
International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 3 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 133

Reconfigurable Fir Digital Filter Realization on FPGA
Atmakuri Vasavi

1
Sita Madhuri Bondila

2

1
PG Student (M.Tech), Dept. of ECE, Gandhiji Institute of Science & Tech., Jaggaiahpeta, AP, India

2
Assistant professor, Dept. of ECE, Gandhiji Institute of Science & Tech., Jaggaiahpeta, AP, India

Abstract— This paper presents efficient distributed arithmetic (DA)-based approaches for high-throughput

reconfigurable implementation of finite-impulse response (FIR) filters whose filter coefficients change during

runtime. Conventionally, for reconfigurable DA-based implementation of FIR filter, the lookup tables (LUTs)

are required to be implemented in RAM and the RAM-based LUT is found to be costly for ASIC implementation.

Therefore, a shared-LUT design is proposed to realize the DA computation. Instead of using separate registers

to store the possible results of partial inner products for DA processing of different bit positions, registers are

shared by the DA units for bit slices of different weightage. The proposed design has nearly 68% and 58% less

area-delay product and 78% and 59% less energy per sample than the DA-based systolic structure and the

carry save adder (CSA)-based structure, respectively, for the ASIC implementation. A LUT, which stands

for LookUp Table, in general terms is basically a table that determines what the output is for any given input(s).

In the context of combinational logic, it is the truth table. This truth table effectively defines how your

combinatorial logic behaves.In other words, whatever behaviour you get by interconnecting any number of

gates (like AND, NOR, etc.), without feedback paths (to ensure it is state-less), can be implemented by a LUT.

Keywords—FIR, Digital Filter, Reconfigurable, FPGA

I. INTRODUCTION

In the majority of digital signal processing

(DSP) applications the critical operations are the

multiplication and accumulation. Real-time signal

processing requires high speed and high throughput

Multiplier-Accumulator (FIR) unit that consumes low

power, which is always a key to achieve a high

performance digital signal processing system. The

purpose of this work is to design and implementation

of a low power FIR unit with block enabling technique

to save power. Firstly, a 1-bit FIR unit is designed,

with appropriate geometries that give optimized

power, area and delay. The delay in the pipeline stages

in the FIR unit is estimated based on which a control

unit is designed to control the data flow between the

FIR blocks for low power. Similarly, the N-bit FIR

unit is designed and controlled for low power using a

control logic that enables the pipelined stages at

appropriate time. The adder cell designed has

advantage of high operational speed, small Gate count

and low power.

In general, a multiplier uses Booth’s

algorithm and array of full adders (FAs), or Wallace

tree instead of the array of FA’s., i.e., this multiplier

mainly consists of the three parts: Booth encoder, a

tree to compress the partial products such as Wallace

tree, and final adder. Because Wallace tree is to add

the partial products from encoder as parallel as

possible, its operation time is proportional to, where is

the number of inputs. It uses the fact that counting the

number of 1’s among the inputs reduces the number of

outputs into. In real implementation, many (3:2) or

(7:3) counters are used to reduce the number of

outputs in each pipeline step. The most effective way

to increase the speed of a multiplier is to reduce the

number of the partial products because multiplication

precedes a series of additions for the partial products.

To reduce the number of calculation steps for the

partial products, MBA algorithm has been applied

mostly where Wallace tree has taken the role of

increasing the speed to add the partial products. To

increase the speed of the MBA algorithm, many

parallel multiplication architectures have been

researched .Among them, the architectures based on

the Baugh–Wooley algorithm (BWA) have been

developed and they have been applied to various

digital filtering calculations.

One of the most advanced types of FIR for

general-purpose digital signal processing has been

proposed by Elguibaly. It is an architecture in which

accumulation has been combined with the carry save

adder (CSA) tree that compresses partial products. In

the architecture proposed in , the critical path

was reduced by eliminating the adder for

accumulation and decreasing the number of input bits

in the final adder. While it has a better performance

because of the reduced critical path compared to the

previous FIR architectures, there is a need to improve

the output rate due to the use of the final adder results

for accumulation. Architecture to merge the adder

block to the accumulator register in the FIR operator

was proposed in to provide the possibility of using

two separate /2-bit adders instead of one -bit adder to

accumulate the –bitFIR results. Recently, Zicari

proposed an architecture that took a merging

technique to fully utilize the 4–2 compressor. It also

took this compressor as the basic building blocks for

the multiplication circuit.

A new architecture for a high-speed FIR is

proposed. In this FIR, the computations of

multiplication and accumulation are combined and a

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 3 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 134

hybrid-type CSA structure is proposed to reduce the

critical path and improve the output rate. It uses MBA

algorithm based on 1’s complement number system. A

modified array structure for the sign bits is used to

increase the density of the operands. A carry look-

ahead adder (CLA) is inserted in the CSA tree to

reduce the number of bits in the final adder. In

addition, in order to increase the output rate by

optimizing the pipeline efficiency, intermediate

calculation results are accumulated in the form of sum

and carry instead of the final adder outputs.

II. FIR FILTER USING DA

A four tap adaptive digital filter architecture using

DA is shown in Fig.1, which is suitable only for small

order filters. For this, the filter output is computed by

(3) that use LUT to store and update the filter contents

according to (4). DA FIR filters perform the filtering

operation as per bit precision of the input signal

sample irrespective of filter length. To reduce the

memory and hardware requirements, updating of filter

weights can be done without using any other memory

element. The DA-F-LUT contains all possible

combination sums of the filter weights which

recalculated and updated according to the input signal

sample and error signal. The filter architecture shown

in Fig. 2 can be used for higher order filters by

increasing the number of input taps.

The LMS algorithm is used to update the weights

to minimize the error between filter output y(n) and

desired signal d(n) . To compute the new filter weights

LMS algorithm uses the error signal in every iteration

cycle. Thus, each recursion shifts the filter weights

closer to their optimum value.

If is the tap

weight vector,

the tap input vector during the nth iteration and k is

the filter order then the weight updating equation

for kth filter tap is given by

where e(n)=d(n)-y(n) is the error value and u is

the step size

Figure 1 DA LMS adaptive filter using single

LUT with one SA for 4 tap.

The weight computed at time n becomes the

weight value at time n+1 by using the LMS weight

adapting algorithm. Therefore, the value of filter

weight at time n+1 is stored in LUT to perform the

filtering operation according to the input data sample

at that time instant. The DA-F-LUT n+1 is updated by

reading the memory location DA-F-LUT[n] and by

multiplying the input data sample by ue[n] as

III. RECONFIGURABLE FIR

A Reconfigurable finite-impulse response

(FIR) filter whose filter coefficients dynamically

change during runtime plays an important role in the

software defined radio systems, multichannel filters,

and digital up/down converters. However, the well-

known multiple-constant multiplication-based

technique, which is widely used for the

implementation of FIR filters, cannot be used when

the filter coefficients dynamically change. On the

other hand, a general multiplier-based structure

requires a large chip area and consequently enforces a

limitation on the maximum possible order of the filter

that can be realized for high-throughput applications.

A distributed arithmetic (DA)-based

technique has gained substantial popularity in recent

years for its high-throughput processing capability and

increased regularity, which result in cost-effective and

area-time efficient computing structures. The main

operations required for DA-based computation are a

sequence of lookup table (LUT) accesses followed by

shift accumulation operations of the LUT output. The

conventional DA implementation used for the

implementation of an FIR filter assumes that impulse

response coefficients are fixed, and this behavior

makes it possible to use ROM-based LUTs. The

memory requirement for DA-based implementation of

FIR filters, however, exponentially increases with the

filter order. To eliminate the problem of such a large

memory requirement, systolic decomposition

techniques are suggested by Meher et al. for DA-based

implementation of long-length convolutions and FIR

filter of large orders [7], [8]. For a reconfigurable DA-

based FIR filter whose filter coefficients dynamically

change, we need to use rewritable RAM based LUT

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 3 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 135

instead of ROM-based LUT. Another approach is to

store the coefficients in the analog domain by using

serial digital-to-analog converters resulting in mixed-

signal architecture. We also find quite a few works on

DA based implementation of adaptive filters [11], [12]

where the coefficients change at every cycle. In this

brief, we present ef- ficient schemes for the optimized

shared-LUT implementation of reconfigurable FIR

filters using DA technique, where LUTs are shared by

the DA units for bit slices of different weightage. In

addition, the filter coefficients can be dynamically

changed in runtime with a very small reconfiguration

latency.

 The output of an FIR filter of length N can be

computed as an inner product of the impulse response

vector (h(k), for k = 0, 1,...,N − 1) and an input vector

(x(n − k), for k = 0, 1,...,N − 1), which is given by

 (1)

For simplification of subsequent derivation, let us

remove time index n as

 (2)

where s(k) = x(n − k). Assuming L to be the word

length, the input sample s(k) may be expressed in

two’s complement representation, i.e.,

 (3)

where [s(k)]l denotes the lth bit of s(k). Substituting

(3), we can write (2) in an expanded form, i.e.,

 (4)

To convert the sum-of-products form of inner product

of (2) into a distributed form, the order of summations

over the indices k and l in (4) can be interchanged to

have

 (5)

and the inner product given by (5) can be computed as

 (6a)

Where

 (6b)

Since any element of the N-point bit

sequence [s(k)]l for 0 ≤ k ≤ N − 1} can either be 0 or 1,

the partial sum Cl for 0 ≤ l ≤ L − 1 can have 2N

possible values. If all the 2N possible values of Cl are

precomputed and stored in the LUT, the partial sums

Cl can be read out from the LUT using the bit

sequence {[s(k)]l for 0 ≤ k ≤ N − 1} as address bits for

computing the inner product.

 Without a loss of generality, and for

simplicity of discussion, we may assume the signal

samples to be unsigned words of size L, although the

proposed algorithm can be used for two’s complement

coding and offset binary coding also. We can always

obtain unsigned input signal by adding fixed offset

when the original input signal is signed. The inner

product given by (6a) then can be expressed in a

simpler form, i.e.,

 (7)

so that no sign reversal of LUT output is required. We

can use (7) directly for straight forward DA-based

implementation of FIR filter using the LUT containing

2N possible values of Cl. For large values of N,

however, the LUT size becomes too large, and the

LUT access time also becomes large. The

straightforward DA-based implementation is,

therefore, not suitable for large filter orders. When N

is a composite number given by N = PM (P and M

may be any two positive integers), one can map the

index k into (m + pM) for m = 0, 1,...,M − 1 and p = 0,

1,...,P − 1 to express (7) as

 (8a)

Where Sl,p is the sum of partial product of M samples

represented as

 (8b)

for l = 0, 1,...,L − 1 and p = 0, 1,...,P − 1. For any

given sequence of impulse response {h(k)}, the 2M

possible values of Sl,p corresponding to the 2M

permutations of M-point bit sequence

 , for m = 0, 1,..., M − 1 and l = 0,

1,...,L − 1, may be stored in the LUT of 2M words.

These values of Sl,p can be read out when the bit

sequence is fed to the LUT as address. Equation (8)

may, thus, be written in terms of memory-read

operation as

 (9)

where F(bl,p) = Sl,p, and

 (10)

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 3 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 136

The proposed structure of the DA-based FIR

filter for ASIC implementation is shown in Fig. 1. The

input samples {x(n)} arriving at every sampling

instant are fed to a serial-in–parallel out shift register

(SIPOSR) of size N. The SIPOSR decomposes the N

recent most samples to P vectors bp of length M for p

= 0, 1,...,P − 1 and feeds them to P reconfigurable

partial product generators (RPPGs) to calculate the

partial products according to (8b). The structure of the

proposed RPPG is depicted in Fig. 2 for M = 2. For

high-throughput implementation, the RPPG generates

L partial products corresponding to L bit slices in

parallel using the LUT composed of a single register

bank of 2M − 1 registers and L number of 2M : 1

MUX es. In the proposed structure, we reduce the

storage consumption by sharing each LUT across L bit

slices. The register array is preferred for this purpose

rather than memory-based LUT in order to access the

LUT contents simultaneously. In addition, the

contents in the register-based LUT can be updated in

parallel in fewer cycles than the memory-based LUT

to implement desired FIR filter. The width of each

register in the LUT is (W + [log2 M]) bits, where W is

the word length of the filter coefficient. The input of

the MUX es are 0, h(2p), h(2p + 1), and h(2p) + h(2p

+ 1); and the two-bit digit bl,p is fed to MUX l for 0 ≤

l ≤ L − 1 as a control word. We can find that MUX l

provides the partial product Sl,p for 0 ≤ l ≤ L − 1

given by (8b).

Figure 2: Proposed structure of the high-throughput

DA-based FIR filter for ASIC implementation. RPPG

stands for reconfigurable partial product generator.

The (W + 1)-bit partial products generated by

the P RPPG blocks are added by L separate pipeline

adder trees (PATs) according to the inner summation

in The output of PATs are appropriately shifted and

added to obtain the filter output y(n) by a pipeline

shift-add tree (PSAT) as the outer summation . The

PAT requires P − 1 adders in [log2 P] stages and the

PSAT requires L − 1 adders in [log2 L] stages.

FPGA technology has tremendously grown

from a dedicated hardware to a heterogeneous system,

which is considered to be a popular choice in

communication base stations instead of being just a

prototype platform. The proposed reconfigurable FIR

filter may be also implemented as part for the

complete system on FPGA. Therefore, here we

propose a reconfigurable DA based FIR filter for

FPGA implementation. The architecture suggested in

Section III for high-throughput implementation of

DA-based FIR filter is not suitable for FPGA

implementation. The structure in Fig. 1 involves

N(2M − 1)/M number of registers for the

implementation of LUTs for FIR filter of length N.

However, registers are scarce resource in FPGA since

each LUT in many FPGA devices contains only two

bits of registers. Therefore, the LUTs are required to

be implemented by distributed RAM (DRAM) for

FPGA implementation. However, unlike the case of

the RPPG in Fig. 2, the multiple number of partial

inner products Sl,p cannot be retrieved from the

DRAM simultaneously since only one LUT value can

be read from the DRAM per cycle. Moreover, if L is

the bit width of input, the duration of the sample

period of the design is L times the operating clock

period, which may not be suitable for the application

requiring high throughput. Using a DRAM to

implement LUT for each bit slice will lead to very

high resource consumption.

Figure 3: p th RPPG for M = 2.

Thus, we decompose the partial inner-

product generator into Q parallel sections and each

section has R time-multiplexed operations

corresponding to R bit slices. When L is a composite

number given by L = RQ (R and Q are two positive

integers), the index l in (8a) can be mapped into (r +

qR) for r = 0, 1,...,R − 1 and q = 0, 1,...,Q − 1 to

modify (8a) as

 (11)

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 3 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 137

We have referred to the indices q and r in (11) as

section index and time index, respectively. We have R

time slots of the same duration as the operating clock

period so that we can have one filter output every R

cycles. Fig. 3(a) shows the structure of the proposed

time-multiplexed DA-based FIR filter using DRAM.

To implement (11), the proposed structure has Q

sections, and each section consists of P DRAM-based

RRPGs (DRPPGs) and the PAT to calculate the

rightmost summation, followed by shift-accumulator

that performs over R cycles according to the second

summation. However, we can use dual-port DRAM to

reduce the total size of LUTs by half since two

DRPPGs from two different sections can share the

single DRAM. The structure of a DRPPG is shown in

Fig. 3. The proposed structure can produce QP partial

inner products in a single cycle, whereas the structure

in Fig. 1 can generate LP inner products. In the rth

cycle, P DRPPGs in the qth section generate P partial

inner products Sr+qR,p for p = 0, 1,...,P − 1 to be

added by the PAT. The output of the PAT are

accumulated by a shift-accumulator [see Fig. 3] over

R cycles. Finally, the PSAT produces the filter output

using the output from each section every R cycles.

The accumulated value is reset every R cycles by the

control signal [acc_rst in Fig. 3] to keep the

accumulator register ready to be used for calculation

of the next filter output. If the maximum operating

clock period is fclk, the proposed structure can support

the input sample rate of fclk/R.

References
1. T. Hentschel, M. Henker, and G. Fettweis, ―The digital

front-end of software radio terminals,‖ IEEE Pers.

Commun. Mag., vol. 6, no. 4, pp. 40–46, Aug. 1999.

2. K.-H. Chen and T.-D. Chiueh, ―A low-power digit-based

reconfigurable FIR filter,‖ IEEE Trans. Circuits Syst. II,

Exp. Briefs, vol. 53, no. 8, pp. 617–621, Aug. 2006.
3. L. Ming and Y. Chao, ―The multiplexed structure of

multi-channel FIR filter and its resources evaluation,‖ in

Proc. Int. Conf. CDCIEM, Mar. 2012, pp. 764–768.
4. I. Hatai, I. Chakrabarti, and S. Banerjee,

―Reconfigurable architecture of a RRC FIR interpolator

for multi-standard digital up converter,‖ in Proc.IEEE
27th IPDPSW, May 2013, pp. 247–251.

5. A. G. Dempster and M. D. Macleod, ―Use of minimum-

adder multiplier blocks in FIR digital filters,‖ IEEE
Trans. Circuits Syst. II, Analog Digit. Signal Process.,

vol. 42, no. 9, pp. 569–577, Sep. 1995.

6. S. A. White, ―Applications of distributed arithmetic to
digital signal processing: A tutorial review,‖ IEEE ASSP

Mag., vol. 6, no. 3, pp. 4–19, Jul. 1989.

7. P. K. Meher, ―Hardware-efficient systolization of DA-
based calculation of finite digital convolution,‖ IEEE

Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 8, pp.

707–711, Aug. 2006.

8. P. K. Meher, S. Chandrasekaran, and A. Amira, ―FPGA

realization of FIR filters by efficient and flexible

systolization using distributed arithmetic,‖IEEE Trans.
Signal Process., vol. 56, no. 7, pp. 3009–3017, Jul. 2008.

9. M. Kumm, K. Moller, and P. Zipf, ―Dynamically

reconfigurable FIR filter architectures with fast
reconfiguration,‖ in Proc. 8th Int. Workshop ReCoSoC,

Jul. 2013, pp. 1–8.

10. E. Ozalevli, W. Huang, P. E. Hasler, and D. V.
Anderson, ―A reconfigurable mixed-signal VLSI

implementation of distributed arithmetic used for finite-

impulse response filtering,‖ IEEE Trans. Circuits Syst. I,

Reg.Papers, vol. 55, no. 2, pp. 510–521, Mar. 2008.

11. D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V.

Anderson, ―LMS adaptive filters using distributed

arithmetic for high throughput,‖ IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327–1337, Jul.

2005.

12. P. K. Meher and S. Y. Park, ―High-throughput pipelined
realization of adaptive FIR filter based on distributed

arithmetic,‖ in Proc. IEEE/IFIP 19th Int. Conf. VLSI-

SOC, Oct. 2011, pp. 428–433.
13. DesignWare Building Block IP User Guide, Synposys,

Inc., Mountain View, CA, USA, 2012, 06-SP2.

LogiCORE IP FIR Compiler v5.0, Xilinx, Inc., San Jose,
CA, USA, 2010.

Authors Profile:

ATMAKURI VASAVI is pursuing

her M. Tech in Department of

Electronics and Communication

Engineering at Gandhiji Institute of

Science & Technology,

Jaggaiahpeta.

Her specialization is VLSID.

Mrs. SITA MADHURI

BONDILA is an Assistant professor

in the Department of Electronics

and Communication Engineering at

Gandhiji Institute of Science &

Technology, Jaggaiahpeta. She has

8 years of teaching experience.

http://www.ijettjournal.org/

