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Abstract 

 

In robotics the Simultaneous Localization 

and Mapping (SLAM) is the problem in which an 

autonomous robots acquires a map of the 

surrounding environment while at the same time 

localizes itself inside this map. One of the most 

challenging fields of research in SLAM is the so 

called Visual- SLAM problem, in which various 

types of cameras are used as sensor for the 

navigation. Cameras are inexpensive sensors and 

can provide rich information about the surrounding 

environment, on the other hand the complexity of the 

computer vision tasks and the strong dependence on 

the characteristics of the environment in current 

approaches makes the Visual-SLAM far to be 

considered a closed problem. 

 

Visual SLAM (simultaneous localization 

and mapping) refers to the problem of using images, 

as the only source of external information, in order 

to establish the position of a robot, a vehicle, or a 

moving camera in an environment, and at the same 

time, construct a representation of the explored zone. 

Nowadays, the problem of SLAM is considered 

solved when range sensors such as lasers or sonar 

are used to build 2D maps of small static 

environments. However SLAM for dynamic, complex 

and large scale environments, using vision as the 

sole external sensor, is an active area of research. 

The computer vision techniques employed in visual 

SLAM, such as detection, description and matching 

of salient features, image recognition and retrieval, 

among others, are still susceptible of improvement. 

The objective of this article is to provide new 

researchers in the field of visual SLAM a brief and 

comprehensible review of data association 

categories in VSLAM. 

 
Keywords Visual SLAM - Detectors-Descriptors- 

Data association 
 
1. Introduction 

The SLAM is a problem of spatial 

exploration. The Simultaneous Localisation and 

Mapping (SLAM) problem asks if it is possible for a 

mobile robot to be placed at an unknown location in 

an unknown environment and for the robot to 

incrementally build a consistent map of this 

environment while simultaneously determining its 

location within this map. A solution to the SLAM 

problem has been seen as a `holy grail' for the 

mobile robotics community as it would provide the 

means to make a robot truly autonomous. 

The `solution' of the SLAM problem has been one of 

the notable successes of the robotics community 

over the past decade. SLAM has been formulated 

and solved as a theoretical problem in a number of 

different forms. SLAM has also been implemented 

in a number of domains from indoor robots, to 

outdoor, underwater and airborne systems. At a 

theoretical and conceptual level, SLAM can now be 

considered a solved problem. However, substantial 

issues remain in practically realizing more general 

SLAM solutions and notably in building and using 

perceptually rich maps as part of a SLAM algorithm. 

One of the most fundamental features of an 

autonomous mobile robot is the capability to localize 

itself inside the environments where it moves. 

Without the knowledge of its own position, a robot 

can't perform complex tasks as rescue, surveillance, 

or fetch and carry. In order to provide a robot with 

localization capabilities, the programmer must give 

it a representation of the environment (map) where it 

will move. For many reasons, this representation is 

not always available, for example because of the 

working area is not known a priori (as in the case of 

a rescue robot). Generating incrementally consistent 

maps of the environment, while locating itself within 

this map is therefore another fundamental task of 

mobile robots, more general than the localization, 

and obviously more challenging. In robotics this 

capability is commonly referred as the Simultaneous 

Localization and Mapping (SLAM) problem [1], and 

in the last years it has received much attention 

within the research community. SLAM has been 

formulated and solved as a theoretical problem in a 

number of different ways and many researchers 

presented several implementations using different 

robotic platforms and sensors. However, SLAM still 

remains an open problem, due to the strong 

dependency of almost all current implementations on 

the specific environment and the specific sensors 

used. 

Moreover, the capability of autonomously navigate 

in an unknown environment becomes critically 

important in indoor application, where no global 

positioning systems as GPS are available. 

The overview of the SLAM process consists of 

following phases: 
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Fig. 1: Overview of the SLAM 

In Fig. 1 the SLAM involves a moving agent (for 

example a robot), which embarks at least one sensor 

able to gather information about its surroundings (a 

camera, a laser scanner, sonar: these are called 

exteroceptive sensors). Optionally, the moving agent 

can in-corporate other sensors to measure its own 

movement (wheel encoders, accelerometers, and 

gyrometers: these are known as proprioceptive 

sensors). The minimal SLAM system consists of one 

moving exteroceptive sensor (for example, a camera 

in your hand) connected to a computer.  

 

SLAM consists of three basic operations: 

 

1. Motion model (Odometry update): 

The robot moves, reaching a new 

point of view of the scene. Due to 

unavoidable noise and errors, this motion 

increases the uncertainty on the robot's 

localization. 

2. Inverse observation model (Feature 

Extraction): 

It is a mathematical model to 

determine the position of the landmarks in 

the scene from the data obtained by the 

sensors. The robot discovers interesting 

features in the environment, which need to 

be incorporated to the map. It is called as 

features landmarks. Because of errors in the 

exteroceptive sensors, the location of these 

landmarks will be uncertain. Moreover, as 

the robot location is already uncertain, 

these two uncertainties need to be properly 

composed.  

3. Direct observation model (Data 

Association): 

It is a mathematical model to 

predict the values of the measurement from 

the predicted landmark location and the 

robot localization. The robot observes 

landmarks that had been previously mapped, 

and uses them to correct both its self-

localization and the localization of all 

landmarks in space. Therefore, both 

localization and landmarks uncertainties 

decrease. 

  

With these three models plus an estimator engine it 

is able to build an automated solution to SLAM. The 

estimator is responsible for the proper propagation 

of uncertainties each time one of the three situations 

above occurs. An extended Kalman filter (EKF) is 

used as an estimator. A solution to SLAM needs to 

chain all these operations together and to keep all 

data healthy and organized, making the appropriate 

decisions at every step. 

 

2. Vision in SLAM 

Visual SLAM is the process of building 

maps of the surrounding environment and in the 

same time estimates the robot motion using mainly 

visual information. Conventional SLAM approaches 

commonly use information provided by range finder 

sensors as lasers or sonar rings. Range finder sensors 

provide easily interpreted outputs that can be 

directly used in the SLAM state estimation problem. 

On the other hand, vision-based sensors provide the 

robot with a large amount of information that should 

be properly interpreted before the estimation process. 

The process of understanding of the sensory 

information coming from vision is called visual 

perception. Generally visual perception is a complex 

task and it involves various scientific subjects as 

signal processing, geometry and pattern recognition. 

Often useful information, for example visual 

landmark positions, are difficult to extract from 

images due to the sensor noise and the illumination 

changes, additionally 3D positions are not 

observable given only a single frame. 

A lot of computer vision techniques are involved in 

Visual SLAM systems, such as visual features 

detection and extraction (feature selection), features 

matching (data association), image transformations 

and structure reconstruction. The current visual-

SLAM systems use various types of cameras 

(perspective, stereo, panoramic). Due to size and 

balance constraints, small robots are usually 

equipped with a single, often low-cost, perspective 

camera. 

2.1 Feature Selection 

A salient feature is a region of the image 

described by its 2D position (on the image) and an 

appearance. The term salient feature is used as a 

generalization that can include points, regions, or 

even edge segments which are extracted from 

images. Feature extracting methods are designed to 

extract salient areas from an image. There are 

different features, which can be extracted. Edges, 

corners and blobs are the most often used features. 

The feature should fulfil certain criteria: 

 

1. Invariance - The detection of a specific 

feature should be invariant with respect to 

geometric and radiometric distortions, for 

instance relative rotations or intensity 

changes. 

2. Stability - The detection of a feature should 

be robust against noise in the observation. 

3. Distinctness - The feature should be 

distinguishable from neighbouring features 

in terms of local image information. 
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4. Infrequency - For the task of loop closing 

detection the surrounding local image 

information of a feature should be unique. 

5. Interpretability - In case of object 

recognition tasks it is necessary that the 

feature or a feature group can be assigned 

to semantic objects. 

 

The salient feature extraction process is 

composed of two phases: detection and description. 

The detection consists in processing the image to 

obtain a number of salient features. The description 

consists in building a feature vector based on visual 

appearance in the image. The invariance of the 

descriptor to changes in position and orientation will 

permit to improve the image matching and data 

association processes. The features will be extracted 

from the IR Laser field which are said to be the 

landmarks. These features will act as an input to the 

data association phase. The various descriptors and 

detectors that have been used in SLAM are 

discussed below: 

 

 

2.1.1 Phase I: Detectors 

The majority of visual SLAM systems use 

corners as landmarks due to their invariant features 

and their wide study in the computer vision context. 

However, in [7] the edge segments called edge lets 

in a real-time MonoSLAM system, allowing the 

construction of maps with high levels of geometrical 

information are used. The edges are good features 

for tracking and SLAM, due to their invariance to 

lighting, orientation and scale changes. The use of 

edges as features looks promising, since edges are 

little affected by blurring caused by the sudden 

movements of the camera [8]. However, the edges 

have the limitation of not being easy to extract and 

match. On the other hand, in [9] and [10] the fusion 

of features (i.e. points, lines and planar structures) in 

a single map, with the purpose of increasing the 

precision of SLAM systems and creating a better 

representation of the environment was investigated. 

2.1.2 Phase II: Visual 

Descriptors 

The set of different descriptors that have 

been evaluated in this study are: 

SIFT: The Scale-Invariant Feature Transform (SIFT) 

detects distinctive key points in images and 

computes a descriptor for them. The algorithm, 

developed by Lowe, was initially used for object 

recognition tasks [2]. SIFT features are located at 

maxima and minima of a difference of Gaussian 

functions applied in scale space. Next, the 

descriptors are computed based on orientation 

histograms at a 4x4 sub region around the interest 

point, resulting in a 128 dimensional vector. 

SURF: Speeded Up Robust Features (SURF) is a 

scale and rotation invariant descriptor presented in 

[3]. The detection process is based on the Hessian 

matrix. SURF descriptors are based on sums of 2D 

Haar wavelet responses, calculated in a 4x4 sub 

region around each interest point. The standard 

SURF descriptor has a dimension of 64 and the 

extended version (e-SURF) of 128. The u-SURF 

version is not invariant to rotation and has a 

dimension of 64. 

Gray level patch: This method describes each 

landmark using the gray level values at a sub region 

around the interest point. This method has been used 

in [4] as descriptor of Harris points in a visual 

SLAM framework. 

Orientation Histograms: The orientation histograms 

are computed from the gradient image, which 

represents the gray value variations in the x and y 

direction. In [5] orientation histograms are applied 

for navigation tasks. 

Zernike Moments: The moment formulation of the 

Zernike polynomials [6] appears to be one of the 

most popular in terms of noise resilience, 

information redundancy and reconstruction 

capability. They are constructed using a set of 

complex polynomials which form a complete 

orthogonal basis set. 

 

2.2 Data Association in VSLAM: 

In data association phase the newly 

extracted features will be mapped with the existing 

features and uses them to correct both the 

localization of robot and the landmarks. When the 

odometry changes as the robot moves to new 

position it is updated in the kalman filter through 

odometry update phase, which is a repetitive process. 

The Kalman filter is the heart of the SLAM process. 

It is responsible for updating where the robot thinks 

is based on these features. In visual SLAM data 

association is performed by means of visual place 

recognition techniques. It is categorized into 

following cases:  

 Cooperative SLAM 

 Loop closure detection 

 Kidnapped SLAM 

2.2.1 Cooperative SLAM 

CoSLAM is a vision-based simultaneous 

localization and mapping (SLAM) in dynamic 

environments with multiple cameras. These cameras 

move independently and can be mounted on 

different platforms. All cameras work together to 

build a global map, including 3D positions of static 

background points and trajectories of moving 

foreground points. The inter-camera pose estimation 

and inter-camera mapping to deal with dynamic 

objects in the localization and mapping process has 

been used. To enhance the system robustness, the 

position uncertainty of each map point has to be 

maintained. To facilitate intercamera operations, 
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cameras are clustered into groups according to their 

view overlap, and manage the split and merge of 

camera groups in real-time. 

 

In dynamic environments, it is often important to 

reconstruct the 3D trajectories of the moving objects 

for tasks such as collision detection and path 

planning [11], [12]. This 3D reconstruction of 

dynamic points can hardly be achieved by a single 

camera. To address these problems, a collaborative 

visual SLAM system using multiple cameras was 

used. The relative positions and orientations between 

cameras are allowed to change over time. This 

setting is different from existing SLAM systems 

with a stereo camera [13], [14] or a multi-camera rig 

[15] where all cameras are fixed on a single platform. 

The camera configuration makes the system 

applicable to the following interesting cases:  

 

1) Wearable augmented reality [16], where 

multiple cameras are mounted on different 

parts of the body 

2) Robot teams [17], [18], [19], where 

multiple robots work in the same 

environment and each carries a single 

camera because of limited weight and 

energy capacity, e.g. micro air vehicles 

(MAVs) 

The collaborative SLAM system treats each camera 

as a sensor input, and incorporates all inputs to build 

a global map, and simultaneously computes the 

poses of all cameras over time. The system detects 

and tracks feature points at every frame, and feed 

them to the four SLAM components. The Kanade-

Lucas-Tomasi (KLT) [20] tracker for both feature 

detection and tracking was used because of its good 

balance between efficiency and robustness. 

However, there is no restriction to use other feature 

detectors and trackers such as the „active matching‟ 

[21]. The four SLAM components are „camera pose 

estimation‟, „map building‟, „point classification‟, 

and „camera grouping‟. The main pipeline of the 

system follows conventional sequential structure-

from motion (SFM) methods. It is assumed that all 

cameras look at the same initial scene to initialize 

the system. After that, the „camera pose estimation‟ 

component computes camera poses at every frame 

by registering the 3D map points to 2D image 

features. From time to time, new map points are 

generated by the „map building‟ component. At 

every frame, points are classified into different types 

by the „point classification‟ component. The system 

maintains the view overlap information among 

cameras throughout time. The „camera grouping‟ 

component separates cameras into different groups, 

where cameras with view overlap are in the same 

group. These groups could merge and split when 

cameras meet or separate. Several issues in pose 

estimation, mapping and camera group management 

were addressed, so that the system can work robustly 

in challenging dynamic scenes and the whole system 

runs in real-time. 

 

The cooperative mapping consists in align two or 

more partial maps of the environment collected by a 

robot in different periods of operation or by several 

robots at the same time (visual cooperative SLAM) 

[22][23][24]. In the past, the problem of associating 

measurements with landmarks on the map was 

solved through algorithms such as Nearest 

Neighbour, Sequential Compatibility Nearest 

Neighbour and Joint Compatibility Branch and 

Bound [25]. However, these techniques are similar 

because they work only if a good initial guess of the 

robot in the map is available [26]. 

 

2.2.2 Loop-Closure Detection 

 
A graph is constructed where nodes 

represent locations in which a complete 360-degrees 

panoramic reference image is acquired and links 

represent consecutive reached reference positions. 

Loops in the graph represent previously visited 

places. As described in [27], while the robot moves 

it checks for a loop closing for every incoming 

(perspective) image. If the loop-closure is not 

detected, a new reference panoramic image is 

acquired and hence it is associated to a new node 

added to the graph. The process for the loop closing 

detection is the following: 

 

1. A new perspective image is acquired. 

2. If the similarity between the current perspective 

image and the last panoramic image added to the 

graph is over a threshold then, return to point (1), 

otherwise proceed to point (3). 

3. A loop-closure between the current image and all 

the reference panoramic images (except the last 

visited) is attempted. 

4. If the loop-closure is detected, a link between the 

last visited node in the graph and the node associated 

with the matched reference image is added. 

5. If the loop-closure fails, a new reference 

panoramic image is acquired and hence it is 

associated to a new node added to the graph. 

6. The process restarts from the point (1).  

 

Loop closure detection consists in recognizing a 

place that has already been visited in a cyclical 

excursion of arbitrary length [22][28][29]. This 

problem has been one of the greatest obstacles to 

perform large scale SLAM and recover from critical 

errors. From this problem arises another one called 

perceptual aliasing [26][30] where two different 

places from the surrounding are recognized as the 

same. This represents a problem even when using 
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cameras as sensors due to the repetitive features of 

the environment, e.g. hallways, similar architectural 

elements or zones with a large quantity of bushes. A 

good loop closure detection method must not return 

any false positive and must obtain a minimum of 

false negatives. 

 

According to Williams [31] detection methods for 

loop closures in visual SLAM can be divided into 

three categories: (1) map to map; (2) image to image; 

and (3) image to map. Categories differ mainly 

about where the association data are taken from 

(metric map space or image space). However the 

ideal would be to build a system that combines the 

advantages of all three categories. Loop closure 

detection is an important problem for any SLAM 

system, and taking into account that cameras have 

become a very common sensor for robotic 

applications, many researchers focus on vision 

methods to solve it. A similarity matrix to code the 

relationships of resemblance between all the possible 

pairs in captured images has been proposed in [32]. 

They demonstrate by means of single value 

decomposition that it is possible to detect loop 

closures, despite of the presence of repetitive and 

visually ambiguous images. A unified method to 

recover from tracking failures and detect loop 

closures in the problem of monocular visual SLAM 

in real time has been proposed in [33]. They also 

propose a system called GraphSLAM where each 

node stores landmarks and maintains estimations of 

the transformations relating nodes. In order to detect 

failures or loop closures, they model appearance as a 

Bag of Visual Words (BoVW) to find the nodes that 

have a similar appearance in the current video image. 

A method to detect loop closures under a scheme of 

Bayesian filtering and a method of incremental 

BoVW, where the probability to belong to a visited 

scene is computed for each acquired image and it 

has been proposed in [30]. A probabilistic 

framework to recognize places, which uses only 

image appearance data, has been proposed in [28]. 

 

Through the learning of a generative model of 

appearance, they demonstrate that not only it is 

possible to compute the resemblance of two 

observations, but also the probability that they 

belong to the same place and thus they calculate a 

probability distribution function (pdf) of the 

observed position. Finally, in [29] a new topometric 

representation of the world, based on co-visibility, 

which allows simplifying data association and 

improving the performance of recognition based on 

appearance has been proposed. 

 

All the loop closure works described above, aim to 

achieve a precision of 100%.This is due to the fact 

that a single false positive can cause permanent 

failures during the creation of the map. In the 

context of SLAM, false positives are serious than 

false negatives [34]. False negatives reduce recall 

percentage but have no impact on precision 

percentage. Thus, in order to determine the 

efficiency of a loop closure detector, the recall rate 

should be as high as possible, with a precision of 

100%. 
 

2.2.3 Kidnapped robot 

 
The “Kidnapped robot problem” is closely 

related to multi-session mapping. In the Kidnapped 

robot problem, the goal is to estimate the robot‟s 

position with respect to a prior map given no a priori 

information about the robot‟s position. In multi-

session SLAM, in conjunction with this global 

localisation problem the robot should begin mapping 

immediately and upon localisation the map from the 

current session should be incorporated into the 

global map from previous sessions. 

 
If the robot is put back into an already mapped zone, 

without the knowledge of its displacement while it is 

being transported to that place, or when robot 

performs blind movements due to occlusions, 

temporary sensor malfunction, or fast camera 

movements [34][35][36]. A system capable of 

tolerating the uncertainty about camera pose and 

recover from minor tracking failures generated by 

continuous erratic movement or by occlusions has 

been proposed in [35]. The work consists in 

generating a descriptor (based on SIFT) at multiple 

resolutions to provide robustness in the data 

association task. In addition, it uses an index based 

on low-order coefficients of the Haar wavelet. A re-

localization module that monitors the SLAM system, 

detects tracking failures, determines the camera pose 

in the map landmarks framework and resumes 

tracking as soon as conditions have improved has 

been proposed in [36]. Re-localization is performed 

by a landmark recognition algorithm using the 

randomized trees classifier technique proposed in 

[37] and trained online through a feature harvesting 

technique. In this way a high recovery rate and a 

rapid recognition time are obtained. To find the 

camera pose, candidate poses are generated from 

correspondences between the current frame and 

landmarks on the map. There is a selection of sets of 

three potential matches, then, all the consistent poses 

with these sets are calculated by a three-point 

algorithm. These poses are evaluated seeking 

consensus among the other correspondences in the 

image found by RANSAC. If a pose with a large 

consensus is found, that pose is assumed to be 

correct. 

 
3. Conclusion 

 
VSLAM is an extension of SLAM employed in 

robotic application. The data association is still an 

open research area in the fields of robotic vision. In 
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this paper, authors have surveyed for the existing 

challenges, solutions to these challenges related to 

VSLAM.  The authors have also tried to cover the 

basics of VSLAM available in the literature. The 

focus in this survey work is more towards various 

data association techniques in VSLAM. Our future 

aim is to come out with a new sophisticated VSLAM 

that can outperform the existing techniques. 
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