scheme (FHE). This advance resolved and opened the door to many 

new applications. Indeed, using a FHE one may perform an arbitrary number of computations directly on the 

encrypted data without revealing of the secret key. Thus an untrusted party, such as a remotely hosted server, 

may perform computations on behalf of the owner on the data without compromising privacy. This property of 

FHE is precisely what makes it invaluable for the cloud computing platforms today. A fully homomorphic 

encryption (FHE) scheme is envisioned as being a key cryptographic tool in building a secure and reliable cloud 

computing environment, as it allows arbitrarily evaluation of a cipher text without revealing the plaintext. 

However, existing FHE implementations remain impractical due to their very high time and resource costs. Of 

the proposed schemes that can perform FHE to date, a scheme known as FHE over the integers has the ad-

vantage of comparatively simpler theory, as well as the employment of a much shorter public key making its 

implementation somewhat more practical than other competing schemes. This paper presents the first hardware 

implementations of encryption primitives for FHE over the integers using FPGA technology. First of all, a 

super-size hardware multiplier architecture utilizing the Integer-FFT multiplication algorithm is proposed, and a 

super-size hardware Barrett modular reduction module is designed incorporating the proposed multiplier. Next, 

two encryption primitives that are used in two schemes of FHE over the integers are designed employing the 

proposed super-size multiplier and modular reduction modules. 
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I. INTRODUCTION 

The explosive growth in data communications 

and internet services has made the cryptography an 

important research topic to provide the need of 

confidentiality, authentication, data integrity, and/or 

non-reputation. The idea of public-key cryptosystem 

was originally presented by Diffie and Hellman. In 

1978, Rivest, Shamir and Adleman introduced the 

famous RSA public-key cryptosystem, in which the 

characteristic is carried out by the modular 

exponentiation and the security lies on our inability to 

efficiently factor large integers (usually larger than 

500 bits). To date, the RSA cryptosystem is still one 

of the most widely used public key cryptosystems. 

Moreover, since the size of modulus is at least 512 bits 

for long-term security, it means that high throughput 

rate is hard to achieve.  

Encryption techniques are used essentially by the 

network security service to ensure the secret of 

information. A definition of security is needed to 

better understand it. According to Katz and Lindell, a 

security classic definition has two components: a 

security warranty that no information is leaked and a 

threat model which describes the adversary's abilities. 

But it is no need for perfect secrecy in real-world 

application. A tiny amount of information can be 

leaked to an adversary with bounded computational 

power, if it takes too long to decrypt data. This defines 

the computational security for nowadays 

cryptographic purposes. Modern cryptography 

requires a mathematical approach to define security. 

In this way, a scheme is secure if the success 

probability of any probabilistic polynomial-time (PPT) 

attack is negligible. Reliance on definitions and 

mathematical foundations represents a rigorous 

approach to cryptography.  

The concept of computation on encrypted data 

without decryption was first introduced by Rivest, 

Adleman and Dertouzos in 1978. Thirty years later, 

Gentry proposed a fully homomorphic encryption 

(FHE) based on ideal lattices. This scheme is far from 

being practical because of its large computational cost 

and large ciphertexts. Since then, considerable efforts 

have been made to devise more efficient schemes. 
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However, most FHE schemes still have very large 

ciphertexts (millions of bits for a single ciphertext. 

This presents a considerable bottleneck in practical 

deployments. 

We consider the following situation: several 

users upload data encrypted with a public-key FHE, a 

server carries out computations on the encrypted data 

and then sends them to an agency who has a 

decryption key for the FHE. This is common in typical 

FHE scenarios, such as medical and financial 

applications. In this situation, one approach to reduce 

the storage requirement is to use AES encryption to 

encrypt data, and then perform homomorphic 

computations on ciphertexts after converting to FHE-

ciphertexts. This method has a great advantage in 

storage and communication, because only small AES-

ciphertexts are transmitted from user to server, and 

these are homomorphically decrypted only when their 

homomorphic computations are required. In an 

asymmetric setting, we can still use this approach by 

adding several public-key FHE cipher texts of a 

session key. However this approach is not practical 

when the amount of messages transmitted 

simultaneously is small compared with the size of on 

FHE cipher text. Moreover, the conversion of AES-

ciphertexts into FHE-ciphertexts requires a levelled 

FHE with multiplicative depth of at least forty. 

In this paper, we explore an alternative method 

that encrypts messages with a public key encryption 

(PKE) and converts them into SHE-ciphertexts for 

homomorphic computations. In this approach, the 

ciphertext expansion ratio is only two or three 

regardless of the message size. Moreover, the 

decryption circuit is very shallow when the SHE 

allows large integers as messages.  

In this paper we present the first hardware 

implementations of encryption primitives for FHE 

over the integers using FPGA technology. First of all, 

a super-size hardware multiplier architecture utilizing 

the Integer-FFT multiplication algorithm is proposed, 

and a super-size hardware Barrett modular reduction 

module is designed incorporating the proposed 

multiplier. Next, two encryption primitives that are 

used in two schemes of FHE over the integers are 

designed employing the proposed super-size multiplier 

and modular reduction modules. 

II. FHE SCHEME BASICS 

Fully homomorphic encryption can be considered 

as ring homomorphism. In mathematics, a ring is a set 

R equipped with two operations + and * satisfying the 

following eight axioms, called the ring axioms. R is an 

abelian group under addition, meaning: 

 

1. (a+b)+c =a+(b+c) for all a,b,c in R(+ is 

associative) 

2.  There is an element 0 in R such that a +0 =a 

and 0 +a =a (0 is the additive identity) 

3.  For each a in R there exists _a in R such that 

a+(-a)=(-a)+a=0(-ais the additive inverse of 

a). 

4. A+b=b+a for all a and b in R (C is 

commutative). 

R is a monoid under multiplication, meaning: 

5. (a * b) * c = a .(b . c) for all a; b; c in R (. is 

associative). 

 6. There is an element 1 in R such that a.1 = a 

and 1.a = a (1 is the multiplicative identity). 

Multiplication distributes over addition:  

7. a * .(b + c)= (a * b) + .(a * c)for all a; b; c in R 

(left distributivity). 

 8. .(b + c) a =.(b * a)+ (c*a) for all a; b; c in R 

(right distributivity). 

 A ring homomorphism is a function between two 

rings which respects the structure. More 

explicitly, if R and S are two rings, then a ring 

homomorphism is a function 

such that 

 
 

for all a and b in R. Let us see an example of ring 

homomorphism. Consider the function 

      

       
given by 

 
where 2xy = 0 because 2 times anything is 0 in Z2. 

Next, 

  
 

The second equality follows from the fact 

that Z2 is commutative. Thus, f is a ring 

homomorphism. Let (P; C;K;E;D) be a encryption 

scheme, where P;C are the plaintext and ciphertext 

spaces, K is the key space, and E,D are the encryption 

and decryption algorithms. Assume that the plaintexts 

form a ring (P,*p,*p) and the ciphertexts forma ring 

(C,*c,*c ); then the encryption algorithm E is a map 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 69 

from the ring P to the ring C, i.e., Ek :p –c , where  K 

is either a secret key (in the secret key cryptosystem) 

or a public key (in the public-key cryptosystem). 

 

For all a and b in P and k in K, if 

 

 
Overview of FHE  

Craig Gentry, using lattice-based cryptography, 

showed the first fully homomorphic encryption 

scheme as announced by IBM on 25 June 2009. His 

scheme supports evaluations of arbitrary depth 

circuits. His construction starts from a somewhat 

homomorphic encryption scheme using ideal lattices 

that is limited to evaluating low-degree polynomials 

over encrypted data. It is limited because each 

ciphertext is noisy in some sense, and this noise grows 

as one adds and multiplies ciphertexts, until ultimately 

the noise makes the resulting ciphertext 

indecipherable. He then shows how to modify this 

scheme to make it bootstrappable—in particular, he 

shows that by modifying the somewhat homomorphic 

scheme slightly, it can actually evaluate its own 

decryption circuit, a self-referential property. Finally, 

he shows that any bootstrappable somewhat 

homomorphic encryption scheme can be converted 

into a fully homomorphic encryption through a 

recursive self-embedding. In the particular case of 

Gentry’s ideal-lattice-based somewhat homomorphic 

scheme, this bootstrapping procedure effectively 

―refreshes‖ the ciphertext by reducing its associated 

noise so that it can be used thereafter in more 

additions and multiplications without resulting in an 

indecipherable ciphertext. Gentry based the security of 

his scheme on the assumed hardness of two problems: 

certain worst-case problems over ideal lattices and the 

sparse (or low-weight) subset sum problem. Regarding 

performance, ciphertexts in Gentry’s scheme remain 

compact insofar as their lengths do not depend at all 

on the complexity of the function that is evaluated 

over the encrypted data. The computational time only 

depends linearly on the number of operations 

performed. However, the scheme is impractical for 

many applications, because ciphertext size and 

computation time increase sharply as one increases the 

security level. To obtain 2k security against known 

attacks, the computation time and ciphertext size are 

high-degree polynomials in k. Stehle and Steinfeld 

reduced the dependence on k substantially. They 

presented optimizations that permit the computation to 

be only quasi-k3:5 per Boolean gate of the function 

being evaluated. In 2009, Marten van Dijk, Craig 

Gentry, ShaiHalevi, and VinodVaikuntanathan  

presented a second fully homomorphic encryption 

scheme, which uses many of the tools of Gentry’s 

construction, but which does not require ideal lattices. 

Instead, they show that the somewhat homomorphic 

component of Gentry’s ideal latticebased scheme can 

be replaced with a very simple somewhat 

homomorphic scheme 50 3 Fully Homomorphic 

Encryption that uses integers. The scheme is therefore 

conceptually simpler than Gentry’s ideal lattice 

scheme, but has similar properties with regard to 

homomorphic operations and efficiency. In 2010, 

Nigel P. Smart and FrederikVercauteren presented a 

fully homomorphic encryption scheme with smaller 

key and ciphertext sizes. The Smart– Vercauteren 

scheme follows the fully homomorphic construction 

based on ideal lattices given by Gentry. It also 

produces a fully homomorphic scheme from a 

somewhat homomorphic scheme. For somewhat 

homomorphic scheme, the public and the private keys 

consist of two large integers (one of which shared by 

both the public and the private keys), and the 

ciphertext consists of one large integer. The Smart–

Vercauteren scheme has smaller ciphertext and 

reduced key size than Gentry’s scheme based on ideal 

lattices. Moreover, the scheme also allows efficient 

fully homomorphic encryption over any field of 

characteristic two. However, the major problem with 

this scheme is that the key generation method is very 

slow. This scheme is still not fully practical. At the 

rump session of Eurocrypt 2011, Craig Gentry and 

ShaiHalevi presented a working implementation of 

fully homomorphic encryption (i.e., the entire 

bootstrapping procedure) together with performance 

numbers. Recently, Coron, Naccache, and Tibouchi 

proposed a technique allowing to reduce the public-

key size of the van Dijk et al. scheme to 600 KB. In 

April 2013 the HElib was released, via GitHub, to the 

open source community which implements the 

Brakerski-Gentry-Vaikuntanathan (BGV) 

homomorphic encryption scheme, along with many 

optimizations to make homomorphic evaluation runs 

faster. 

III. PROPOSED SYSTEM   

The arithmetic operations in the Galois field have 

several applications in coding theory, Computer 

algebra and cryptography. Galois field is the set of all 

positive integers from 0, 1,... (P-1) where P is a prime 
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number. It is denoted by GF(P
m
) where m is any 

positive value. 

Many devices that perform functions such as error-

control encoding, error detection, and error correction, 

operate by performing Galois field arithmetic over In 

practice, most implementations take p=2 and use 

binary digits (bits) to represent elements from the field. 

Performing Galois field arithmetic operations over 

GF(P
M

) requires addition and multiplication. With, 

addition and multiplication modulo 2 become the 

exclusive-OR and logical-AND function, respectively. 

For this reason, and the ease with which a symbol of 

size 2
m  

may be handled in a binary system [e.g., a 

single byte may be represented as an element from 

GF(2
m
). Galois fields of size 2

m
 are widely used. 

The modular multiplication architecture is 

different from the interleaved version of Montgomery 

multiplication traditionally used in RSA design. By 

selecting different bases of 16 or 24 bits, it can 

perform 8,192-bit or 12,288-bit modular 

multiplication. A new RSA modular exponentiation 

algorithm using FFT multiplication is proposed to 

reduce one third of the calculation time of the large-

number multiplication in modular multiplication. The 

design was implemented on the Altera's Stratix-V 

FPGA and 90-nm application-specified integrated 

circuit technologies. 

Today, many embedded processors have AES or 

RSA cores included. This paper is aimed at taking a 

similar approach and designing a specific hardware or 

IP blocks for accelerating the core computations in 

FHE. Since the most computationally intensive 

operations in the FHE primitives are large-number 

modular multiplications, our initial attempt is to tackle 

the design of a large-number multiplier that can 

handle 768 000 bits, in support of the 2048-dimension 

FHE scheme demonstrated by Gentry and Halevi. In 

addition to FHE, large-number arithmetic also has 

other important applications in science, engineering, 

and mathematics. Specifically, when we need exact 

results or the results that exceed the range of floating 

point standards, we usually turn to multiprecision 

arithmetic [9]. An example application is in robust 

geometric algorithms. Replacing exact arithmetic with 

fixed-precision arithmetic introduces numerical errors 

that lead to nonrobust geometric computations. High 

precision arithmetic is a primary means of addressing 

the nonrobustness problem in such geometric 

algorithms. One of the holy grails of modern 

cryptography is FHE, which allows arbitrary 

computation on encrypted data. Given a need to 

perform a binary operation on the plaintext, FHE 

enables that to be accomplished via manipulation of 

the ciphertext without the knowledge of the encryption 

key.  

 
For example, The first FHE was proposed by 

Gentry and was seen as a major breakthrough in 

cryptography. However, its preliminary 

implementation is too inefficient to be used in any 

practical applications. A number of optimizations 

were used in the Gentry–Halevi FHE variant, and the 

results of a reference implementation were presented . 

Due to limited space, here we only provide a high-

level overview of the primitives.  

Encryption: 

To encrypt a bit b ∈ {0, 1} with a public key 

(d, r ), encryption first generates a random ―noise 

vector  with each 

entry chosen as 0 with the probability p and as ±1 with 

probability (1 − p)/2 each. Gentry showed that u can 

contain a large number of zeros without impacting the 

security level, i.e., p could be very large. A message 

bit b is then encrypted by computing  

 
   (1) 

where d and r are parts of the public key. For the small 

setting with a lattice dimension of 2048, d and r have a 

size of about 785 000 bits. 

When encrypted, arithmetic operations can 

be performed directly on the ciphertext with the 

corresponding modular operations. Suppose c1 = 

Encrypt(m1) and c2 = Encrypt(m2); then we have 

             
   (2) 

  
   (3)     

  

Decryption: The source bit b can be recovered by 

computing  

   
   (4) 

where w is the private key. The size of the w is the 

same as that of d and r . 

 Decryption:  Briefly, the recyption process is simply 

the homomorphic decryption of the ciphertext. The 

actual procedure of decryption is very complicated, so 

we choose not to explain it here. But from the brief 

description above, we can see that the fundamental 

operations for FHE are large-number addition and 
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multiplication. Addition has far less computing 

complexity than multiplication, so we focus on the 

hardware architecture of the multiplication using 

VLSI design. 

Multiplication Algorithms Large-integer 

multiplication is by far the most time consuming 

operation in the FHE scheme. Therefore, we have 

selected it as the first block for hardware acceleration. 

A review of the literature shows that there is a 

hierarchy of multiplication algorithms. The simplest 

algorithm is the naive O(N
2
) algorithm (often called 

the grade school algorithm). The first improvement to 

the grade school algorithm was due to Karatsuba in 

1962. It is a recursive divide-and-conquer algorithm, 

solving an N bit multiplication with three N/2 bit 

multiplications, giving rise to an asymptotic 

complexity of . Toom and Cook 

generalized Karatsuba’s approach, using polynomials 

to break each N bit number into three or more pieces. 

Once the subproblems have been solved, the Toom–

Cook method uses polynomial interpolation to 

construct the desired result of the N bit multiplication. 

The asymptotic complexity of the Toom–Cook 

algorithm depends on k (the number of pieces) and is 

. 

The next set of algorithms in the hierarchy 

are based on using FFTs to compute convolutions. 

According to Knuth , Strassen came up with the idea 

of using FFTs for multiplcation in 1968, and worked 

with Schönhage to generalize the approach, resulting 

in the famous Schönhage–Strassen algorithm, with an 

asymptotic complexity of 

. 

All the operations in FHE are modular 

operations. Usually, two different approaches are used 

to address the modular multiplication. The first is to 

do multiplication first, followed by modular reduction. 

The other approach, proposed, interleaves the 

multiplication with modular reduction. This is an 

efficient grade-school approach, performing the 

equivalent of two O(N
2
) multiplications. The 

interleaved Montgomery approach is quite commonly 

used for modular multiplication in the RSA algorithm, 

To understand the arithmetic cost of different 

multiplication algorithms, we implement three 

different modular multiplication algorithms in 

carefully tuned MIPS 64 assembly and count the 

number of ALU operations for each. The first 

algorithm uses the interleaved version of Montgomery 

multiplication proposed. This is an efficient grades 

chool approach, performing the equivalent of two 

O(N2) multiplications. The second algorithm uses the 

non interleaved three-multiplication Montgomery 

reduction implemented with Karatsuba multiplication 

(it uses the Karatsuba method if the arguments are 

larger than three words, and switches to grade-school 

multiplication to handle the base case when the 

arguments are small). The third algorithm adopted in 

this paper is based on FFT multiplication and is 

described in detail in the next section. This algorithm 

also uses a traditional three multiplication 

Montgomery reduction. Comparing the Karatsuba and 

FFT multipliers, both of which compute the product 

and then reduce the result modulo N, we can see that 

FFT multiplication is faster, requiring only one-third 

of the number of instructions as the Karatsuba 

multiplier. Comparing the FFT multiplier with 

interleaved Montgomery approach which is widely 

used in RSA for modular multiplication, we see that 

the FFT multiplier uses only 1/20th of the number of 

instructions. The interleaved version of Montgomery 

multiplication is popular and efficient in RSA, but it is 

no longer efficient for the modular multiplication in 

FHE. In all, the approach we adopt for modular 

multiplication is the most efficient algorithm. From 

above, we can see that large-number multiplication is 

the most crucial part for the modular multiplication. 

Therefore, we take the first step to design a fast 

multiplier for hardware implementation. For further 

reading, there are a number of papers that cover 

hardware implementation of large-number 

multiplication Yazaki and Abe implement a 1024-bit 

Karatsuba multiplier, and they investigate a hardware 

implementation of FFT multiplication. Kalach 

investigates a hardware implementation of finite field 

FFT multiplication. However, that paper does not 

present any information about the hardware resources 

and performance.  

FFT Multiplication  

FFT multiplication is based on convolutions. For 

example, to compute the product A times B, we 

express the numbers A and B as sequences of digits 

(in some base b) and then compute the convolution of 

the two sequences using FFTs.  

 
Fig. 1. FFT multiplication. 
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Fig. 2. FFT-based multiplication algorithm. 

 Once Once we have the convolution of the 

digits, the product A times B can be found by 

resolving the carries between digits. The FFT 

multiplication algorithm is presented in Fig. 1 and as a 

diagram in Fig. 2. The FFT computations can done 

either in the domain of complex numbers or in a finite 

field or ring. In the complex number domain, it is 

trivial to construct the roots of unity required for the 

FFT, but the computations must be done with floating 

point arithmetic and the round-off error analysis is 

quite involved. In the finite field/ring case, all the 

computations are done with integer arithmetic and are 

exact. However, the existence and the calculation of 

the required root of unity will depend heavily on the 

structure of the chosen finite field/ring. For our FFT 

multiplier, we follow the steps of our previous work 

and implement the FFT in the finite field Z/pZ, where 

p is the prime   This prime is from a 

special class of numbers called Solinas primes (see 

[22]). As we shall see, this choice of p has three 

compelling advantages for FFTs.  

1) We can do very large FFTs in Z/pZ. Since 232 

divides p − 1, we can do any power-of-2-sized FFT up 

to 232. 

 2) There exists a very fast procedure for computing x 

modulo p for any x.  

3) For small FFTs (up to size 64), the roots of unity 

are all powers of 2. This means that small FFTs can be 

done entirely with shifting and addition, rather than 

requiring expensive 64-bit multiplications.  

FFTs in the Finite Field Z/pZ  

To perform FFTs in a finite field, we need three 

operators: addition, subtraction, and multiplication, all 

modulo p, where  Addition and 

subtraction are straightforward (if the result is larger 

than p then subtract p, and if the result is negative, 

then add p). For multiplication, if X and Y are in Z/pZ, 

then X ∗ Y will be a 128-bit number, which we can 

represent as  

(where a, b, c, and d are each 32-bit values). Next, 

using two identities of p, namely, 2
96

 mod p = −1 and 

2
64

 mod p = 2
32

 − 1, we can rewrite the product of X ∗ 

Y as  

 
This means that a 128-bit number can be reduced 

modulo p to just a few 32-bit additions and 

subtractions. Further, note that 2
192

 mod p = 1, 2
96

 

mod p = −1, 2
384

 mod p = 1, etc. This leads to a fast 

method to reduce any sized value modulo p. Break the 

value up into 96-bit chunks and compute the 

alternating sum of the chunks. Then reduce the result 

as above. This means that a 128-bit number can be 

reduced modulo p to just a few 32-bit additions and 

subtractions. Further, note that 2192 mod p = 1, 2
96

 

mod p = −1, 2
384

 mod p = 1, etc. This leads to a fast 

method to reduce any sized value modulo p. Break the 

value up into 96-bit chunks and compute the 

alternating sum of the chunks. Then reduce the result 

as above. In addition to the arithmetic operator, there 

are three other criteria in order to perform 

multiplication with finite field FFTs. First, to compute 

an FFT of size k, a primitive root of unity rk must exist. 

In a finite field, the process for doing an FFT is 

analogous to FFTs in the complex domain; thus 

   
  (5) 

The inverse FFT (IFFT) is just 

  
  (6) 

for all the usual methods for decomposing FFTs, such 

as Cooley–Tukey, except (rk ) 
j
 takes the place of e 

j
2πi/k

 . With large FFTs, the primitive roots almost 

always look like random 64-bit numbers; e.g., the r65 

536 that we use is 0xE9653C8DEFA860A9.However, 

for FFTs of size 64 or less, the roots of unity will 

always be powers of 2. As noted above, 2
192

 mod p = 

1, which means (2
3
)

64
 mod p = 1 and therefore r64 = 2

3
 

= 0 × 08. Likewise, r16 = 2
12

. For our hardware 

implementation, we will choose k = 65 536 and b = 

2
24

. These values meet the criteria above and allow us 

to multiply two numbers up to b
k/2

 = 2
786 432

, i.e., 786 

432 bit in length, which is sufficient to support 

Gentry–Halevi’s FHE scheme for the small setting 

with a lattice dimension of 2048. 
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192-bit Wide Pipelines It is often the case in our 

hardware FFT implementation that we need to 

perform a sequence of modular operations (additions, 

subtractions, and multiplications by powers of 2). If 

we were to implement this as 64-bitwide operations, 

we would need to reduce the result modulo p between 

each stage of the pipe. Although the process to reduce 

a value modulo p is quite fast, it still requires a lot of 

hardware. It turns out that, if we extend each 64-bit 

value to 192 bits (by padding with zeros on the left) 

and run the pipeline with 192-bitwide values, then we 

can avoid the modulo p operations after each pipeline 

stage by taking advantage of the fact that 2192 mod p 

is 1. We do this as follows: 

1) Addition: Suppose we wish to compute x + y. 

There are two cases: If we get a carry out from the 

192nd bit, then we have trunc(x+y)+2
192

, which is the 

same as trunc(x+y)+1 modulo p (where trunc(z) 

returns the least significant 192 bits of z). If it did not 

carry out, then the result is just x + y. We can 

implement this efficiently in hardware using circular 

shifting operations. 

 2) Multiplication by a Power of 2: First, let us 

consider multiplication by 2. Suppose we have a 192-

bit value x and we wish to compute 2x. There two 

cases. If the most significant bit of x is zero, then we 

simply shift all 1-bits to the left. If the top bit is set, 

then we need to compute trunc(2x) + 2192, which is 

the same as trunc(2x) + 1 modulo p. In both case, it is 

just a left circular shift by 1 bit. Thus to compute 2 j ∗ 

x, we simply do a left circular shift by j bits. 

3) Subtraction: Since 2
96

 mod p = −1, we can simply 

rewrite x − y as x + 2
96

y. The 2
96

 is a constant shift. 

For the final reduction from 192 bits back down to 64 

bits, as above, we can represent a 192-bit number z as 

 
where a, b, c, d, e, and f are each 32 bits  

 

    (7) 
 

IV. RESULTS & DISCUSSIONS 

Experimental results of the  proposed system 

were shown . 

 

 

 

Figure 3 Encryption result 

 

 

Figure 4 Decryption result 

These works assume perfect channel state 

information (CSI) is available at the receiver. Receiver 

algorithms for the realistic case when CSI is not 

available Efficient receiver structure was proposed for 

RADIX FFT scheme over frequency-flat fading 

channels, based on generalized maximum-likelihood 

sequence estimation space-time block codes and 

space-time trellis codes are two very different transmit 

diversity schemes. Space-time block codes are 

constructed from known orthogonal designs, achieves 

full diversity, are easily decodable by maxim um 

likelihood decoding via linear processing at the 

receiver, but suffers from a lack of coding gain. On 

the other hand, space-time trellis codes possess both 

diversity and co ding gain, yet is complex to decode 

(since maximum likelihood sequence estimation is 

require), and arduous to design. For RADIX FFTs, 

coding gain is only achieved if it is concatenated with 

an outer code, such as a TCM code  or a TurboTCM 

Code . This was mentioned as an ongoing, exciting 

area of research 
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