
International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 67

A Novel methodology for Implementation RSA algorithm

using FFT in Galois Field
S.Syamkumar

1
Ch.Umasankar

2

1
PG Student (M.Tech), Dept. of ECE, Universal Clg. of Eng. and Tech., Guntur, AP, India

2
Assistant professor, Dept. of ECE, Universal Clg. of Eng. and Tech., Guntur, AP, India

Abstract— In the past decade, one of the most significant advances in cryptography has been the introduction of

the first fully homomorphism encryption scheme (FHE). This advance resolved and opened the door to many

new applications. Indeed, using a FHE one may perform an arbitrary number of computations directly on the

encrypted data without revealing of the secret key. Thus an untrusted party, such as a remotely hosted server,

may perform computations on behalf of the owner on the data without compromising privacy. This property of

FHE is precisely what makes it invaluable for the cloud computing platforms today. A fully homomorphic

encryption (FHE) scheme is envisioned as being a key cryptographic tool in building a secure and reliable cloud

computing environment, as it allows arbitrarily evaluation of a cipher text without revealing the plaintext.

However, existing FHE implementations remain impractical due to their very high time and resource costs. Of

the proposed schemes that can perform FHE to date, a scheme known as FHE over the integers has the ad-

vantage of comparatively simpler theory, as well as the employment of a much shorter public key making its

implementation somewhat more practical than other competing schemes. This paper presents the first hardware

implementations of encryption primitives for FHE over the integers using FPGA technology. First of all, a

super-size hardware multiplier architecture utilizing the Integer-FFT multiplication algorithm is proposed, and a

super-size hardware Barrett modular reduction module is designed incorporating the proposed multiplier. Next,

two encryption primitives that are used in two schemes of FHE over the integers are designed employing the

proposed super-size multiplier and modular reduction modules.

Keywords— Modular multiplication, Rivest–Shamir–Adleman (RSA) cryptosystem, very large scale integration

architecture, FHE, GF polynomial.

I. INTRODUCTION

The explosive growth in data communications

and internet services has made the cryptography an

important research topic to provide the need of

confidentiality, authentication, data integrity, and/or

non-reputation. The idea of public-key cryptosystem

was originally presented by Diffie and Hellman. In

1978, Rivest, Shamir and Adleman introduced the

famous RSA public-key cryptosystem, in which the

characteristic is carried out by the modular

exponentiation and the security lies on our inability to

efficiently factor large integers (usually larger than

500 bits). To date, the RSA cryptosystem is still one

of the most widely used public key cryptosystems.

Moreover, since the size of modulus is at least 512 bits

for long-term security, it means that high throughput

rate is hard to achieve.

Encryption techniques are used essentially by the

network security service to ensure the secret of

information. A definition of security is needed to

better understand it. According to Katz and Lindell, a

security classic definition has two components: a

security warranty that no information is leaked and a

threat model which describes the adversary's abilities.

But it is no need for perfect secrecy in real-world

application. A tiny amount of information can be

leaked to an adversary with bounded computational

power, if it takes too long to decrypt data. This defines

the computational security for nowadays

cryptographic purposes. Modern cryptography

requires a mathematical approach to define security.

In this way, a scheme is secure if the success

probability of any probabilistic polynomial-time (PPT)

attack is negligible. Reliance on definitions and

mathematical foundations represents a rigorous

approach to cryptography.

The concept of computation on encrypted data

without decryption was first introduced by Rivest,

Adleman and Dertouzos in 1978. Thirty years later,

Gentry proposed a fully homomorphic encryption

(FHE) based on ideal lattices. This scheme is far from

being practical because of its large computational cost

and large ciphertexts. Since then, considerable efforts

have been made to devise more efficient schemes.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 68

However, most FHE schemes still have very large

ciphertexts (millions of bits for a single ciphertext.

This presents a considerable bottleneck in practical

deployments.

We consider the following situation: several

users upload data encrypted with a public-key FHE, a

server carries out computations on the encrypted data

and then sends them to an agency who has a

decryption key for the FHE. This is common in typical

FHE scenarios, such as medical and financial

applications. In this situation, one approach to reduce

the storage requirement is to use AES encryption to

encrypt data, and then perform homomorphic

computations on ciphertexts after converting to FHE-

ciphertexts. This method has a great advantage in

storage and communication, because only small AES-

ciphertexts are transmitted from user to server, and

these are homomorphically decrypted only when their

homomorphic computations are required. In an

asymmetric setting, we can still use this approach by

adding several public-key FHE cipher texts of a

session key. However this approach is not practical

when the amount of messages transmitted

simultaneously is small compared with the size of on

FHE cipher text. Moreover, the conversion of AES-

ciphertexts into FHE-ciphertexts requires a levelled

FHE with multiplicative depth of at least forty.

In this paper, we explore an alternative method

that encrypts messages with a public key encryption

(PKE) and converts them into SHE-ciphertexts for

homomorphic computations. In this approach, the

ciphertext expansion ratio is only two or three

regardless of the message size. Moreover, the

decryption circuit is very shallow when the SHE

allows large integers as messages.

In this paper we present the first hardware

implementations of encryption primitives for FHE

over the integers using FPGA technology. First of all,

a super-size hardware multiplier architecture utilizing

the Integer-FFT multiplication algorithm is proposed,

and a super-size hardware Barrett modular reduction

module is designed incorporating the proposed

multiplier. Next, two encryption primitives that are

used in two schemes of FHE over the integers are

designed employing the proposed super-size multiplier

and modular reduction modules.

II. FHE SCHEME BASICS

Fully homomorphic encryption can be considered

as ring homomorphism. In mathematics, a ring is a set

R equipped with two operations + and * satisfying the

following eight axioms, called the ring axioms. R is an

abelian group under addition, meaning:

1. (a+b)+c =a+(b+c) for all a,b,c in R(+ is

associative)

2. There is an element 0 in R such that a +0 =a

and 0 +a =a (0 is the additive identity)

3. For each a in R there exists _a in R such that

a+(-a)=(-a)+a=0(-ais the additive inverse of

a).

4. A+b=b+a for all a and b in R (C is

commutative).

R is a monoid under multiplication, meaning:

5. (a * b) * c = a .(b . c) for all a; b; c in R (. is

associative).

 6. There is an element 1 in R such that a.1 = a

and 1.a = a (1 is the multiplicative identity).

Multiplication distributes over addition:

7. a * .(b + c)= (a * b) + .(a * c)for all a; b; c in R

(left distributivity).

 8. .(b + c) a =.(b * a)+ (c*a) for all a; b; c in R

(right distributivity).

 A ring homomorphism is a function between two

rings which respects the structure. More

explicitly, if R and S are two rings, then a ring

homomorphism is a function

such that

for all a and b in R. Let us see an example of ring

homomorphism. Consider the function

given by

where 2xy = 0 because 2 times anything is 0 in Z2.

Next,

The second equality follows from the fact

that Z2 is commutative. Thus, f is a ring

homomorphism. Let (P; C;K;E;D) be a encryption

scheme, where P;C are the plaintext and ciphertext

spaces, K is the key space, and E,D are the encryption

and decryption algorithms. Assume that the plaintexts

form a ring (P,*p,*p) and the ciphertexts forma ring

(C,*c,*c); then the encryption algorithm E is a map

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 69

from the ring P to the ring C, i.e., Ek :p –c , where K

is either a secret key (in the secret key cryptosystem)

or a public key (in the public-key cryptosystem).

For all a and b in P and k in K, if

Overview of FHE

Craig Gentry, using lattice-based cryptography,

showed the first fully homomorphic encryption

scheme as announced by IBM on 25 June 2009. His

scheme supports evaluations of arbitrary depth

circuits. His construction starts from a somewhat

homomorphic encryption scheme using ideal lattices

that is limited to evaluating low-degree polynomials

over encrypted data. It is limited because each

ciphertext is noisy in some sense, and this noise grows

as one adds and multiplies ciphertexts, until ultimately

the noise makes the resulting ciphertext

indecipherable. He then shows how to modify this

scheme to make it bootstrappable—in particular, he

shows that by modifying the somewhat homomorphic

scheme slightly, it can actually evaluate its own

decryption circuit, a self-referential property. Finally,

he shows that any bootstrappable somewhat

homomorphic encryption scheme can be converted

into a fully homomorphic encryption through a

recursive self-embedding. In the particular case of

Gentry’s ideal-lattice-based somewhat homomorphic

scheme, this bootstrapping procedure effectively

―refreshes‖ the ciphertext by reducing its associated

noise so that it can be used thereafter in more

additions and multiplications without resulting in an

indecipherable ciphertext. Gentry based the security of

his scheme on the assumed hardness of two problems:

certain worst-case problems over ideal lattices and the

sparse (or low-weight) subset sum problem. Regarding

performance, ciphertexts in Gentry’s scheme remain

compact insofar as their lengths do not depend at all

on the complexity of the function that is evaluated

over the encrypted data. The computational time only

depends linearly on the number of operations

performed. However, the scheme is impractical for

many applications, because ciphertext size and

computation time increase sharply as one increases the

security level. To obtain 2k security against known

attacks, the computation time and ciphertext size are

high-degree polynomials in k. Stehle and Steinfeld

reduced the dependence on k substantially. They

presented optimizations that permit the computation to

be only quasi-k3:5 per Boolean gate of the function

being evaluated. In 2009, Marten van Dijk, Craig

Gentry, ShaiHalevi, and VinodVaikuntanathan

presented a second fully homomorphic encryption

scheme, which uses many of the tools of Gentry’s

construction, but which does not require ideal lattices.

Instead, they show that the somewhat homomorphic

component of Gentry’s ideal latticebased scheme can

be replaced with a very simple somewhat

homomorphic scheme 50 3 Fully Homomorphic

Encryption that uses integers. The scheme is therefore

conceptually simpler than Gentry’s ideal lattice

scheme, but has similar properties with regard to

homomorphic operations and efficiency. In 2010,

Nigel P. Smart and FrederikVercauteren presented a

fully homomorphic encryption scheme with smaller

key and ciphertext sizes. The Smart– Vercauteren

scheme follows the fully homomorphic construction

based on ideal lattices given by Gentry. It also

produces a fully homomorphic scheme from a

somewhat homomorphic scheme. For somewhat

homomorphic scheme, the public and the private keys

consist of two large integers (one of which shared by

both the public and the private keys), and the

ciphertext consists of one large integer. The Smart–

Vercauteren scheme has smaller ciphertext and

reduced key size than Gentry’s scheme based on ideal

lattices. Moreover, the scheme also allows efficient

fully homomorphic encryption over any field of

characteristic two. However, the major problem with

this scheme is that the key generation method is very

slow. This scheme is still not fully practical. At the

rump session of Eurocrypt 2011, Craig Gentry and

ShaiHalevi presented a working implementation of

fully homomorphic encryption (i.e., the entire

bootstrapping procedure) together with performance

numbers. Recently, Coron, Naccache, and Tibouchi

proposed a technique allowing to reduce the public-

key size of the van Dijk et al. scheme to 600 KB. In

April 2013 the HElib was released, via GitHub, to the

open source community which implements the

Brakerski-Gentry-Vaikuntanathan (BGV)

homomorphic encryption scheme, along with many

optimizations to make homomorphic evaluation runs

faster.

III. PROPOSED SYSTEM

The arithmetic operations in the Galois field have

several applications in coding theory, Computer

algebra and cryptography. Galois field is the set of all

positive integers from 0, 1,... (P-1) where P is a prime

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 70

number. It is denoted by GF(P
m
) where m is any

positive value.

Many devices that perform functions such as error-

control encoding, error detection, and error correction,

operate by performing Galois field arithmetic over In

practice, most implementations take p=2 and use

binary digits (bits) to represent elements from the field.

Performing Galois field arithmetic operations over

GF(P
M

) requires addition and multiplication. With,

addition and multiplication modulo 2 become the

exclusive-OR and logical-AND function, respectively.

For this reason, and the ease with which a symbol of

size 2
m

may be handled in a binary system [e.g., a

single byte may be represented as an element from

GF(2
m
). Galois fields of size 2

m
 are widely used.

The modular multiplication architecture is

different from the interleaved version of Montgomery

multiplication traditionally used in RSA design. By

selecting different bases of 16 or 24 bits, it can

perform 8,192-bit or 12,288-bit modular

multiplication. A new RSA modular exponentiation

algorithm using FFT multiplication is proposed to

reduce one third of the calculation time of the large-

number multiplication in modular multiplication. The

design was implemented on the Altera's Stratix-V

FPGA and 90-nm application-specified integrated

circuit technologies.

Today, many embedded processors have AES or

RSA cores included. This paper is aimed at taking a

similar approach and designing a specific hardware or

IP blocks for accelerating the core computations in

FHE. Since the most computationally intensive

operations in the FHE primitives are large-number

modular multiplications, our initial attempt is to tackle

the design of a large-number multiplier that can

handle 768 000 bits, in support of the 2048-dimension

FHE scheme demonstrated by Gentry and Halevi. In

addition to FHE, large-number arithmetic also has

other important applications in science, engineering,

and mathematics. Specifically, when we need exact

results or the results that exceed the range of floating

point standards, we usually turn to multiprecision

arithmetic [9]. An example application is in robust

geometric algorithms. Replacing exact arithmetic with

fixed-precision arithmetic introduces numerical errors

that lead to nonrobust geometric computations. High

precision arithmetic is a primary means of addressing

the nonrobustness problem in such geometric

algorithms. One of the holy grails of modern

cryptography is FHE, which allows arbitrary

computation on encrypted data. Given a need to

perform a binary operation on the plaintext, FHE

enables that to be accomplished via manipulation of

the ciphertext without the knowledge of the encryption

key.

For example, The first FHE was proposed by

Gentry and was seen as a major breakthrough in

cryptography. However, its preliminary

implementation is too inefficient to be used in any

practical applications. A number of optimizations

were used in the Gentry–Halevi FHE variant, and the

results of a reference implementation were presented .

Due to limited space, here we only provide a high-

level overview of the primitives.

Encryption:

To encrypt a bit b ∈ {0, 1} with a public key

(d, r), encryption first generates a random ―noise

vector with each

entry chosen as 0 with the probability p and as ±1 with

probability (1 − p)/2 each. Gentry showed that u can

contain a large number of zeros without impacting the

security level, i.e., p could be very large. A message

bit b is then encrypted by computing

 (1)

where d and r are parts of the public key. For the small

setting with a lattice dimension of 2048, d and r have a

size of about 785 000 bits.

When encrypted, arithmetic operations can

be performed directly on the ciphertext with the

corresponding modular operations. Suppose c1 =

Encrypt(m1) and c2 = Encrypt(m2); then we have

 (2)

 (3)

Decryption: The source bit b can be recovered by

computing

 (4)

where w is the private key. The size of the w is the

same as that of d and r .

 Decryption: Briefly, the recyption process is simply

the homomorphic decryption of the ciphertext. The

actual procedure of decryption is very complicated, so

we choose not to explain it here. But from the brief

description above, we can see that the fundamental

operations for FHE are large-number addition and

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 71

multiplication. Addition has far less computing

complexity than multiplication, so we focus on the

hardware architecture of the multiplication using

VLSI design.

Multiplication Algorithms Large-integer

multiplication is by far the most time consuming

operation in the FHE scheme. Therefore, we have

selected it as the first block for hardware acceleration.

A review of the literature shows that there is a

hierarchy of multiplication algorithms. The simplest

algorithm is the naive O(N
2
) algorithm (often called

the grade school algorithm). The first improvement to

the grade school algorithm was due to Karatsuba in

1962. It is a recursive divide-and-conquer algorithm,

solving an N bit multiplication with three N/2 bit

multiplications, giving rise to an asymptotic

complexity of . Toom and Cook

generalized Karatsuba’s approach, using polynomials

to break each N bit number into three or more pieces.

Once the subproblems have been solved, the Toom–

Cook method uses polynomial interpolation to

construct the desired result of the N bit multiplication.

The asymptotic complexity of the Toom–Cook

algorithm depends on k (the number of pieces) and is

.

The next set of algorithms in the hierarchy

are based on using FFTs to compute convolutions.

According to Knuth , Strassen came up with the idea

of using FFTs for multiplcation in 1968, and worked

with Schönhage to generalize the approach, resulting

in the famous Schönhage–Strassen algorithm, with an

asymptotic complexity of

.

All the operations in FHE are modular

operations. Usually, two different approaches are used

to address the modular multiplication. The first is to

do multiplication first, followed by modular reduction.

The other approach, proposed, interleaves the

multiplication with modular reduction. This is an

efficient grade-school approach, performing the

equivalent of two O(N
2
) multiplications. The

interleaved Montgomery approach is quite commonly

used for modular multiplication in the RSA algorithm,

To understand the arithmetic cost of different

multiplication algorithms, we implement three

different modular multiplication algorithms in

carefully tuned MIPS 64 assembly and count the

number of ALU operations for each. The first

algorithm uses the interleaved version of Montgomery

multiplication proposed. This is an efficient grades

chool approach, performing the equivalent of two

O(N2) multiplications. The second algorithm uses the

non interleaved three-multiplication Montgomery

reduction implemented with Karatsuba multiplication

(it uses the Karatsuba method if the arguments are

larger than three words, and switches to grade-school

multiplication to handle the base case when the

arguments are small). The third algorithm adopted in

this paper is based on FFT multiplication and is

described in detail in the next section. This algorithm

also uses a traditional three multiplication

Montgomery reduction. Comparing the Karatsuba and

FFT multipliers, both of which compute the product

and then reduce the result modulo N, we can see that

FFT multiplication is faster, requiring only one-third

of the number of instructions as the Karatsuba

multiplier. Comparing the FFT multiplier with

interleaved Montgomery approach which is widely

used in RSA for modular multiplication, we see that

the FFT multiplier uses only 1/20th of the number of

instructions. The interleaved version of Montgomery

multiplication is popular and efficient in RSA, but it is

no longer efficient for the modular multiplication in

FHE. In all, the approach we adopt for modular

multiplication is the most efficient algorithm. From

above, we can see that large-number multiplication is

the most crucial part for the modular multiplication.

Therefore, we take the first step to design a fast

multiplier for hardware implementation. For further

reading, there are a number of papers that cover

hardware implementation of large-number

multiplication Yazaki and Abe implement a 1024-bit

Karatsuba multiplier, and they investigate a hardware

implementation of FFT multiplication. Kalach

investigates a hardware implementation of finite field

FFT multiplication. However, that paper does not

present any information about the hardware resources

and performance.

FFT Multiplication

FFT multiplication is based on convolutions. For

example, to compute the product A times B, we

express the numbers A and B as sequences of digits

(in some base b) and then compute the convolution of

the two sequences using FFTs.

Fig. 1. FFT multiplication.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 72

Fig. 2. FFT-based multiplication algorithm.

 Once Once we have the convolution of the

digits, the product A times B can be found by

resolving the carries between digits. The FFT

multiplication algorithm is presented in Fig. 1 and as a

diagram in Fig. 2. The FFT computations can done

either in the domain of complex numbers or in a finite

field or ring. In the complex number domain, it is

trivial to construct the roots of unity required for the

FFT, but the computations must be done with floating

point arithmetic and the round-off error analysis is

quite involved. In the finite field/ring case, all the

computations are done with integer arithmetic and are

exact. However, the existence and the calculation of

the required root of unity will depend heavily on the

structure of the chosen finite field/ring. For our FFT

multiplier, we follow the steps of our previous work

and implement the FFT in the finite field Z/pZ, where

p is the prime This prime is from a

special class of numbers called Solinas primes (see

[22]). As we shall see, this choice of p has three

compelling advantages for FFTs.

1) We can do very large FFTs in Z/pZ. Since 232

divides p − 1, we can do any power-of-2-sized FFT up

to 232.

 2) There exists a very fast procedure for computing x

modulo p for any x.

3) For small FFTs (up to size 64), the roots of unity

are all powers of 2. This means that small FFTs can be

done entirely with shifting and addition, rather than

requiring expensive 64-bit multiplications.

FFTs in the Finite Field Z/pZ

To perform FFTs in a finite field, we need three

operators: addition, subtraction, and multiplication, all

modulo p, where Addition and

subtraction are straightforward (if the result is larger

than p then subtract p, and if the result is negative,

then add p). For multiplication, if X and Y are in Z/pZ,

then X ∗ Y will be a 128-bit number, which we can

represent as

(where a, b, c, and d are each 32-bit values). Next,

using two identities of p, namely, 2
96

 mod p = −1 and

2
64

 mod p = 2
32

 − 1, we can rewrite the product of X ∗

Y as

This means that a 128-bit number can be reduced

modulo p to just a few 32-bit additions and

subtractions. Further, note that 2
192

 mod p = 1, 2
96

mod p = −1, 2
384

 mod p = 1, etc. This leads to a fast

method to reduce any sized value modulo p. Break the

value up into 96-bit chunks and compute the

alternating sum of the chunks. Then reduce the result

as above. This means that a 128-bit number can be

reduced modulo p to just a few 32-bit additions and

subtractions. Further, note that 2192 mod p = 1, 2
96

mod p = −1, 2
384

 mod p = 1, etc. This leads to a fast

method to reduce any sized value modulo p. Break the

value up into 96-bit chunks and compute the

alternating sum of the chunks. Then reduce the result

as above. In addition to the arithmetic operator, there

are three other criteria in order to perform

multiplication with finite field FFTs. First, to compute

an FFT of size k, a primitive root of unity rk must exist.

In a finite field, the process for doing an FFT is

analogous to FFTs in the complex domain; thus

 (5)

The inverse FFT (IFFT) is just

 (6)

for all the usual methods for decomposing FFTs, such

as Cooley–Tukey, except (rk)
j
 takes the place of e

j
2πi/k

 . With large FFTs, the primitive roots almost

always look like random 64-bit numbers; e.g., the r65

536 that we use is 0xE9653C8DEFA860A9.However,

for FFTs of size 64 or less, the roots of unity will

always be powers of 2. As noted above, 2
192

 mod p =

1, which means (2
3
)

64
 mod p = 1 and therefore r64 = 2

3

= 0 × 08. Likewise, r16 = 2
12

. For our hardware

implementation, we will choose k = 65 536 and b =

2
24

. These values meet the criteria above and allow us

to multiply two numbers up to b
k/2

 = 2
786 432

, i.e., 786

432 bit in length, which is sufficient to support

Gentry–Halevi’s FHE scheme for the small setting

with a lattice dimension of 2048.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 73

192-bit Wide Pipelines It is often the case in our

hardware FFT implementation that we need to

perform a sequence of modular operations (additions,

subtractions, and multiplications by powers of 2). If

we were to implement this as 64-bitwide operations,

we would need to reduce the result modulo p between

each stage of the pipe. Although the process to reduce

a value modulo p is quite fast, it still requires a lot of

hardware. It turns out that, if we extend each 64-bit

value to 192 bits (by padding with zeros on the left)

and run the pipeline with 192-bitwide values, then we

can avoid the modulo p operations after each pipeline

stage by taking advantage of the fact that 2192 mod p

is 1. We do this as follows:

1) Addition: Suppose we wish to compute x + y.

There are two cases: If we get a carry out from the

192nd bit, then we have trunc(x+y)+2
192

, which is the

same as trunc(x+y)+1 modulo p (where trunc(z)

returns the least significant 192 bits of z). If it did not

carry out, then the result is just x + y. We can

implement this efficiently in hardware using circular

shifting operations.

 2) Multiplication by a Power of 2: First, let us

consider multiplication by 2. Suppose we have a 192-

bit value x and we wish to compute 2x. There two

cases. If the most significant bit of x is zero, then we

simply shift all 1-bits to the left. If the top bit is set,

then we need to compute trunc(2x) + 2192, which is

the same as trunc(2x) + 1 modulo p. In both case, it is

just a left circular shift by 1 bit. Thus to compute 2 j ∗

x, we simply do a left circular shift by j bits.

3) Subtraction: Since 2
96

 mod p = −1, we can simply

rewrite x − y as x + 2
96

y. The 2
96

 is a constant shift.

For the final reduction from 192 bits back down to 64

bits, as above, we can represent a 192-bit number z as

where a, b, c, d, e, and f are each 32 bits

 (7)

IV. RESULTS & DISCUSSIONS

Experimental results of the proposed system

were shown .

Figure 3 Encryption result

Figure 4 Decryption result

These works assume perfect channel state

information (CSI) is available at the receiver. Receiver

algorithms for the realistic case when CSI is not

available Efficient receiver structure was proposed for

RADIX FFT scheme over frequency-flat fading

channels, based on generalized maximum-likelihood

sequence estimation space-time block codes and

space-time trellis codes are two very different transmit

diversity schemes. Space-time block codes are

constructed from known orthogonal designs, achieves

full diversity, are easily decodable by maxim um

likelihood decoding via linear processing at the

receiver, but suffers from a lack of coding gain. On

the other hand, space-time trellis codes possess both

diversity and co ding gain, yet is complex to decode

(since maximum likelihood sequence estimation is

require), and arduous to design. For RADIX FFTs,

coding gain is only achieved if it is concatenated with

an outer code, such as a TCM code or a TurboTCM

Code . This was mentioned as an ongoing, exciting

area of research

References

1. G. D. Sutter, J.-P. Deschamps, and J. L. Imaña, ―Modular

multiplication and exponentiation architectures for fast

RSA cryptosystem based on digit serial computation,‖

IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 3101–3109,

Jul. 2011.

2. S. Yazaki and K. Abe, ―VLSI design of Karatsuba integer

multipliers and its evaluation,‖ IEEE Trans. Electron., Inf.

Syst., vol. 128, no. 2, pp. 220–230, Feb. 2008

3. A. Schönhage and V. Strassen, ―Schnelle Multiplikation

Großer Zahlen,‖ Computing, vol. 7, no. 3, pp. 281–292,

1971.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 2 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 74

4. P. Montgomery, ―Modular multiplication without trial

division,‖ Math.Comput., vol. 44, no. 170, pp. 519–521,

1985.

5. S. Yazaki and K. Abe, ―An optimum design of FFT multi-

digit multiplier and its VLSI implementation,‖ Bull. Univ.

Electro-Commun., vol. 18,no. 1, pp. 39–45, 2006.

6. J. W. Cooley and J. W. Tukey, ―An algorithm for the

machine calculation of complex Fourier series,‖ Math.

Comput., vol. 19, no. 90, pp. 297–301,1965.

7. L. Jia, Y. Gao, and H. Tenhunen, ―A pipelined shared-

memory architecture for FFT processors,‖ in Proc. 42nd

IEEE Midwest Symp. Circuits Syst., vol. 2. Aug. 1999, pp.

804–807.

8. K. Kalach and J. P. David, ―Hardware implementation of

large number multiplication by FFT with modular

arithmetic,‖ in Proc. 3rd Int. IEEENEWCAS Conf., Jun.

2005, pp. 267–270.

9. J. Solinas, ―Generalized mersenne numbers,‖ Blekinge

College Technol., Karlskrona, Sweden, Tech. Rep.

06/MI/006, 1999

Authors Profile:

S.Syamkumar is pursuing

his M. Tech in Department

of Electronics and

Communication

Engineering at Universal

College of Engineering &

Technology, Guntur. His

specialization is VLSID

Ch. Umasankar is an

Assistant professor in the

Department of Electronics

and Communication

Engineering at Universal

College of Engineering &

Technology, Guntur. He has

published several papers on

his interested area of VLSI

signal processing.

http://www.ijettjournal.org/

